Рентгеновское излучение, с точки зрения физики, это электромагнитное излучение, длина волн которого варьируется в диапазоне от 0,001 до 50 нанометров. Было открыто в 1895 немецким физиком В.К.Рентгеном.

По природе эти лучи являются родственными солнечному ультрафиолету. В спектре самыми длинными являются радиоволны. За ними идет инфракрасный свет, который наши глаза не воспринимают, но мы ощущаем его как тепло. Далее идут лучи от красного до фиолетового. Затем - ультрафиолет (А, В и С). А сразу за ним рентгеновские лучи и гамма-излучение.

Рентгеновское может быть получено двумя способами: при торможении в веществе проходящих сквозь него заряженных частиц и при переходе электронов с высших слоев на внутренние при высвобождении энергии.

В отличие от видимого света эти лучи имеют очень большую длину, поэтому способны проникать через непрозрачные материалы, не отражаясь, не преломляясь и не накапливаясь в них.

Тормозное излучение получить проще. Заряженные частицы при торможении испускают электромагнитное излучение. Чем больше ускорение этих частиц и, следовательно, резче торможение, тем больше образуется рентгеновского излучения, а длина его волн становится меньше. В большинстве случаев на практике прибегают к выработке лучей в процессе торможения электронов в твердых веществах. Это позволяет управлять источником этого излучения, избегая опасности радиационного облучения, потому что при отключении источника рентгеновское излучение полностью исчезает.

Самый распространенный источник такого излучения - Испускаемое ей излучение неоднородно. В нем присутствует и мягкое (длинноволновое), и жесткое (коротковолновое) излучения. Мягкое характеризуется тем, что полностью поглощается человеческим телом, поэтому такое рентгеновское излучение вред приносит в два раза больше, чем жесткое. При чрезмерном электромагнитном облучении в тканях организма человека ионизация может привести к повреждению клеток и ДНК.

Трубка - это с двумя электродами - отрицательным катодом и положительным анодом. При разогревании катода из него испаряются электроны, затем они ускоряются в электрическом поле. Сталкиваясь с твердым веществом анодов, они начинают торможение, которое сопровождается испусканием электромагнитного излучения.

Рентгеновское излучение, свойства которого широко используются в медицине, базируется на получении теневого изображения исследуемого объекта на чувствительном экране. Если диагностируемый орган просвечивать пучком параллельных друг другу лучей, то проекция теней от этого органа будет передаваться без искажений (пропорционально). На практике источник излучения более похож на точечный, поэтому его располагают на расстоянии от человека и от экрана.

Чтобы получить человек помещается между рентгеновской трубкой и экраном или пленкой, выступающими в роли приемников излучения. В результате облучения на снимке костная и другие плотные ткани проявляются в виде явных теней, выглядят более контрастно на фоне менее выразительных участков, которые передают ткани с меньшим поглощением. На рентгеновских снимках человек становится «полупрозрачным».

Распространяясь, рентгеновское излучение может рассеиваться и поглощаться. До поглощения лучи могут проходить сотни метров в воздухе. В плотном веществе они поглощаются гораздо быстрее. Биологические ткани человека неоднородны, поэтому поглощение ими лучей зависит от плотности ткани органов. поглощает лучи быстрее, чем мягкие ткани, потому что содержит вещества, имеющие большие атомные номера. Фотоны (отдельные частицы лучей) поглощаются разными тканями организма человека по-разному, что и позволяет получать контрастное изображение с помощью рентгеновских лучей.

Огромную роль в современной медицине играет рентгеновское излучение, история открытия рентгена берет свое начало еще в 19 веке.

Рентгеновское излучение представляет собой электромагнитные волны, которые образуются при участии электронов. При сильном ускорении заряженных частиц создается искусственное рентгеновское излучение. Оно проходит через специальное оборудование:

  • ускорители заряженных частиц.

История открытия

Изобрел данные лучи 1895 году немецкий ученый Рентген: во время работы с катодолучевой трубкой он обнаружил эффект флуоресценции платино-цианистого бария. Тогда и произошло описание таких лучей и их удивительной способности проникать сквозь ткани организма. Лучи стали называться икс-лучами (х-лучи). Позже в России их стали именовать рентгеновскими.

Х-лучи способны проникать даже сквозь стены. Так Рентген осознал, что сделал величайшее открытие в области медицины. Именно с этого времени стали формироваться отдельные разделы в науке, такие как рентгенология и радиология.

Лучи способны проникать сквозь мягкие ткани, но задерживаются, длина их определяется препятствием твердой поверхности. Мягкие ткани в человеческом организме — это кожа, а твердые — это кости. В 1901 году ученому присудили Нобелевскую премию.

