У людей, которых называют метеозависимыми, при определенных погодных условиях наблюдается ухудшение самочувствия. Особенно сильна восприимчивость к колебаниям температуры воздуха или атмосферного давления утех, кто периодически испытывает повышение АД. Если такой человек постоянно страдает от «метеоударов», на которые его организм реагирует повышением давления, со временем у него может развиться гипертония.
Казалось бы, здесь нет выхода. Ведь человек не в состоянии «установить» оптимальную для себя погоду. Разумеется, он может сменить место жительства, выбрав район с благоприятным для себя климатом. Ho не у всех есть такая возможность. Поэтому медики рекомендуют метеочувствительным людям «подружиться» с природой. Для этого необходимо кардинально изменить образ жизни: уделять больше времени физической активности, соблюдать правильный режим работы и отдыха, грамотно составлять рацион, то есть вести здоровый образ жизни. Ведь реакция организма на изменения погоды напрямую связана с нарушением функций его органов и систем.
Поднятие тяжестей
Скачки АД наблюдаются при поднятии тяжестей. Причем умеренные нагрузки полезны для сердечнососудистой системы, а вот чрезмерные отрицательно сказываются на ее работе.
Профессиональные факторы
He последнее место среди факторов риска развития гипертонии занимает область профессиональной деятельности человека. Если его работа связана с высокой ответственностью и принятием важных решений (руководители, врачи), риском для жизни (военнослужащие, спасатели, полицейские), переработкой огромного потока информации (секретари, диспетчеры), постоянными переговорами и общением с разными по характеру людьми (менеджеры по продажам, продавцы), то риск сердечно-сосудистых заболеваний значительно возрастает.
Как правило, люди не задумываются о влиянии выбранной ими профессии на здоровье и продолжают трудиться, несмотря на тревожные сигналы организма. Правда, существует и другая крайность: человек настолько «бережет» себя, что вообще не работает. Специалисты рекомендуют искать оптимальный для себя вариант: рационально организовать свою трудовую деятельность или изменить ее направленность.

Высокий уровень шума
В последние несколько десятилетий медики относят высокий уровень шума к одной из причин развития гипертонии.
В первобытном обществе шум всегда являлся сигналом опасности. При этом у человека резко активизировалась нервная система, повышался уровень адреналина. И это было необходимо для самозащиты, бегства или атаки.
Мы, конечно же, утратили практическое значение восприятия шума, однако реакции организма на внешние раздражители у нас не изменились. Чрезмерный шум по-прежнему вызывает у людей выброс адреналина и учащение ритма сердца. И это весьма негативно сказывается на здоровье, повышая риск сердечно-сосудистых заболеваний.

ИССЛЕДОВАНИЕ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ В ПРОИЗВОДСТВЕННЫХ И УЧЕБНЫХ ПОМЕЩЕНИЯХ

Метеорологические факторы рабочей зоны

Нормальное самочувствие человека на предприятии и в быту в первую очередь зависит от метеорологических условий (микроклимата). Микроклиматом называют совокупность физических факторов производственной среды (температуры, влажности и скорости движения воздуха, атмосферного давления и интенсивность теплового излучения), которые комплексно влияют на тепловое состояние организма.

Атмосферный воздух является смесью 78% азота, 21% кислорода, около 1% аргона, углекислого и других газов в незначительной концентрации, а также воды во всех фазовых состояниях. Снижение содержания кислорода до 13% затрудняет дыхание, может привести к потере сознания и смерти, высокое содержание кислорода может вызвать вредные окислительные реакции в организме.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. В организме постоянно вырабатывается тепло, а его излишки выделяются в окружающий воздух. В состоянии покоя человек за сутки теряет около 7 120 кДж, при совершении легкой работы – 10 470 кДж, при осуществлении работы средней тяжести – 16 760 кДж, при выполнении тяжелых физических работ потери энергии составляют 25 140 – 33 520 кДж. Выделение теплоты происходит в основном через кожу (до 85%) путем конвекции, а также в результате испарения пота с поверхности кожи.

За счет терморегуляции температура тела остается постоянной – 36,65°С, что является важнейшим показателем нормального самочувствия. Изменение температуры окружающего воздуха приводит к изменениям в характере теплообмена. При температуре окружающего воздуха 15 – 25°С организм человека вырабатывает постоянное количество теплоты (зона покоя). При повышении температуры воздуха до 28°С осложняется нормальная умственная деятельность, ослабляется внимание и сопротивление организма различным вредным воздействиям, работоспособность падает на треть. При температуре выше 33°С выделение тепла из организма происходит только за счет испарения пота (I фаза перегрева). Потери могут составлять до 10 литров за рабочую смену. Вместе с потом из организма выводятся витамины, что нарушает витаминный обмен.

Обезвоживание приводит к резкому уменьшению объема плазмы крови, которая теряет вдвое больше воды, чем другие ткани и становится более вязкой. Дополнительно с водой уходят из крови хлориды поваренной соли до 20 – 50 г за смену, плазма крови теряет способность удерживать воду. Возмещают потерю хлоридов в организме за счет приема подсоленной воды из расчета 0,5 – 1,0 г/л. При неблагоприятных условиях теплообмена, когда отдается меньше тепла, чем вырабатывается в процессе труда, у человека может наступить II фаза перегрева организма – тепловой удар.

При снижении температуры окружающего воздуха кровеносные сосуды кожи сужаются, приток крови к поверхности тела замедляется, снижается отдача тепла. Сильное охлаждение приводит к обморожению кожи. Снижение температуры тела до 35°С вызывает болезненные ощущения, при снижении ее ниже 34°С наступает потеря сознания и смерть.

