Не подценявайте ролята на киселините в нашия живот, защото много от тях са просто незаменими в ежедневието. Първо, нека си припомним какво представляват киселините. това сложни вещества. Формулата се записва по следния начин: HnA, където H е водород, n е броят на атомите, A е киселинният остатък.

Основните свойства на киселините включват способността да заместват молекулите на водородните атоми с метални атоми. Повечето от тях са не само разяждащи, но и много отровни. Но има и такива, с които се сблъскваме постоянно, без вреда за здравето ни: витамин С, лимонена киселина, млечна киселина. Нека разгледаме основните свойства на киселините.

Физични свойства

Физическите свойства на киселините често дават улики за техния характер. Киселините могат да съществуват в три форми: твърди, течни и газообразни. Например: азотната (HNO3) и сярната киселина (H2SO4) са безцветни течности; борната (H3BO3) и метафосфорната (HPO3) са твърди киселини. Някои от тях имат цвят и мирис. Различните киселини се разтварят по различен начин във вода. Има и неразтворими: H2SiO3 - силиций. Течните вещества имат кисел вкус. Някои киселини са кръстени на плодовете, в които се намират: ябълчена киселина, лимонена киселина. Други получават името си от химичните елементи, които съдържат.

Класификация на киселините

Киселините обикновено се класифицират по няколко критерия. Първият се основава на съдържанието на кислород в тях. А именно: съдържащи кислород (HClO4 - хлор) и безкислородни (H2S - сероводород).

По брой на водородните атоми (по основност):

  • Едноосновен – съдържа един водороден атом (HMnO4);
  • Двуосновен – има два водородни атома (H2CO3);
  • Tribasic, съответно, имат три водородни атома (H3BO);
  • Многоосновни - имат четири или повече атома, рядко се срещат (H4P2O7).

По класове химични съединения, се делят на органични и неорганични киселини. Първите се намират главно в продукти от растителен произход: оцетна, млечна, никотинова, аскорбинова киселини. Неорганичните киселини включват: сярна, азотна, борна, арсенова. Обхватът на тяхното приложение е доста широк, от промишлени нужди (производство на багрила, електролити, керамика, торове и др.) до готвене или почистване на канали. Киселините също могат да бъдат класифицирани по сила, летливост, стабилност и разтворимост във вода.

Химични свойства

Нека разгледаме основното химични свойствакиселини

  • Първият е взаимодействие с индикатори. Като индикатори се използват лакмус, метилоранж, фенолфталеин и универсална индикаторна хартия. В киселинни разтвори цветът на индикатора ще промени цвета си: лакмус и универсален инд. хартията ще стане червена, метилоранжът ще стане розов, фенолфталеинът ще остане безцветен.
  • Второто е взаимодействието на киселини с основи. Тази реакция се нарича още неутрализация. Една киселина реагира с основа, което води до сол + вода. Например: H2SO4+Ca(OH)2=CaSO4+2 H2O.
  • Тъй като почти всички киселини са силно разтворими във вода, неутрализацията може да се извърши както с разтворими, така и с неразтворими основи. Изключение прави силициевата киселина, която е почти неразтворима във вода. За неутрализирането му са необходими основи като KOH или NaOH (те са разтворими във вода).
  • Третото е взаимодействието на киселини с основни оксиди. Тук също възниква реакция на неутрализация. Основните оксиди са близки „роднини“ на основите, следователно реакцията е същата. Ние използваме тези окислителни свойства на киселините много често. Например за премахване на ръжда от тръби. Киселината реагира с оксида, за да образува разтворима сол.
  • Четвърто - реакция с метали. Не всички метали реагират еднакво добре с киселини. Делят се на активни (K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn. Pb) и неактивни (Cu, Hg, Ag, Pt, Au). Също така си струва да се обърне внимание на силата на киселината (силна, слаба). Например, солната и сярната киселина са способни да реагират с всички неактивни метали, докато лимонената и оксаловата киселина са толкова слаби, че реагират много бавно дори с активни метали.
  • Пето, реакцията на кислородсъдържащи киселини към нагряване. Почти всички киселини в тази група се разлагат при нагряване до кислороден оксид и вода. Изключенията са въглеродната киселина (H3PO4) и сярната киселина (H2SO4). При нагряване те се разпадат на вода и газ. Това трябва да се помни. Това са всички основни свойства на киселините.

Киселините са химични съединения, които са способни да отдават електрически зареден водороден йон (катион) и също така да приемат два взаимодействащи електрона, което води до образуването на ковалентна връзка.

В тази статия ще разгледаме основните киселини, които се изучават в средното училище. средни училища, а също и научете много интересни фактиза различни киселини. Нека започваме.