Однако еще до открытия Вильгельма Конрада Рентгена подобной темой были заинтересованы и другие ученые. В 1853 году французский физик Антуан-Филибер Масон изучал высоковольтный разряд между электродами в стеклянной трубке. Содержащийся в ней газ при низком давлении начал выпускать красноватое свечение. Откачивание лишнего газа из трубки привело к распаду свечения на сложную последовательность отдельных светящихся слоев, оттенок которых зависел от количества газа.

В 1878 году Уильям Крукс (английский физик) высказал предположение о том, что флуоресценция возникает вследствие ударения лучей о стеклянную поверхность трубки. Но все эти исследования не были нигде опубликованы, поэтому Рентген не догадывался о подобных открытиях. После опубликования своих открытий в 1895 году в научном журнале, где ученый писал о том, что все тела прозрачны для этих лучей, хотя и в весьма различной степени, подобными экспериментами заинтересовались и другие ученые. Они подтвердили изобретение Рентгена, и в дальнейшем начались разработки и усовершенствование икс-лучей.

Сам Вильгельм Рентген опубликовал еще две научные работы по теме икс-лучей в 1896 и 1897 годах, после чего занялся другой деятельностью. Таким образом, изобрели несколько ученых, но именно Рентген опубликовал научные труды по этому поводу.


Принципы получения изображения

Особенности этого излучения определены самой природой их появления. Излучение происходит за счет электромагнитной волны. К основным ее свойствам относятся:

  1. Отражение. Если волна попадет на поверхность перпендикулярно, то она не отразится. В некоторых ситуациях свойством отражения обладает алмаз.
  2. Способность проникать в ткани. Помимо этого, лучи могут проходить сквозь непрозрачные поверхности таких материалов, как дерево, бумага и т.п.
  3. Поглощаемость. Поглощаемость зависит от плотности материала: чем он плотнее, тем икс-лучи больше его поглощают.
  4. У некоторых веществ происходит флуоресценция, то есть свечение. Как только излучение прекращается, свечение тоже проходит. Если оно продолжается и после прекращения действия лучей, то этот эффект имеет название фосфоресценция.
  5. Рентгеновские лучи могут засветить фотопленку, так же как и видимый свет.
  6. Если луч прошел сквозь воздух, то происходит ионизация в атмосфере. Такое состояние называют электропроводным, и определяется оно с помощью дозиметра, которым устанавливается норма дозировки облучения.

Излучение — вред и польза

Когда было сделано открытие, ученый-физик Рентген не мог и представить, насколько опасно его изобретение. В былые времена все устройства, которые продуцировали излучение, были далеки от совершенства и в итоге получались большие дозы выпущенных лучей. Люди не понимали опасности такого излучения. Хотя некоторые ученые уже тогда выдвигали версии о вреде рентгеновских лучей.


Х-лучи, проникая в ткани, оказывают на них действие биологического характера. Единица измерения дозы радиации — рентген в час. Основное влияние оказывается на ионизирующие атомы, которые находятся внутри тканей. Действуют эти лучи непосредственно на структуру ДНК живой клетки. К последствиям неконтролируемого излучения можно отнести:

  • мутация клеток;
  • появление опухолей;
  • лучевые ожоги;
  • лучевая болезнь.

Противопоказания к проведению рентгенологических исследований:

  1. Больные в тяжелом состоянии.
  2. Период беременности из-за негативного влияния на плод.
  3. Больные с кровотечением или открытым пневмотораксом.

Как работает рентген и где применяется

  1. В медицине. Рентгенодиагностика применяется для просвечивания живых тканей с целью выявления некоторых нарушений внутри организма. Рентгенотерапия проводится для устранения опухолевых образований.
  2. В науке. Выявляется строение веществ и природа рентгеновских лучей. Этими вопросами занимаются такие науки, как химия, биохимия, кристаллография.
  3. В промышленности. Для выявления нарушений в металлических изделиях.
  4. Для безопасности населения. Рентгенологические лучи установлены в аэропортах и других общественных местах с целью просвечивания багажа.


Медицинское использование рентгенологического излучения. В медицине и стоматологии широко применяются рентгеновские лучи в следующих целях:

  1. Для диагностирования болезней.
  2. Для мониторинга метаболических процессов.
  3. Для лечения многих заболеваний.

Применение рентген-лучей в лечебных целях

Помимо выявления переломов костей, рентгеновские лучи широко применяются и в лечебных целях. Специализированное применение х-лучей заключается в достижении следующих целей:

  1. Для уничтожения раковых клеток.
  2. Для уменьшения размера опухоли.
  3. Для снижения болевых ощущений.

Например, радиоактивный йод, применяемый при эндокринологических заболеваниях, активно используется при раке щитовидной железы, тем самым помогая многим людям избавиться от этой страшной болезни. В настоящее время для диагностики сложных заболеваний рентгеновские лучи подключаются к компьютерам, в итоге появляются новейшие методы исследования, такие как и компьютерная осевая томография.