Санитарными нормами и правилами (СН) установлены оптимальные микроклиматические условия производственной среды: 19 – 21°С для кабинетов компьютерной техники; 17 – 20°С для учебных классов, кабинетов, аудиторий и спортивного зала; 16 – 18°С для учебных мастерских, вестибюля, гардероба и библиотеки. Относительная влажность воздуха принята за норму 40 – 60%, в теплое время до 75%, в классах компьютерной техники 55 – 62%. Скорость движения воздуха должна находиться в пределах 0,1 – 0,5 м/с, а в теплое время года 0,5 – 1,5 м/с и 0,1 – 0,2 м/с для помещений с вычислительной техникой.

Жизнедеятельность человека может проходить в широком диапазоне давлений 73,4 – 126,7 кПа (550 – 950 мм. рт. ст.), однако наиболее комфортное самочувствие имеет место при нормальных условиях (101,3 кПа, 760 мм. рт. ст.). Изменение давления в несколько сотен Па от нормальной величины вызывает болезненные ощущения. Также для здоровья человека опасна быстрая смена давления.

Мно­голетние и годовые закономерности распределения атмосферных осад­ков, температуры воздуха, влажно­сти. Климатические (метеорологические) факторы во многом определяют особенности режима подземных вод. Заметное воздействие на грунтовые воды оказывают температура воздуха, атмосферные осадки, испарение, а также дефицит влажности воздуха и атмосферное давление. В своей совокупности воздействия они определяют размеры и сроки питания подземных вод и придают их режиму характерные черты.

Под климатом в метеорологии понимают закономерную смену атмосферных процессов, возникающих в результате сложного воздействия солнечной радиации на земную поверхность и атмосферу . Основными показателями климата можно считать:

Радиационный баланс Земли;

Процессы циркуляции атмосферы;

Характер подстилающей поверхности.

Космогенные факторы. Изменение климата во многом зависит от величины солнечной радиации , она определяет не только тепловой баланс Земли но и распределение других метеорологических элементов. Годовые суммы тепла радиации, приходящиеся на территорию Средней Азии и Казахстан составляют от 9000 до 12000 тыс. калл.

М.С.Эйгенсон (1957), Н.С. Токарев (1950), В.А. Коробейников (1959) отмечают закономерную связь колебаний уровня грунтовых вод с изменениями солнечной энергии. При этом установлены 4, 7, 11-летние циклы. М.С.Эйгенсон отмечает в среднем 1 раз в 11 лет число пятен (и факелов) достигает своего наибольшего количества. После этой эпохи максимума оно относительно медленно уменьшается с тем, чтобы достигнуть примерно через 7 лет своего наименьшего значения. После достижения эпохи 11-летнего цикличного минимума число пятен вновь закономерно возрастает, а именно в среднем через 4 года после минимума вновь наблюдается очередной максимум 11-летнего цикла и т.д.

Массовый корреляционный анализ режима подземных вод с различными индексами солнечной активности показал в целом низкие корреляционные связи. Лишь изредка коэффициент этой связи достигает 0,69. Сравнительно лучшие связи устанавливаются с индексом геомагнитной возмущенности Солнца.

Многими исследователями установлены многолетние закономерности атмосферной циркуляции . Ими выделяются две основные формы переноса тепла и влаги: зональная и меридиональная. При этом меридиональный перенос определяется наличием градиента температур воздуха между экватором и полюсом, а зональный – градиентом температур между океаном и материком. В частности, отмечается, что количество атмосферных осадков возрастает для Европейской части СНГ, Казахстана и Средней Азии при западном типе циркуляции, обеспечивающем приток влаги с Атлантики, и убывает по сравнению с нормой при восточном типе циркуляции.

Палеогеографические данные показывают, что на протяжении жизни Земли климатические условия подвергались неоднократным и значительным изменениям. Изменения климата происходят в результате многих причин: смещения оси вращения и перемещения полюсов Земли, изменения солнечной активности в прошлое геологическое время, прозрачности атмосферы и др. Одной из серьезных причин его изменения являются также крупные тектонические и экзогенные процессы, изменяющие облик (рельеф) земной поверхности.

Температура воздуха. На территории СНГ можно выделить три температурные провинции.

Первая – провинция с отрицательной среднегодовой температурой. Она занимает значительную часть азиатской территории. Здесь наблюдается широкое развитие многолетнемерзлых пород (вода находится в твердом состоянии и только в теплый летний период образует временные потоки).

Вторая провинция характеризуется положительной среднегодовой температурой воздуха и наличием сезонно мерзлоты почвы в зимний период (Европейская часть, юг Западной Сибири, Приморье, Казахстан и часть территории Средней Азии). В период промерзания почв прекращается питание грунтовых вод за счет атмосферных осадков, в то время как сток их еще происходит.

Третья провинция имеет положительную температуру воздуха в самый холодный период года. Она охватывает юг Европейской части СНГ, Черноморское побережье, Закавказье, юг Туркменской и часть Узбекской республики, а также Таджикистан (питание происходит в течение всего года).

Кратковременные повышения температуры в зимний период, создающие оттепели, вызывают резкие повышения уровня и увеличение дебита подземных вод.

Изменение температуры воздуха воздействует на грунтовые воды не непосредственно, а через породы зоны аэрации и воды этой зоны.

Механизм воздействия температуры воздуха на режим грунтовых вод весьма разнообразен и сложен. Наблюдениями установлены закономерные ритмичные колебания температуры, амплитуда которых постепенно уменьшается. Максимальная температура подземных вод с глубиной постепенно убывает до зоны постоянных температур. Минимальная температура наоборот с глубиной возрастает. Глубина залегания пояса постоянных температур зависит от литологического состава пород (зоны аэрации) и глубины залегания подземных вод.

Атмосферные осадки – являются одним из главнейших режимообразующих факторов. Известно, что атмосферные осадки расходуются на поверхностный и склоновый стоки, испарение и инфильтрацию (питают подземные воды).