Киселини: видове

В химията има много различни киселини, които имат най-много различни свойства. Химиците разграничават киселините според тяхното съдържание на кислород, летливост, разтворимост във вода, сила, стабилност, дали са органични или неорганичен класхимични съединения. В тази статия ще разгледаме таблица, която представя най-известните киселини. Таблицата ще ви помогне да запомните името на киселината и нейната химична формула.

Така че всичко се вижда ясно. Тази таблица представя най-известните химическа индустриякиселини. Таблицата ще ви помогне да запомните имена и формули много по-бързо.

Сероводородна киселина

H2S е хидросулфидна киселина. Неговата особеност се състои в това, че той също е газ. Сероводородът е много слабо разтворим във вода и също така взаимодейства с много метали. Сероводородната киселина принадлежи към групата на „слабите киселини“, примери за които ще разгледаме в тази статия.

H 2 S има леко сладникав вкус и много силна миризма на развалени яйца. В природата може да се намери в природни или вулканични газове, а също така се отделя при гниене на протеини.

Свойствата на киселините са много разнообразни; дори ако една киселина е незаменима в индустрията, тя може да бъде много вредна за човешкото здраве. Тази киселина е много токсична за хората. Когато се вдиша малко количество сероводород, човек се събужда главоболие, започва силно гадене и световъртеж. Ако човек вдишва голям брой H 2 S, може да доведе до гърчове, кома или дори мигновена смърт.

Сярна киселина

H 2 SO 4 е силна сярна киселина, с която децата се запознават в часовете по химия в 8 клас. Химическите киселини като сярната киселина са много силни окислители. H 2 SO 4 действа като окислител на много метали, както и на основни оксиди.

H 2 SO 4 причинява химически изгаряния, когато влезе в контакт с кожата или дрехите, но не е толкова токсичен, колкото сероводорода.

Азотна киселина

Силните киселини са много важни в нашия свят. Примери за такива киселини: HCl, H2SO4, HBr, HNO3. HNO 3 е добре позната азотна киселина. Намира широко приложение в индустрията, както и в селско стопанство. Използва се за направата на различни торове, в бижутерията, при отпечатване на снимки, в производството лекарстваи багрила, както и във военната индустрия.

Такива химически киселини, подобно на азота, са много вредни за организма. Парите на HNO 3 оставят язви, предизвикват остро възпаление и дразнене на дихателните пътища.

Азотиста киселина

Азотната киселина често се бърка с азотната киселина, но има разлика между тях. Факт е, че той е много по-слаб от азота, има напълно различни свойства и ефекти върху човешкото тяло.

HNO 2 намери широко приложение в химическата промишленост.

Флуороводородна киселина

Флуороводородна киселина (или флуороводород) е разтвор на H 2 O с HF. Киселинната формула е HF. Флуороводородната киселина се използва много активно в алуминиева индустрия. Използва се за разтваряне на силикати, ецване на силиций и силикатно стъкло.

Флуороводородът е много вреден за човешкото тяло, в зависимост от концентрацията му може да бъде лек наркотик. Ако влезе в контакт с кожата, първоначално няма промени, но след няколко минути може да се появи остра болка и химическо изгаряне. Флуороводородната киселина е много вредна за околната среда.

Солна киселина

HCl е хлороводород и е силна киселина. Хлороводородът запазва свойствата на киселините, принадлежащи към групата на силните киселини. Киселината е прозрачна и безцветна на вид, но дими на въздух. Хлороводородът се използва широко в металургичната и хранително-вкусовата промишленост.

Тази киселина причинява химически изгаряния, но попадането в очите е особено опасно.

Фосфорна киселина

Фосфорната киселина (H 3 PO 4) е слаба киселина по своите свойства. Но дори слабите киселини могат да имат свойствата на силни. Например H 3 PO 4 се използва в промишлеността за възстановяване на желязото от ръжда. В допълнение, фосфорната (или ортофосфорната) киселина се използва широко в селското стопанство - от нея се правят много различни торове.

Свойствата на киселините са много сходни - почти всяка от тях е много вредна за човешкото тяло, H 3 PO 4 не е изключение. Например, тази киселина също причинява тежки химически изгаряния, кървене от носа и чупене на зъби.

Въглена киселина

H 2 CO 3 е слаба киселина. Получава се чрез разтваряне на CO 2 (въглероден диоксид) във H 2 O (вода). Въглеродната киселина се използва в биологията и биохимията.