Такое сканирование предоставляет врачам цветные снимки, на которых можно увидеть внутренние органы человека. Для выявления работы внутренних органов достаточно небольшой дозы излучения. Также широкое применение рентгеновские лучи нашли и в физиопроцедурах.


Основные свойства рентгеновских лучей

  1. Проникающая способность. Все тела для рентгеновского луча прозрачны, и степень прозрачности зависит от толщины тела. Именно благодаря этому свойству луч стал применяться в медицине для выявления работы органов, наличия переломов и инородных тел в организме.
  2. Они способны вызывать свечение некоторых предметов. Например, если на картон нанести барий и платину, то, пройдя через сканирование лучами, он будет светиться зеленовато-желтым. Если поместить руку между трубкой рентгена и экраном, то свет проникнет больше в кость, чем в ткани, поэтому на экране высветится ярче всего костная ткань, а мышечная менее ярко.
  3. Действие на фотопленку. Х-лучи могут подобно свету делать пленку темной, это позволяет фотографировать ту теневую сторону, которая получается при исследовании рентгеновскими лучами тел.
  4. Рентгеновские лучи могут ионизировать газы. Это позволяет не только находить лучи, но и выявлять их интенсивность, измеряя ток ионизации в газе.
  5. Оказывают биохимическое воздействие на организм живых существ. Благодаря этому свойству рентгеновские лучи нашли свое широкое применение в медицине: они могут лечить как кожные заболевания, так и болезни внутренних органов. В этом случае выбирается нужная дозировка излучения и срок действия лучей. Длительное и чрезмерное применение такого лечения весьма вредно и губительно для организма.

Следствием использования рентгеновских лучей стало спасение множества человеческих жизней. Рентген помогает не только своевременно диагностировать заболевание, методики лечения с применением лучевой терапии избавляют больных от различных патологий, начиная с гиперфункции щитовидной железы и заканчивая злокачественными опухолями костных тканей.

Рентгеновское излучение (синоним рентгеновские лучи) - это с широким диапазоном длин волн (от 8·10 -6 до 10 -12 см). Рентгеновское излучение возникает при торможении заряженных частиц, чаще всего электронов, в электрическом поле атомов вещества. Образующиеся при этом кванты имеют различную энергию и образуют непрерывный спектр. Максимальная энергия квантов в таком спектре равна энергии налетающих электронов. В (см.) максимальная энергия квантов рентгеновского излучения, выраженная в килоэлектрон-вольтах, численно равна величине приложенного к трубке напряжения, выраженного в киловольтах. При прохождении через вещество рентгеновское излучение взаимодействует с электронами его атомов. Для квантов рентгеновского излучения с энергией до 100 кэв наиболее характерным видом взаимодействия является фотоэффект. В результате такого взаимодействия энергия кванта полностью расходуется на вырывание электрона из атомной оболочки и сообщения ему кинетической энергии. С ростом энергии кванта рентгеновского излучения вероятность фотоэффекта уменьшается и преобладающим становится процесс рассеяния квантов на свободных электронах - так называемый комптон-эффект. В результате такого взаимодействия также образуется вторичный электрон и, кроме того, вылетает квант с энергией меньшей, чем энергия первичного кванта. Если энергия кванта рентгеновского излучения превышает один мегаэлектрон-вольт, может иметь место так называемый эффект образования пар, при котором образуются электрон и позитрон (см. ). Следовательно, при прохождении через вещество происходит уменьшение энергии рентгеновского излучения, т. е. уменьшение его интенсивности. Поскольку при этом с большей вероятностью происходит поглощение квантов низкой энергии, то имеет место обогащение рентгеновского излучения квантами более высокой энергии. Это свойство рентгеновского излучения используют для увеличения средней энергии квантов, т. е. для увеличения его жесткости. Достигается увеличение жесткости рентгеновского излучения использованием специальных фильтров (см. ). Рентгеновское излучение применяют для рентгенодиагностики (см. ) и (см.). См. также Излучения ионизирующие.

Рентгеновское излучение (синоним: рентгеновские лучи, рентгеновы лучи) - квантовое электромагнитное излучение с длиной волны от 250 до 0,025 А (или квантов анергии от 5·10 -2 до 5·10 2 кэв). В 1895 г. открыто В. К. Рентгеном. Смежную с рентгеновским излучением спектральную область электромагнитного излучения, кванты энергии которого превышают 500 кэв, называют гамма-излучением (см.); излучение, кванты энергии которого ниже значений 0,05 кэв, составляет ультрафиолетовое излучение (см.).