Величина поверхностного стока зависит от климатических и других условий и колеблется от нескольких процентов до половины годовой суммы атмосферных осадков (в некоторых случаях и выше).

Наиболее трудно определяется величина испарения , которая также зависит от большого числа различных факторов (дефицит влажности воздуха, характер растительности, сила ветра, литологический состав, состояние и цвет почвы, и многие др.).

Из той части атмосферных осадков, которые проникают в зону аэрации, часть не достигает поверхности грунтовых вод, а расходуется на физическое испарение и транспирацию растениями.

Лизиметрическими исследованиями (Гордеев, 1959) были получены данные по лизиметрам, заложенным на разную глубину:

А.В.Лебедев (1954, 1959) расчетным путем установил зависимость величины питания грунтовых вод или инфильтрации и испарения от мощности зоны аэрации. Данные инфильтрации характеризуют период максимального питания (весна), а данные испарения – минимального (лето).

Просачивание воды в зоне аэрации зависит от интенсивности дождя, недостатка насыщения и полной водоотдачи, коэффициента фильтрации и достигает наибольшей глубины при более длительном дождевании. Прекращение дождя замедляет процесс продвижения воды, в таких случаях возможно образование «верховодки».

Таким образом, наилучшие условия при питании грунтовых вод существуют на небольших глубинах в основном в весеннее время при снеготаянии и осенью в период продолжительного выпадения осадков.

Воздействие атмосферных осадков на грунтовые воды вызывает изменение запасов, химического состава и температуры.

Несколько слов о снежном покрове, который около 10 см на юге, 80-100 см на севере и 100-120 см на Крайнем Севере, Камчатке. Наличие запасов воды в снеге еще не указывает на величину питания грунтовых вод. Существенную роль здесь играет мощность сезонно промерзающего слоя и продолжительность его оттаивания, величина испарения и расчлененность рельефа.

Испарение. Величина испарения зависит от очень большого числа факторов (влажность воздуха, ветра, температуры воздуха, радиации, неровности и цвета поверхности земли, а также наличия растительности и др.).

В зоне аэрации происходит испарение как воды, поступающей с поверхности в результате инфильтрации, так и воды с капиллярной каймы. В результате испарения удаляется вода, еще не достигшая грунтовых вод, и величина их питания уменьшается.

Влияние испарения на химический состав воды является сложным процессом. Состав воды в результате испарения (в аридной зоне) не изменяется, т. к. вода оставляет соли при испарении на уровне капиллярной каймы. При последующей инфильтрации подземные воды обогащаются наиболее легко растворимыми солями, возрастает их общая минерализация и содержания отдельных компонентов.

Чем больше мощность зоны аэрации, тем меньше испарение (с глубиной). На глубине более 4-5 м в пористых или слаботрещиноватых породах испарение становится весьма малым. Ниже этой глубины (до 40 м и более) процесс испарения практически постоянен (0,45 -0,5 мм в год). С глубиной амплитуда колебания уровня подземных вод затухает, что можно объяснить рассредоточением процесса питания во времени и балансированием его подземным стоком.

В Подмосковье при песчаном составе зоны аэрации и глубинах залегания подземных вод в среднем 2-3 м летние осадки достигают грунтовые воды лишь при величине дождевых осадков выше 40 мм или при продолжительных моросящих дождях.

Атмосферное давление. Увеличение атмосферного давления приводит к снижению уровней воды в скважинах и дебитов источников, а уменьшение, наоборот, к их уменьшению.

Отношение изменений уровня подземных вод Δh, вызванных соответствующим изменением атмосферного давления Δр называется барометрической эффективностью (Jacob,1940).

Параметр В, равный

Где γ – плотность воды (равная 1 г/см 3 для пресных вод),

характеризует упругие и фильтрационные свойства горизонта, а также степень его изоляции от атмосферы (В=0,3-0,8).

Изменение атмосферного давления может вызывать изменение уровня грунтовых вод до 20-30 см. Кроме того, порывы ветра, создавая разряжение атмосферного давления, могут приводить к подъему уровня до 5 см.

Рассмотренные выше режимообразующие климатические факторы не исчерпывают перечня многочисленных природных процессов, воздействующих на режим подземных вод.

Осн.: 3

Доп.: 6

Контрольные вопросы:

Что такое климат?

2. Каковы три основных показателя климата?

3. Перечислите метеорологические (климатические) режимообразующие факторы.

4. Каково влияние на режим подземных вод космогенных факторов?

5. Каковы многолетние закономерности атмосферной циркуляции, основные формы переноса тепла и влаги?

6. Дайте характеристику температурных провинций на территории СНГ.

7. От чего зависит глубина залегания пояса постоянных температур подземных вод?

8. Воздействие атмосферных осадков на грунтовые воды.

9. Влияние испарения на химический состав воды.

10. От чего зависит величина питания грунтовых вод или инфильтрация и испарение?

11. Как изменяется уровень воды в скважинах и дебит источников в зависимости от атмосферного давления?

12. Какой параметр называется барометрической эффективностью и какие свойства горизонта подземных вод он характеризует?

13. Может ли изменение атмосферного давления вызывать изменение уровня грунтовых вод?


Похожая информация.


МЕТЕОРОЛОГИЧЕСКИЕ ФАКТОРЫ - группа природных факторов внешней среды, воздействующих, наряду с космическими (радиационными) и теллурическими (земными), на организм человека. Непосредственное влияние на человека оказывают физические и химические факторы атмосферы.