Плътност на различни киселини

Плътността на киселините заема важно място в теоретичната и практични частихимия. Познавайки плътността, можете да определите концентрацията на определена киселина, да решите проблеми с химичните изчисления и да добавите правилното количество киселина, за да завършите реакцията. Плътността на всяка киселина се променя в зависимост от концентрацията. Например, колкото по-висок е процентът на концентрация, толкова по-висока е плътността.

Общи свойства на киселините

Абсолютно всички киселини са (т.е. те се състоят от няколко елемента на периодичната таблица) и те задължително включват Н (водород) в състава си. След това ще разгледаме кои са често срещаните:

  1. Всички кислородсъдържащи киселини (във формулата на които присъства О) образуват вода при разлагане, а също и безкислородните се разлагат на прости вещества(например 2HF се разлага на F 2 и H 2).
  2. Окислителните киселини реагират с всички метали в серията метална активност (само тези отляво на H).
  3. Те взаимодействат с различни соли, но само с тези, които са образувани от още по-слаба киселина.

Според техните собствени физични свойствакиселините рязко се различават една от друга. В края на краищата, те могат да имат миризма или не, а също и да бъдат в най-различни агрегатни състояния: течни, газообразни и дори твърди. Твърдите киселини са много интересни за изучаване. Примери за такива киселини: C 2 H 2 0 4 и H 3 BO 3.

Концентрация

Концентрацията е стойност, която определя количествения състав на всеки разтвор. Например, химиците често трябва да определят колко чиста сярна киселина присъства в разредената киселина H 2 SO 4. За да направите това, те изсипват малко количество разредена киселина в мерителна чаша, претеглят я и определят концентрацията с помощта на диаграма за плътност. Концентрацията на киселините е тясно свързана с плътността; често при определяне на концентрацията има изчислителни проблеми, при които трябва да определите процента на чистата киселина в разтвора.

Класификация на всички киселини според броя на Н атомите в тяхната химична формула

Една от най-популярните класификации е разделянето на всички киселини на едноосновни, двуосновни и съответно триосновни киселини. Примери за едноосновни киселини: HNO 3 (азотна), HCl (солна), HF (флуороводородна) и други. Тези киселини се наричат ​​едноосновни, тъй като съдържат само един Н атом. Има много такива киселини, невъзможно е да запомните абсолютно всяка. Просто трябва да запомните, че киселините се класифицират според броя на Н атомите в техния състав. Двуосновните киселини се дефинират по подобен начин. Примери: H 2 SO 4 (сярен), H 2 S (сероводород), H 2 CO 3 (въглища) и др. Триосновен: H 3 PO 4 (фосфорен).

Основна класификация на киселините

Една от най-популярните класификации на киселините е тяхното разделяне на кислородсъдържащи и безкислородни. Как да запомните, без да знаете химичната формула на дадено вещество, че то е кислородсъдържаща киселина?

Всички безкислородни киселини нямат важния елемент О - кислород, но съдържат Н. Затова думата "водород" винаги е свързана с името им. HCl е H 2 S - сероводород.

Но можете също да напишете формула въз основа на имената на киселинно-съдържащи киселини. Например, ако броят на О атомите в дадено вещество е 4 или 3, тогава наставката -n-, както и окончанието -aya-, винаги се добавят към името:

  • H 2 SO 4 - сяра (брой атоми - 4);
  • H 2 SiO 3 - силиций (брой атоми - 3).

Ако веществото има по-малко от три или три кислородни атома, тогава в името се използва наставката -ist-:

  • HNO 2 - азотен;
  • H 2 SO 3 - сярна.

Общи свойства

Всички киселини имат кисел и често леко метален вкус. Но има и други подобни свойства, които сега ще разгледаме.

Има вещества, наречени индикатори. Индикаторите променят цвета си или цветът остава, но нюансът му се променя. Това се случва, когато индикаторите се влияят от други вещества, като киселини.

Пример за промяна на цвета е такъв познат продукт като чай и лимонена киселина. Когато лимонът се добави към чая, чаят постепенно започва забележимо да изсветлява. Това се дължи на факта, че лимонът съдържа лимонена киселина.

Има и други примери. Лакмусът, който е лилав на цвят в неутрална среда, става червен, когато се добави солна киселина.

Когато напреженията са в серията на напрежение преди водорода, се освобождават газови мехурчета - H. Въпреки това, ако метал, който е в серията на напрежение след H, се постави в епруветка с киселина, тогава няма да настъпи реакция, няма да има отделяне на газ. Така че медта, среброто, живакът, платината и златото няма да реагират с киселини.

В тази статия разгледахме най-известните химически киселини, както и техните основни свойства и разлики.