Таким образом, представляя относительно небольшую часть обширного спектра электромагнитных излучений, в который входят и радиоволны и видимый свет, рентгеновское излучение, как всякое электромагнитное излучение, распространяется со скоростью света (в пустоте около 300 тыс. км/сек) и характеризуется длиной волны λ (расстояние, на которое излучение распространяется за один период колебания). Рентгеновское излучение обладает также рядом других волновых свойств (преломление, интерференция, дифракция), однако наблюдать их значительно сложнее, чем у более длинноволнового излучения: видимого света, радиоволн.

Спектры рентгеновского излучения: а1 - сплошной тормозной спектр при 310 кв; а - сплошной тормозной спектр при 250 кв, а1 - спектр, фильтрованный 1 мм Cu, а2 - спектр, фильтрованный 2 мм Cu, б - К-серия линии вольфрама.

Для генерирования рентгеновского излучения применяют рентгеновские трубки (см.), в которых излучение возникает при взаимодействии быстрых электронов с атомами вещества анода. Различают рентгеновские излучения двух видов: тормозное и характеристическое. Тормозное рентгеновское излучение, имеющее сплошной спектр, подобно обычному белому свету. Распределение интенсивности в зависимости от длины волны (рис.) представляется кривой с максимумом; в сторону длинных волн кривая спадает полого, а в сторону коротких - круто и обрывается при определенной длине волны (λ0), называемой коротковолновой границей сплошного спектра. Величина λ0 обратно пропорциональна напряжению на трубке. Тормозное излучение возникает при взаимодействии быстрых электронов с ядрами атомов. Интенсивность тормозного излучения прямо пропорциональна силе анодного тока, квадрату напряжения на трубке и атомному номеру (Z) вещества анода.

Если энергия ускоренных в рентгеновской трубке электронов превосходит критическую для вещества анода величину (эта энергия определяется критическим для этого вещества напряжением на трубке Vкр), то возникает характеристическое излучение. Характеристический спектр - линейчатый, его спектральные линии образуют серии, обозначаемые буквами К, L, М, N.

Серия К - самая коротковолновая, серия L - более длинноволновая, серии М и N наблюдаются только у тяжелых элементов (Vкр вольфрама для К-серии - 69,3 кв, для L-серии - 12,1 кв). Характеристическое излучение возникает следующим образом. Быстрые электроны выбивают атомные электроны из внутренних оболочек. Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних, менее связанных оболочек заполняют освободившиеся во внутренних оболочках места, и излучаются фотоны характеристического излучения с энергией, равной разности энергий атома в возбужденном и основном состоянии. Эта разность (а следовательно, и энергия фотона) имеет определенное значение, характерное для каждого элемента. Это явление лежит в основе рентгеноспектрального анализа элементов. На рисунке виден линейчатый спектр вольфрама на фоне сплошного спектра тормозного излучения.

Энергия ускоренных в рентгеновской трубке электронов преобразуется почти целиком в тепловую (анод при этом сильно нагревается), лишь незначительная часть (около 1% при напряжении, близком к 100 кв) превращается в энергию тормозного излучения.

Применение рентгеновского излучения в медицине основано на законах поглощения рентгеновых лучей веществом. Поглощение рентгеновского излучения совершенно не зависит от оптических свойств вещества поглотителя. Бесцветное и прозрачное свинцовое стекло, используемое для защиты персонала рентгеновских кабинетов, практически полностью поглощает рентгеновское излучение. Напротив, лист бумаги, не прозрачный для света, не ослабляет рентгеновского излучения.

Интенсивность однородного (т. е. определенной длины волны) пучка рентгеновского излучения при прохождении через слой поглотителя уменьшается по экспоненциальному закону (е-х), где е - основание натуральных логарифмов (2,718), а показатель экспоненты х равен произведению массового коэффициента ослабления (μ/р) см 2 /г на толщину поглотителя в г/см 2 (здесь р - плотность вещества в г/см 3). Ослабление рентгеновского излучения происходит как за счет рассеяния, так и за счет поглощения. Соответственно массовый коэффициент ослабления является суммой массовых коэффициентов поглощения и рассеяния. Массовый коэффициент поглощения резко возрастает с увеличением атомного номера (Z) поглотителя (пропорционально Z3 или Z5) и с увеличением длины волны (пропорционально λ3). Указанная зависимость от длины волны наблюдается в пределах полос поглощения, на границах которых коэффициент обнаруживает скачки.

Массовый коэффициент рассеяния возрастает с увеличением атомного номера вещества. При λ≥0,ЗÅ коэффициент рассеяния от длины волны не зависит, при λ<0,ЗÅ он уменьшается с уменьшением λ.

Уменьшение коэффициентов поглощения и рассеяния с уменьшением длины волны обусловливает возрастание проникающей способности рентгеновского излучения. Массовый коэффициент поглощения для костей [поглощение в основном обусловлено Са 3 (РO 4) 2 ] почти в 70 раз больше, чем для мягких тканей, где поглощение в основном обусловлено водой. Это объясняет, почему на рентгенограммах так резко выделяется тень костей на фоне мягких тканей.