К химическим факторам относятся газы и различные примеси. К газам, содержание которых в атмосфере почти постоянно, относятся азот (78,08 об.%), кислород (20,95), аргон (0,93), водород (0,00005), неон (0,0018), гелий (0,0005), криптон (0,0001), ксенон (0,000009). Содержание других газов в атмосфере значительно меняется. Так, содержание углекислого газа колеблется от 0,03 до 0,05 %, а вблизи некоторых промышленных предприятий и углекислых минеральных источников может повышаться до 0,07-0,16 %. Образование озона связано с грозовыми явлениями и процессами окисления некоторых органических веществ, поэтому его содержание у поверхности Земли ничтожно и весьма непостоянно. В основном озон образуется на высоте 20-40 км под влиянием УФ-лучей Солнца и, задерживая коротковолновую часть УФ-спектра (УФ-С с длиной волн короче 280 нм), предохраняет живое вещество от гибели, т. е. играет роль гигантского фильтра, защищающего жизнь на Земле. Благодаря химической активности озон обладает выраженными бактерицидными и дезодорирующими свойствами. В атмосферном воздухе могут содержаться в незначительных количествах и другие газы: аммиак, хлор, сероводород, оксид углерода, различные соединения азота и др., являющиеся в основном результатом загрязнения воздуха отходами промышленных предприятий. Из почвы в атмосферу поступает эманация радиоактивных элементов и газообразные продукты обмена почвенных бактерий. В воздухе могут содержаться ароматические вещества и фитонциды, выделяемые растениями. Многие из них обладают бактерицидными свойствами. Воздух лесов содержит в 200 раз меньше бактерий, чем воздух городов. Наконец, в воздухе имеются взвешенные частицы в жидком и твердом состоянии: морские соли, органические вещества (бактерии, споры, пыльца растений и др.), минеральные частицы вулканического и космического происхождения, дым и т. д. Содержание этих веществ в воздухе определяется различными факторами - особенностями подстилающей поверхности, характером растительности, наличием морей и т. д.

Химические вещества, содержащиеся в воздухе, могут активно влиять на организм. Так, морские соли, содержащиеся в приморском воздухе, ароматические вещества, выделяемые растениями (монарда, базилик, розмарин, шалфей и др.), фитонциды чеснока и т. д. благоприятно влияют на больных с заболеваниями верхних дыхательных путей и легких. Летучие вещества, выделяемые тополем, дубом, березой, способствуют повышению окислительно-восстановительных процессов в организме, а летучие вещества сосны, ели угнетают тканевое дыхалие. Токсическое действие на организм оказывают летучие вещества дурмана, хмеля, магнолии, черемухи и других растений. Высокие концентрации терпенов в воздухе сосновых лесов могут оказывать неблагоприятное воздействие на больных с сердечно-сосудистыми заболеваниями. Имеются данные о зависимости развития отрицательных реакций от повышения содержания в воздухе озона.

Из всех химических факторов воздуха абсолютное жизненное значение имеет кислород. При подъеме в гору снижается парциальное давление кислорода в воздухе, что приводит к явлениям кислородной недостаточности и развитию различного рода компенсаторных реакций (увеличение объема дыхания и кровообращения, содержания эритроцитов и гемоглобина и т. д.). В условиях равнины относительные колебания парциального давления кислорода весьма незначительны, однако относительные изменения его плотности более существенны, так как зависят от соотношения давления, температуры и влажности воздуха. Повышение температуры и влажности, снижение давления ведут к понижению парциальной плотности кислорода, а снижение температуры, влажности и повышение давления - к увеличению плотности кислорода. Изменения температуры от -30 до +30°C, давления в пределах 933-1040 мбар, относительной влажности от 0 до 100 % приводит к изменению парциальной плотности кислорода в пределах 238-344 г/м 3 , тогда как парциальное давление кислорода в этих условиях колеблется в пределах 207-241 мбар. По мнению В. Ф. Овчаровой (1966, 1975, 1981, 1985), изменение парциальной плотности кислорода может вызывать биотропные эффекты гипоксического и гипотензивого характера при снижении и тонизирующего и спастического - при повышении. Слабое изменение парциальной плотности кислорода ±5 г/м 3 , умеренное ±5,1-10 г/м 3 , выраженное ±10,1-20 г/м 3 , резкое ±20 г/м 3 .

К физическим метеорологическим факторам относятся температура и влажность воздуха, атмосферное давление, облачность, осадки, ветер.

Температура воздуха определяется преимущественно солнечной радиацией, в связи с чем отмечаются периодические (суточные и сезонные) температурные колебания. Кроме того, могут быть внезапные (непериодические) изменения температуры, связанные с общими процессами циркуляции атмосферы. Для характеристики термического режима в климатолечении пользуются величинами среднесуточных, месячных и годовых температур, а также максимальных и минимальных значений. Для определения температурных изменений пользуются такой величиной, как межсуточная изменчивость температуры (разность среднесуточной температуры двух соседних дней, а в оперативной практике - разность значений двух последовательных утренних сроков измерения). Слабым похолоданием или потеплением считается изменение среднесуточной температуры на 2-4°C, умеренным похолоданием или потеплением - на 4-6°C, резким - более 6°C.

Воздух нагревается путем передачи ему тепла от земной поверхности, которая поглощает солнечные лучи. Эта передача тепла происходит главным образом путем конвекции, т. е. вертикального перемещения нагретого от контакта с подстилающей поверхностью воздуха, на место которого опускается более холодный воздух из верхних слоев. Таким путем нагревается слой воздуха толщиной около 1 км. Выше, в тропосфере (нижнем слое атмосферы), теплообмен определяется турбулентностью планетарного масштаба, т. е. перемешиванием воздушных масс; перед циклоном теплый воздух выносится из низких широт в высокие, в тылу циклонов холодные воздушные массы из высоких широт вторгаются в низкие. Распределение температуры по высоте определяется характером конвекции. При отсутствии конденсации водяных паров температура воздуха понижается на ГС с повышением на каждые 100 м, а при конденсации водяных паров - только на 0,4 °C. По мере удаления от поверхности Земли температура в тропосфере снижается в среднем на 0,65 °C на каждые 100 м высоты (вертикальный градиент температуры).

Температура воздуха данной местности зависит от ряда физико-географических условий. При наличии обширных водных пространств суточные и годовые колебания температуры в прибрежных районах уменьшаются. В горных местностях, помимо высоты над уровнем моря, имеет значение расположение горных хребтов и долин, доступность местности ветрам и т. д. Наконец, играет роль характер ландшафта. Поверхность, покрытая растительностью, нагревается днем и охлаждается ночью меньше, чем открытая. Температура является одним из важных факторов характеристики погоды, сезонов. По классификации Федорова - Чубукова выделяются три большие группы погод на основе температурного фактора: безморозные, с переходом температуры воздуха через 0°C и морозные.

Неблагоприятное влияние на человека могут оказывать резкие внезапные колебания температуры и экстремальные (максимальные и минимальные) температуры, вызывающие патологические состояния (обморожение, простуда, перегрев и т. д.). Классическим примером этого является массовое заболевание (40 000 человек) гриппом в Петербурге, когда в одну из январских ночей 1780 г. температура повысилась от -43,6 до +6 °C.

Атмосферное давление измеряется в миллибарах (мбар), паскалях (Па) или миллиметрах ртутного столба (мм рт. ст.). 1 мбар=100 Па. В средних широтах на уровне моря давление воздуха составляет в среднем 760 мм рт. ст., или 1013 мбар (101,3 кПа). По мере подъема давление снижается на 1 мм рт. ст. (0,133 кПа) на каждые 11 м высоты. Давление воздуха характеризуется сильными непериодическими колебаниями, связанными с изменениями погоды, при этом колебания давления достигают 10-20 мбар (1-2 кПа), а в резко континентальных районах - до 30 мбар (3 кПа). Слабым изменением давления считается понижение или повышение его среднесуточной величины на 1-4 мбар (0,1-0,4 кПа), умеренным - на 5-8 мбар (0,5-0,8 кПа), резким - более 8 мбар (0,8 кПа). Значительные перепады атмосферного давления могут привести к различным патологическим реакциям, особенно у больных.

Влажность воздуха характеризуется упругостью пара (в мбар) и относительной влажностью, то есть процентным отношением упругости (парциального давления) водяного пара в атмосфере к упругости насыщающего водяного пара при той же температуре. Иногда упругость водяного пара называют абсолютной влажностью, которая на самом деле представляет собой плотность водяного пара в воздухе и, будучи выражена в г/м 3 , по величине близка к упругости пара в мм рт. ст. Разность между полностью насыщающей и фактической упругостью водяного пара при данных температуре и давлении называют дефицитом влажности (недостатком насыщения). Кроме того, выделяют так называемое физиологическое насыщение, т. е. упругость водяных паров при температуре человеческого тела (37 °C). Оно равно 47,1 мм рт. ст. (6,28 кПа). Физиологический дефицит насыщения составит разницу между упругостью водяных паров при температуре 37 °C и упругостью водяного пара в наружном воздухе. Летом упругость пара значительно выше, а дефицит насыщения меньше, чем зимой. В метеосводках обычно указывается относительная влажность, так как ее изменение может непосредственно ощущаться человеком. Воздух считается сухим при влажности до 55 %, умеренно сухим при 56-70 %, влажным - при 71-85%, сильно влажным (сырым)- свыше 85%. Относительная влажность изменяется в противоположном направлении по отношению к сезонным и суточным колебаниям температуры.

Влажность воздуха в сочетании с температурой оказывает выраженное влияние на организм. Наиболее благоприятными для человека являются условия, при которых относительная влажность равна 50 %, температура-17-19 °C, а скорость ветра не превышает 3 м/с. Повышение влажности воздуха, препятствуя испарению, делает тягостной жару (условия духоты) и усиливает действие холода, способствуя большей потере тепла путем проведения (влажно-морозные условия). Холод и жара в сухом климате переносятся легче, чем во влажном.

При понижении температуры содержащаяся в воздухе влага конденсируется, и образуется туман. Он возникает также при смешении теплого влажного воздуха с холодным и влажным. В промышленных районах туман может поглощать токсические газы, которые, вступая в химическую реакцию с водой, образуют сернистые вещества (токсические смоги). Это может привести к массовым отравлениям населения. При влажном воздухе опасность воздушной инфекции выше, так как капельки влаги, в которых могут содержаться возбудители болезни, обладают большей способностью к диффузии, чем сухая пыль, и поэтому могут попадать в самые отдаленные участки легкого.

Облачность образуется над земной поверхностью путем конденсации и сублимации содержащихся в воздухе водяных паров. Образующиеся при этом облака могут состоять из водяных капелек или кристаллов льда. Облачность измеряют по 11-балльной шкале, согласно которой 0 соответствует полному отсутствию облаков, а 10 баллов - сплошной облачности. Погода расценивается как ясная и малооблачная при 0-5 баллах нижней облачности, облачная - при 6-8 баллах, пасмурная - при 9-10 баллах. Характер облаков на разной высоте различен. Облака верхнего яруса (с основанием выше 6 км) состоят из ледяных кристаллов, легких, прозрачных, белоснежных, почти не задерживающих прямых солнечных лучей и в то же время, диффузно отражая их, заметно увеличивающих приток радиации от небесного свода (рассеянной радиации). Облака среднего яруса (2-6 км) состоят из переохлажденных капель воды или смеси ее с ледяными кристаллами и снежинками; они более плотные, приобретают сероватый оттенок, солнце просвечивает их слабо или вообще не просвечивает. Облака нижнего яруса имеют вид низких серых тяжелых гряд, валов или пелены, закрывающей небо сплошным покровом, солнце обычно их не просвечивает. Суточные изменения облачности не носят строго закономерного характера, а годовой ход ее зависит от общих физико-географических условий и особенностей ландшафта. Облачность оказывает влияние на световой режим и является причиной выпадения атмосферных осадков, которые резко нарушают суточный ход температуры и влажности воздуха. Эти два фактора, если они резко выражены, и могут оказывать неблагоприятное влияние на организм при облачной погоде.