Распространение неоднородного пучка рентгеновского излучения через любую среду наряду с уменьшением интенсивности сопровождается изменением спектрального состава, изменением качества излучения: длинноволновая часть спектра поглощается в большей степени, чем коротковолновая, излучение становится более однородным. Отфильтровывание длинноволновой части спектра позволяет при рентгенотерапии очагов, глубоко расположенных в теле человека, улучшить соотношение между глубинной и поверхностной дозами (см. Рентгеновские фильтры). Для характеристики качества неоднородного пучка рентгеновых лучей используется понятие «слой половинного ослабления (Л)» - слой вещества, ослабляющий излучение наполовину. Толщина этого слоя зависит от напряжения на трубке, толщины и материала фильтра. Для измерения слоев половинного ослабления используют целлофан (до энергии 12 кэв), алюминий (20-100 кэв), медь (60-300 кэв), свинец и медь (>300 кэв). Для рентгеновых лучей, генерируемых при напряжениях 80-120 кв, 1 мм меди по фильтрующей способности эквивалентен 26 мм алюминия, 1 мм свинца - 50,9 мм алюминия.

Поглощение и рассеяние рентгеновского излучения обусловлено его корпускулярными свойствами; рентгеновское излучение взаимодействует с атомами как поток корпускул (частиц) - фотонов, каждый из которых имеет определенную энергию (обратно пропорциональную длине волны рентгеновского излучения). Интервал энергий рентгеновских фотонов 0,05-500 кэв.

Поглощение рентгеновского излучения обусловлено фотоэлектрическим эффектом: поглощение фотона электронной оболочкой сопровождается вырыванием электрона. Атом возбуждается и, возвращаясь в основное состояние, испускает характеристическое излучение. Вылетающий фотоэлектрон уносит всю энергию фотона (за вычетом энергии связи электрона в атоме).

Рассеяние рентгеновского излучения обусловлено электронами рассеивающей среды. Различают классическое рассеяние (длина волны излучения не меняется, но меняется направление распространения) и рассеяние с изменением длины волны - комптон-эффект (длина волны рассеянного излучения больше, чем падающего). В последнем случае фотон ведет себя как движущийся шарик, а рассеяние фотонов происходит, по образному выражению Комнтона, наподобие игры на бильярде фотонами и электронами: сталкиваясь с электроном, фотон передает ему часть своей энергии и рассеивается, обладая уже меньшей энергией (соответственно длина волны рассеянного излучения увеличивается), электрон вылетает из атома с энергией отдачи (эти электроны называют комптон-электронами, или электронами отдачи). Поглощение энергии рентгеновского излучения происходит при образовании вторичных электронов (комптон - и фотоэлектронов) и передаче им энергии. Энергия рентгеновского излучения, переданная единице массы вещества, определяет поглощенную дозу рентгеновского излучения. Единица этой дозы 1 рад соответствует 100 эрг/г. За счет поглощенной энергии в веществе поглотителя протекает ряд вторичных процессов, имеющих важное значение для дозиметрии рентгеновского излучения, так как именно на них основываются методы измерения рентгеновского излучения. (см. Дозиметрия).

Все газы и многие жидкости, полупроводники и диэлектрики под действием рентгеновского излучения увеличивают электрическую проводимость. Проводимость обнаруживают лучшие изоляционные материалы: парафин, слюда, резина, янтарь. Изменение проводимости обусловлено ионизацией среды, т. е. разделением нейтральных молекул на положительные и отрицательные ионы (ионизацию производят вторичные электроны). Ионизация в воздухе используется для определения экспозиционной дозы рентгеновского излучения (дозы в воздухе), которая измеряется в рентгенах (см. Дозы ионизирующих излучений). При дозе в 1 р поглощенная доза в воздухе равна 0,88 рад.

Под действием рентгеновского излучения в результате возбуждения молекул вещества (и при рекомбинации ионов) возбуждается во многих случаях видимое свечение вещества. При больших интенсивностях рентгеновского излучения наблюдается видимое свечение воздуха, бумаги, парафина и т. п. (исключение составляют металлы). Наибольший выход видимого свечения дают такие кристаллические люминофоры, как Zn·CdS·Ag-фосфор и другие, применяемые для экранов при рентгеноскопии.

Под действием рентгеновского излучения в веществе могут проходить также различные химические процессы: разложение галоидных соединений серебра (фотографический эффект, используемый при рентгенографии), разложение воды и водных растворов перекиси водорода, изменение свойств целлулоида (помутнение и выделение камфоры), парафина (помутнение и отбелка).