Осадки могут быть жидкими (дождь) или твердыми (снег, крупа, град). Характер осадков зависит от условий их образования. Если восходящие воздушные потоки при большой абсолютной влажности достигают больших высот, для которых характерны низкие температуры, то водяные пары сублимируются и выпадают в виде крупы, града, а растаявшие - в виде ливневого дождя. На распределение осадков влияют физико-географические особенности местности. Внутри континентов количество осадков обычно меньше, чем на побережье. На склонах гор, обращенных к морю, их обычно больше, чем на противоположных. Дождь играет положительную санитарную роль: он очищает воздух, смывает пыль; капли, содержащие микробы, опускаются на землю. В то же время дождь, особенно затяжной, ухудшает условия климатотерапии. Снежный покров, имея высокую отражательную способность (альбедо) к коротковолновому излучению, существенно ослабляет процессы аккумуляции солнечного тепла, усиливая зимние морозы. Особенно высоко альбедо снега к УФ-излучению (до 97 %), что повышает эффективность зимней гелиотерапии, особенно в горах. Нередко кратковременный дождь и снег улучшают состояние метеолабильных людей, способствуют прекращению имевшихся до этого жалоб, связанных с погодой. Погода считается без осадков, если за сутки их суммарное количество не достигает 1 мм.

Ветер характеризуется направлением и скоростью. Направление ветра определяется той стороной света, откуда он дует (север, юг, запад, восток). Кроме этих основных направлений выделяются промежуточные, составляющие в сумме 16 румбов (северо-восточное, северо-западное, юго-восточное и т. д.). Сила ветра определяется по 13-балльной шкале Симпсона-Бофорта, по которой 0 соответствует штилю (скорость по анемометру 0-0,5 м/с), 1-тихому ветру (0,6- 1,7), 2 - легкому (1,8-3,3), 3 - слабому (3,4-5,2), 4 - умеренному (5,3-7,4), 5 -свежему (7,5-9,8), 6 -сильному (9,9-12,4), 7 - крепкому (12,5-15,2), 8 - очень крепкому (15,3-18,2), 9-шторму (18,3-21,5), 10 - сильному шторму (21,6-25,1), 11 - жестокому шторму (25,2-29), 12 - урагану (более 29 м/с). Резкое кратковременное усиление ветра до 20 м/с и более называется шквалом.

Причиной ветра является разница давления: воздух перемещается из области с высоким давлением в места с низким давлением. Чем больше разница давлений, тем сильнее ветер. Создаются воздушные циркуляции с различной периодичностью, имеющие большое значение для формирования микроклимата и оказывающие определенное воздействие на человека. Неоднородность давления в горизонтальных направлениях обусловлена неоднородностью теплового режима на земной поверхности. Летом суша нагревается сильнее, чем водная поверхность, вследствие чего воздух над сушей от нагревания расширяется, поднимается вверх, где растекается в горизонтальных направлениях. Это приводит к уменьшению общей массы воздуха и, следовательно, к понижению давления у земной поверхости. Поэтому летом сравнительно прохладный и влажный морской воздух в нижних слоях тропосферы устремляется с моря на сушу, а зимой сухой холодный воздух - с суши к морю. Такие сезонные ветры (муссоны) наиболее выражены в Азии, на границе крупнейшего материка и океана. В пределах СССР они чаще наблюдаются на Дальнем Востоке. Такая же смена ветров наблюдается в прибрежных районах в течение суток - это бризы, т. е. ветры, дующие днем с моря на сушу, а ночью - с суши на море, распространяющиеся на 10-15 км по обе стороны береговой линии. На южных приморских курортах летом в дневное время они уменьшают ощущение жары. В горах возникают горно-долинные ветры, дующие днем вверх по склонам (долинам), а ночью - вниз, с гор. Они возникают в основном в теплое время года, в ясную тихую погоду и оказывают благоприятное влияние на человека. В горных местностях, когда на пути воздушного течения располагаются горы с большой разницей давления между той и другой стороной горного хребта, образуется своеобразный теплый и сухой ветер, дующий с гор,- фён. В этом случае при подъеме воздух теряет влагу в виде осадков и несколько охлаждается, а перевалив за горный хребет и опускаясь, значительно нагревается. В результате температура воздуха при фёне может за небольшой промежуток времени (15-30 мин) повыситься на 10-15 °C и более. Фёны обычно возникают зимой и весной. Наиболее часто среди курортных зон СССР они формируются в Цхалтубо. Сильные фёны вызывают подавленное, раздраженное состояние, ухудшают дыхание. В случае перемещения воздуха в горизонтальном направлении из жарких и очень сухих местностей возникают суховеи, при которых влажность может падать до 10-15%. Бора - горный ветер, наблюдающийся в холодное время года в местностях, где невысокие горные хребты подходят близко к морю. Ветер порывистый, сильный (до 20-40 м/с), продолжительность 1-3 сут, часто вызывает метеопатические реакции; бывает в Новороссийске, на побережье озера Байкал (сарма), на средиземноморском побережье Франции (мистраль).

При низких температурах ветер усиливает теплоотдачу, что может привести к переохлаждению организма. Чем ниже температура воздуха, тем тяжелее переносится ветер. В жаркое время ветер усиливает кожное испарение и улучшает самочувствие. Сильный ветер оказывает неблагоприятное влияние, утомляет, раздражает нервную систему, затрудняет дыхание, небольшой ветер - тонизирует и стимулирует организм.