В результате полного преобразования вся поглощенная химически инертным веществом энергия рентгеновское излучение превращается в теплоту. Измерение очень малых количеств теплоты требует высокочувствительных методов, зато является основным способом абсолютных измерений рентгеновского излучения.

Вторичные биологические эффекты от воздействия рентгеновского излучения являются основой медицинской рентгенотерапии (см.). Рентгеновские излучения, кванты которых составляют 6-16 кэв (эффективные длины волн от 2 до 5 Å), практически полностью поглощаются кожным покровом ткани человеческого тела; они называются пограничными лучами, или иногда лучами Букки (см. Букки лучи). Для глубокой рентгенотерапии применяется жесткое фильтрованное излучение с эффективными квантами энергии от 100 до 300 кэв.

Биологическое действие рентгеновского излучения должно учитываться не только при рентгенотерапии, но и при рентгенодиагностике, а также во всех других случаях контакта с рентгеновским излучением, требующих применения противолучевой защиты (см.).

Современную медицинскую диагностику и лечение некоторых заболеваний невозможно представить без приборов, использующих свойства рентгеновского излучения. Открытие рентгеновских лучей произошло более 100 лет назад, но и сейчас не прекращаются работы над созданием новых методик и аппаратов, позволяющих минимизировать негативное действие излучения на организм человека.

Кто и как открыл Х-лучи

В естественных условиях поток лучей рентгена встречается редко и излучается только некоторыми радиоактивными изотопами. Рентгеновское излучение или Х-лучи были обнаружены только в 1895 году немецким учёным Wilhelm Röntgen. Это открытие произошло случайно, во время проведения опыта по исследованию поведения лучей света в условиях, приближающихся к вакууму. В эксперименте были задействованы катодная газоразрядная трубка с пониженным давлением и флуоресцентный экран, который всякий раз начинал светиться в момент когда трубка начинала действовать.

Заинтересовавшись странным эффектом, Рентген провёл серию исследований, показывающих что возникающее не видимое глазу излучение способно проникать сквозь различные преграды: бумагу, дерево, стекло, некоторые металлы, и даже через человеческое тело. Несмотря на отсутствие понимания самой природы происходящего, вызвано ли такое явление генерацией потока неизвестных частиц или волнами, была отмечена следующая закономерность – излучение легко проходит через мягкие ткани организма, и гораздо тяжелее сквозь твёрдые живые ткани и неживые вещества.

Рентген был не первым кто изучал подобное явление. В середине XIX столетия, схожие возможности изучал француз Антуан Масон и англичанин Уильям Крукс. Тем не менее, именно Рентген первым изобрёл катодную трубку и индикатор, который можно было применить в медицине. Он первым опубликовал научный труд, принёсший ему звание первого нобелевского лауреата среди физиков.

В 1901 году началось плодотворное сотрудничество трёх учёных, ставших отцами-основателями радиологии и рентгенологии.

Свойства рентгеновского излучения

Рентгеновские лучи – это составная часть общего спектра электромагнитного излучения. Длина волны расположена между гамма- и ультрафиолетовым лучами. Для Х-лучей характерны все обычные волновые свойства:

  • дифракция;
  • преломление;
  • интерференция;
  • скорость распространения (она равна световой).

Для искусственного генерирования потока рентгеновских лучей применяют специальные приборы – рентгеновские трубки. Рентген-излучение возникает из-за контакта быстрых электронов вольфрама с веществами, испаряющимися из раскалённого анода. На фоне взаимодействия возникают электромагнитные волны малой длины, находящиеся в спектре от 100 до 0,01 нм и в энергетическом диапазоне 100-0,1 МэВ. Если длина волны лучей меньше чем 0,2 нм – это жёсткое излучение, если длина волны больше указанной величины, их называют мягкими рентгеновскими лучами.

Показательно то, что кинетическая энергия, возникающая от соприкосновения электронов и анодного вещества, на 99% превращается в энергию тепла и только 1% является Х-лучами.

Рентгеновское излучение – тормозное и характеристическое

Х-излучение представляет собой наложение двух видов лучей – тормозных и характеристических. Они генерируются в трубке одновременно. Поэтому облучение рентгеном и характеристика каждой конкретной рентгеновской трубки – спектр её излучения, зависит от этих показателей, и представляет собой их наложение.

Тормозные или непрерывные рентгеновские лучи – это результат торможения электронов, испаряемых из вольфрамовой спирали.

Характеристические или линейчатые лучи рентгена образуются в момент перестройки атомов вещества анода рентгеновской трубки. Длина волны характеристических лучей непосредственно зависит от атомного номера химического элемента, применяемого для изготовления анода трубки.

Перечисленные свойства рентгеновских лучей позволяют применять их на практике:

  • невидимость для обычного взгляда;
  • высокая проникающая способность сквозь живые ткани и неживые материалы, которые не пропускают лучи видимого спектра;
  • ионизационное воздействие на молекулярные структуры.

Принципы получения рентген-изображения

Свойства рентгеновских лучей, на которых основано получение изображения – это способность либо разлагать, либо вызвать свечение некоторых веществ.

Рентген облучение вызывает флуоресцентное свечение у сульфидов кадмия и цинка – зелёным, а у вольфрамата кальция – голубым цветом. Это свойство используется в методике медицинского рентгенологического просвечивания, а также повышает функциональность рентгенологических экранов.

Фотохимическое воздействие рентгеновских лучей на светочувствительные галогенсеребряные материалы (засвечивание) позволяет осуществлять диагностику – делать рентгенологические снимки. Это свойство также используется при измерении величины суммарной дозы, которую получают лаборанты в рентген-кабинетах. В нательных дозиметрах вставлены специальные чувствительные ленты и индикаторы. Ионизирующее действие рентгеновского излучения позволяет определять и качественную характеристику полученных рентген-лучей.

Однократное облучение при выполнении обычной рентгенографии повышает риск возникновения рака всего лишь на 0,001%.

Области, где применяют рентгеновское излучение

Применение рентгеновских лучей допустимо в следующих отраслях:

  1. Безопасность. Стационарные и переносные приборы для обнаружения опасных и запрещённых предметов в аэропортах, таможнях или в местах большого скопления людей.
  2. Химическая промышленность, металлургия, археология, архитектура, строительство, реставрационные работы – для обнаружения дефектов и проведения химического анализа веществ.
  3. Астрономия. Помогает проводить наблюдение за космическими телами и явлениями при помощи рентгеновских телескопов.
  4. Военная отрасль. Для разработки лазерного оружия.

Главное применение рентгеновского излучения - медицинская сфера. Сегодня в раздел медицинской радиологии входят: радиодиагностика, радиотерапия (рентгенотерапия), радиохирургия. Медицинские вузы выпускают узкопрофильных специалистов – врачей-радиологов.

Х-Излучение - вред и польза, влияние на организм

Высокая проникающая способность и ионизирующее воздействие рентгеновских лучей может вызвать изменение структуры ДНК клетки, поэтому представляет опасность для человека. Вред от рентгеновского излучения прямо пропорционален полученной дозе облучения. Разные органы реагируют на облучение в различной степени. К самым восприимчивым относят:

  • костный мозг и костная ткань;
  • хрусталик глаза;
  • щитовидная железа;
  • молочные и половые железы;
  • ткани лёгких.

Бесконтрольное использование рентгеновского облучения может стать причиной обратимых и необратимых патологий.

Последствия рентгеновского облучения:

  • поражение костного мозга и возникновение патологий кроветворной системы – эритроцитопении, тромбоцитопении, лейкемии;
  • повреждение хрусталика, с последующим развитием катаракты;
  • клеточные мутации, передающиеся по наследству;
  • развитие онкологических заболеваний;
  • получение лучевых ожогов;
  • развитие лучевой болезни.

Важно! В отличие от радиоактивных веществ, рентгеновские лучи не накапливаются в тканях тела, а это значит, что и выводить рентгеновские лучи из организма не нужно. Вредное действие рентгеновского излучения заканчивается вместе с выключением медицинского прибора.

Применение рентгеновского излучения в медицине допустимо не только в диагностических (травматология, стоматология), но и в терапевтических целях:

  • от рентгена в малых дозах стимулируется обмен веществ в живых клетках и тканях;
  • определённые граничные дозы используются для лечения онкологических и доброкачественных новообразований.

Способы диагностики патологий с помощью Х-лучей

Радиодиагностика включает следующие методики:

  1. Рентгеноскопия – исследование, в ходе которого получают изображение на флуоресцентном экране в режиме реального времени. Наряду с классическим получением изображения части тела в реальном времени, сегодня существуют технологии рентгенотелевизионного просвечивания – изображение переносится с флуоресцентного экрана на телевизионный монитор, находящийся в другом помещении. Разработано несколько цифровых способов обработки полученного изображения, с последующим переносом его с экрана на бумагу.
  2. Флюорография – самый дешёвый метод исследования органов грудной клетки, заключающий в изготовлении уменьшенного снимка 7х7 см. Несмотря на вероятность погрешности, является единственным способом массового ежегодного обследования населения. Метод не представляет опасности и не требует вывода полученной дозы облучения из организма.
  3. Рентгенография – получение суммарного изображения на плёнку или бумагу для уточнения формы органа, его положения или тонуса. Может использоваться для оценки перистальтики и состояния слизистых оболочек. Если существует возможность выбора, то среди современных рентгенографических приборов предпочтение следует отдавать ни цифровым аппаратам, где поток х-лучей может быть выше чем у старых приборов, а малодозовым – рентген-аппараты с прямыми плоскими полупроводниковыми детекторами. Они позволяют снизить нагрузку на организм в 4 раза.
  4. Компьютерная рентгеновская томография – методика, использующая рентгеновские лучи для получения нужного количества снимков срезов выбранного органа. Среди множества разновидностей современных аппаратов КТ, для серии повторных исследований используют низкодозные компьютерные томографы высокого разрешения.