Электрическое состояние атмосферы определяется напряженностью электрического поля, электропроводностью воздуха, ионизацией, электрическими разрядами в атмосфере. Земля имеет свойства отрицательно заряженного проводника, а атмосфера - положительно заряженного. Разность потенциалов Земли и точки, находящейся на высоте 1 м (градиент электрического потенциала), составляет в среднем 130 В. Напряжение электрического поля атмосферы имеет большую изменчивость в зависимости от метеорологических явлений, в особенности от осадков, облачности, гроз и др., а также от времени года, географической широты и высоты местности. При прохождении облаков атмосферное электричество в течение 1 мин меняется в значительных пределах (от +1200 до -4000 В/м).

Электропроводность воздуха обусловлена количеством содержащихся в нем положительно и отрицательно заряженных атмосферных ионов (аэроионов). В 1 см 3 воздуха каждую секунду в среднем образуется 12 пар ионов, в результате чего в нем постоянно присутствует около 1000 пар нонов. Коэффициент униполярности (отношение числа положительно заряженных ионов к числу отрицательно заряженных) во всех зонах, кроме горных, выше 1. Перед грозой накапливаются положительные, а после грозы - отрицательные ионы. При конденсации водяного пара преобладают положительные ионы, при испарении - отрицательные.

Параметры атмосферного электричества имеют суточную и сезонную периодичность, которая, однако, весьма часто перекрывается более мощными непериодическими колебаниями его, вызванными сменой воздушных масс.

Атмосферные процессы изменяются во времени и пространстве, являясь одним из основных факторов погодо- и климатообразования. Основной формой общей циркуляции атмосферы во внетропических широтах является циклоническая деятельность (возникновение, развитие и перемещение циклонов и антициклонов). При этом резко изменяется давление, вызывая круговое движение воздуха от периферии к центру (циклон) или от центра к периферии (антициклон). Циклоны и антициклоны различаются и по параметрам атмосферного электричества. При повышении давления, особенно на гребне, который является периферической частью антициклона, градиент потенциала резко возрастает (до 1300 В/м). Электромагнитные импульсы распространяются со скоростью света и улавливаются с дальних расстояний. В связи с этим они являются не только признаком развития процессов в атмосфере, но и определенным звеном в его развитии. Опережая изменение основных метеорологических факторов при прохождении фронтов, они могут быть первыми раздражителями, вызывая различного рода метеопатические реакции до видимого изменения погоды.

Главными метеорологическими климатообразующими факторами являются масса и химический состав атмосферы.

Масса атмосферы определяет ее механическую и тепловую инерцию, ее возможности как теплоносителя, способного передавать тепло от нагретых областей к охлажденным. Без атмосферы на Земле существовал бы «лунный климат», т.е. климат лучистого равновесия.

Атмосферный воздух представляет собой смесь газов, одни из которых имеют почти постоянную концентрацию, другие – переменную. Кроме того, в атмосфере содержатся различные жидкие и твердые аэрозоли, которые также имеют существенное значение в формировании климата.

Основными составляющими атмосферного воздуха являются азот, кислород и аргон. Химический состав атмосферы остается постоянным примерно до высоты 100 км, выше начинает сказываться гравитационное разделение газов и относительное содержание более легких газов увеличивается.

Для климата особенно важны переменные по содержанию термодинамически активные примеси, оказывающие большое влияние на многие процессы в атмосфере, такие как вода, диоксид углерода, озон, диоксид серы и диоксид азота.

Яркий пример термодинамически активной примеси – вода в атмосфере. Концентрация этой воды (удельная влажность, к которой в облаках добавляется удельная водность) весьма изменчива. Водяной пар вносит ощутимый вклад в плотность воздуха, стратификацию атмосферы и особенно во флуктуации и турбулентные потоки энтропии. Он способен конденсироваться (или сублимироваться) на имеющихся в атмосфере частицах (ядрах), образуя облака и туманы, а также выделяя большие количества тепла. Водяной пар и особенно облачность резко влияют на потоки коротковолнового и длинноволнового излучений в атмосфере. Водяной пар обусловливает и парниковый эффект, т.е. способность атмосферы пропускать солнечную радиацию и поглощать тепловое излучение подс-тилающей поверхности и нижележащих атмосферных слоев. Благодаря этому температура в атмосфере растет с глубиной. Наконец, в облаках может иметь место коллоидальная неустойчивость, вызывающая коагуляцию облачных частиц и выпадение осадков.

Другой важной термодинамически активной примесью является углекислый газ, или диоксид углерода. Он вносит существенный вклад в парниковый эффект, поглощая и переизлучая энергию длинноволновой радиации. В прошлом могли происходить значительные колебания в содержании углекислого газа, что должно было отразиться на климате.

Влияние твердых искусственных и естественных аэрозолей, содержащихся в атмосфере, еще недостаточно хорошо изучено. Источниками твердых аэрозолей на Земле являются пустыни и полупустыни, области активной вулканической деятельности, а также промышленно развитые районы.

Океан также поставляет незначительное количество аэрозолей – частичек морской соли. Крупные частицы сравнительно быстро выпадают из атмосферы, тогда как самые мелкие остаются в атмосфере длительное время.

Аэрозоль влияет на потоки лучистой энергии в атмосфере несколькими путями. Во-первых, частицы аэрозоля облегчают образование облаков и тем самым увеличивают альбедо, т.е. долю отраженной и безвозвратно потерянной для климатической системы солнечной энергии. Во-вторых, аэрозоль рассеивает значительную часть солнечной радиации, так что часть рассеянной радиации (очень небольшая) также теряется для климатической системы. Наконец, некоторая часть солнечной энергии поглощается аэрозолями и переизлучается как к поверхности Земли, так и в космос.

В течение долгой истории Земли количество естественного аэрозоля существенно колебалось, поскольку известны периоды повышенной тектонической активности и, наоборот, периоды отно-сительного затишья. Были и такие периоды в истории Земли, когда в жарких сухих климатических поясах располагались значительно более обширные массивы суши и, наоборот, в этих поясах преобладала океаническая поверхность. В настоящее время, как и в случае углекислого газа, все большее значение приобретает искусственный аэрозоль – продукт хозяйственной деятельности человека.

К термодинамически активным примесям относится также озон. Он присутствует в слое атмосферы от поверхности Земли до высоты 60–70 км. В самом нижнем слое 0–10 км его содер-жание незначительно, затем оно быстро увеличивается и достигает максимума на высоте 20–25 км. Далее содержание озона быстро уменьшается, и на высоте 70 км оно уже в 1000 раз меньше, чем даже у поверхности. Такое вертикальное распределение озона связано с процессами его образования. Озон образуется в основном в результате фотохимических реакций под действием несущих высокую энергию фотонов, принадлежащих крайней ультрафиолетовой части солнечного спектра. При этих реакциях появляется атомарный кислород, который соединяется затем с молекулой кислорода и образует озон. Одновременно происходят реакции распада озона при поглощении им солнечной энергии и при соударениях его молекул с атомами кислорода. Эти процессы вместе с процессами диффузии, перемешивания и переноса приводят к описанному выше равновесному вертикальному профилю содержания озона.

Несмотря на столь незначительное содержание, его роль исключительно велика и не только для климата. Благодаря исключительно интенсивному поглощению лучистой энергии при процессах его образования и (в меньшей степени) распадания, в верхней части слоя максимального содержания озона – озоносферы – происходит сильное разогревание (максимум содержания озона находится несколько ниже, куда он попадает в результате диффузии и перемешивания). Из всей солнечной энергии, падающей на верхнюю границу атмосферы, озон поглощает около 4%, или 6·10 27 эрг/сут. При этом озоносфера поглощает ультрафиолетовую часть излучения с длиной волны менее 0,29 мкм, которая оказывает губительное действие на живые клетки. При отсутствии этого озонного экрана, по-видимому, не могла бы возникнуть жизнь на Земле, по крайней мере в известных нам формах.

Океан, являющийся неотъемлемой частью климатической системы, играет в ней исключительно важную роль. Первичным свойством океана, так же как и атмосферы, является масса. Однако для климата существенно и то, на какой части поверхности Земли эта масса размещается.

Среди термодинамически активных примесей в океане можно назвать растворенные в воде соли и газы. Количество растворенных солей влияет на плотность морской воды, которая при данном давлении зависит, таким образом, не только от температуры, но и от солености. Это значит, что соленость наряду с температурой определяет плотностную стратификацию, т.е. делает ее в одних случаях устойчивой, а в других приводит к конвекции. Нелинейная зависимость плотности от температуры может приводить к любопытному явлению, получившему название уплотнения при смешении. Температура максимальной плотности пресной воды равна 4°С, более теплая и более холодная вода имеет меньшую плотность. При перемешивании двух объемов таких более легких вод смесь может оказаться более тяжелой. Если ниже окажется вода с меньшей плотностью, то перемешанная вода может начать погружаться. Однако область температур, при которых это явление происходит, в пресной воде очень узкая. Наличие растворенных солей в океанской воде увеличивает вероятность такого явления.

Растворенные соли изменяют многие физические характеристики морской воды. Так, коэффициент термического расширения воды увеличивается, а теплоемкость при постоянном давлении уменьшается, понижается температура замерзания и максимальной плотности. Соленость несколько понижает упругость насыщающего пара над водной поверхностью.

Важная способность океана – возможность растворять большое количество углекислого газа. Это делает океан емким резервуаром, который в одних условиях может поглощать избыток атмос-ферного углекислого газа, в других – выделять углекислый газ в атмосферу. Значение океана как резервуара углекислоты еще более возрастает из-за существования в океане так называемой карбонатной системы, которая подключает огромные количества углекислого газа, содержащегося в современных отложениях известняков.


Оглавление
Климатология и метеорология
ДИДАКТИЧЕСКИЙ ПЛАН
Метеорология и климатология
Атмосфера, погода, климат
Метеорологические наблюдения
Применение карт
Метеорологическая служба и Всемирная Метеорологическая Организация (ВМО)
Климатообразующие процессы
Астрономические факторы
Геофизические факторы
Метеорологические факторы
О солнечной радиации
Тепловое и лучистое равновесие Земли
Прямая солнечная радиация
Изменения солнечной радиации в атмосфере и на земной поверхности
Явления, связанные с рассеянием радиации
Суммарная радиация, отражение солнечной радиации, поглощенная радиация, ФАР, альбедо Земли
Излучение земной поверхности
Встречное излучение или противоизлучение
Радиационный баланс земной поверхности
Географическое распределение радиационного баланса
Атмосферное давление и барическое поле
Барические системы
Колебания давления
Ускорение воздуха под действием барического градиента
Отклоняющая сила вращения Земли
Геострофический и градиентный ветер
Барический закон ветра
Фронты в атмосфере
Тепловой режим атмосферы
Тепловой баланс земной поверхности
Суточный и годовой ход температуры на поверхности почвы
Температуры воздушных масс
Годовая амплитуда температуры воздуха
Континентальность климата
Облачность и осадки
Испарение и насыщение
Влажность
Географическое распределение влажности воздуха
Конденсация в атмосфере
Облака
Международная классификация облаков
Облачность, ее суточный и годовой ход
Осадки, выпадающие из облаков (классификация осадков)
Характеристика режима осадков
Годовой ход осадков
Климатическое значение снежного покрова
Химия атмосферы
Химический состав атмосферы Земли
Химический состав облаков