Радиотерапия

Терапия при помощи рентгеновских лучей относится к методам местного лечения. Чаще всего метод используется для уничтожения клеток раковых опухолей. Поскольку эффект воздействия сопоставим с хирургическим удалением, то этот метод лечения часто называют радиохирургией.

Сегодня лечение х-лучами проводится такими способами:

  1. Наружный (протонная терапия) – пучок излучения попадает на тело пациента извне.
  2. Внутренний (брахиотерапия) – использование радиоактивных капсул путём их имплантации в тело, с помещением ближе к раковой опухоли. Недостаток этого метода лечения состоит в том, что пока капсулу не извлекут из организма, больной нуждается в изоляции.

Эти методы являются щадящими, а их применение предпочтительнее химиотерапии в ряде случаев. Такая популярность связана с тем, что лучи не скапливаются и не требуют выведения из организма, они оказывают выборочное действие, не воздействуя на другие клетки и ткани.

Безопасная норма облучения Х-лучами

У этого показателя нормы допустимого годового облучения есть своё название – генетически значимая эквивалентная доза (ГЗД). Чётких количественных значений у этого показателя нет.

  1. Этот показатель зависит от возраста и желания пациентом в дальнейшем иметь детей.
  2. Зависит от того какие именно органы были подвергнуты исследованию или лечению.
  3. На ГЗД влияет уровень естественного радиоактивного фона региона проживания человека.

Сегодня действую следующие усреднённые нормативы ГЗД:

  • уровень облучения от всех источников, за исключением медицинских, и без учёта природного фона радиации – 167 мБэр в год;
  • норма для ежегодного медицинского обследования – не выше 100 мБэр в год;
  • суммарная безопасная величина – 392 мБэр в год.

Рентгеновское излучение не требует выведения из организма, и является опасным только в случае интенсивного и длительного воздействия. Современная медицинская аппаратура использует низкоэнергетическое облучение малой длительности, поэтому её применение считается относительно безвредным.

Министерство образования и науки РФ

Федеральное агентство по образованию

ГОУ ВПО ЮУрГУ

Кафедра физической химии

по курсу КСЕ: “Рентгеновское излучение”

Выполнил:

Наумова Дарья Геннадиевна

Проверил:

Доцент, К. Т.Н.

Танклевская Н.М.

Челябинск 2010 г.

Введение

Глава I. Открытие рентгеновского излучения

Получение

Взаимодействие с веществом

Биологическое воздействие

Регистрация

Применение

Как делают рентгеновский снимок

Естественное рентгеновское излучение

Глава II. Рентгентография

Применение

Метод получения изображения

Преимущества рентгенографии

Недостатки рентгенографии

Рентгеноскопия

Принцип получения

Преимущества рентгеноскопии

Недостатки рентгеноскопии

Цифровые технологии в рентгеноскопии

Многострочный сканирующий метод

Заключение

Список использованной литературы

Введение

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых определяется диапазоном энергией от ультрафиолетовых до гамма-излучений, что соответствует интервалу длин волн от 10−4 до 10² Å (от 10−14 до 10−8 м).

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Глава I. Открытие рентгеновского излучения

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рентгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием "О новом типе лучей" была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов. Также Никола Тесла, начиная с 1897 года, экспериментировал с катодолучевыми трубками, получил рентгеновские лучи, но не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо - при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них всего три сравнительно небольших статьи, но в них было дано столь исчерпывающее описание новых лучей, что сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: "Я уже всё написал, не тратьте зря время". Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). Подобная слава принесла Рентгену в 1901 году первую Нобелевскую премию по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название "рентгеновские лучи". В некоторых странах осталось старое название - X-лучи. В России лучи стали называть "рентгеновскими" с подачи ученика В.К. Рентгена - Абрама Фёдоровича Иоффе.

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов - эквивалентны. Терминологическое различие лежит в способе возникновения - рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 - 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны).

(Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В.К. Рентгеном)

)

Получение

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т.к ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией (характеристическое излучение, частоты определяются законом Мозли:

,

где Z - атомный номер элемента анода, A и B - константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, - из молибдена. В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т.н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh - напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения (см. рентгеновская трубка).

Взаимодействие с веществом

Коэффициент преломления почти любого вещества для рентгеновских лучей мало отличается от единицы. Следствием этого является тот факт, что не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z3λ3, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.