Киселинни формулиИмена на киселиниИмена на съответните соли
HClO4 хлор перхлорати
HClO3 хипохлорен хлорати
HClO2 хлорид хлорити
HClO хипохлорен хипохлорити
H5IO6 йод периодати
HIO 3 йодна йодати
H2SO4 сярна сулфати
H2SO3 сяра сулфити
H2S2O3 тиосяра тиосулфати
H2S4O6 тетратионов тетратионати
HNO3 азот нитрати
HNO2 азотен нитрити
H3PO4 ортофосфорен ортофосфати
HPO 3 метафосфорен метафосфати
H3PO3 фосфорни фосфити
H3PO2 фосфорни хипофосфити
H2CO3 въглища карбонати
H2SiO3 силиций силикати
HMnO4 манган перманганати
H2MnO4 манган манганати
H2CrO4 хром хромати
H2Cr2O7 дихром дихромати
HF флуороводород (флуорид) флуориди
НС1 солна (солна) хлориди
HBr бромоводородна бромиди
здрасти водороден йодид йодиди
H2S сероводород сулфиди
HCN циановодород цианиди
HOCN циан цианати

Нека накратко да ви напомня, като използвам конкретни примери, как трябва да се наричат ​​правилно солите.


Пример 1. Солта K 2 SO 4 се образува от остатъка от сярна киселина (SO 4) и метала K. Солите на сярната киселина се наричат ​​сулфати. K 2 SO 4 - калиев сулфат.

Пример 2. FeCl 3 - солта съдържа желязо и остатък от солна киселина (Cl). Име на солта: железен (III) хлорид. Моля, обърнете внимание: в този случай трябва не само да назовем метала, но и да посочим неговата валентност (III). В предишния пример това не беше необходимо, тъй като валентността на натрия е постоянна.

Важно: името на солта трябва да показва валентността на метала само ако металът има променлива валентност!

Пример 3. Ba(ClO) 2 - солта съдържа барий и остатъка от хипохлорна киселина (ClO). Име на солта: бариев хипохлорит. Валентността на метала Ba във всичките му съединения е две; не е необходимо да се посочва.

Пример 4. (NH 4) 2 Cr 2 O 7. Групата NH4 се нарича амоний, валентността на тази група е постоянна. Име на солта: амониев дихромат (дихромат).

В горните примери се сблъскахме само с т.нар. средни или нормални соли. Тук няма да се разглеждат киселинни, основни, двойни и комплексни соли, соли на органични киселини.

Ако се интересувате не само от номенклатурата на солите, но и от методите за тяхното получаване и химичните свойства, препоръчвам ви да се обърнете към съответните раздели на справочника по химия: "

Киселините могат да бъдат класифицирани въз основа на различни критерии:

1) Наличието на кислородни атоми в киселината

2) Киселинна основност

Основността на киселината е броят на „мобилните“ водородни атоми в нейната молекула, способни да бъдат отделени от киселинната молекула под формата на водородни катиони H + при дисоциация и също така заменени с метални атоми:

4) Разтворимост

5) Стабилност

7) Оксидиращи свойства

Химични свойства на киселините

1. Способност за дисоциация

Киселините се дисоциират във водни разтвори на водородни катиони и киселинни остатъци. Както вече споменахме, киселините се делят на добре дисоцииращи (силни) и слабо дисоцииращи (слаби). Когато се пише уравнението на дисоциация за силни едноосновни киселини, се използва или една стрелка, сочеща надясно () или знак за равенство (=), което показва, че такава дисоциация е практически необратима. Например уравнението на дисоциация за силна солна киселина може да бъде написано по два начина:

или в тази форма: HCl = H + + Cl -

или по този начин: HCl → H + + Cl -

По същество посоката на стрелката ни казва това обратен процесКомбинацията на водородни катиони с киселинни остатъци (асоциация) практически не се среща при силни киселини.

В случай, че искаме да напишем уравнението на дисоциация на слаба монопротонова киселина, трябва да използваме две стрелки в уравнението вместо знака. Този знак отразява обратимостта на дисоциацията на слаби киселини - в техния случай обратният процес на комбиниране на водородни катиони с киселинни остатъци е силно изразен:

CH 3 COOH CH 3 COO — + H +

Многоосновните киселини се дисоциират стъпаловидно, т.е. Водородните катиони се отделят от техните молекули не едновременно, а един по един. Поради тази причина дисоциацията на такива киселини се изразява не с едно, а с няколко уравнения, чийто брой е равен на основността на киселината. Например, дисоциацията на триосновна фосфорна киселина се извършва в три етапа с редуващо се разделяне на H + катиони:

H 3 PO 4 H + + H 2 PO 4 —

H 2 PO 4 - H + + HPO 4 2-

HPO 4 2- H + + PO 4 3-

Трябва да се отбележи, че всеки следващ етап на дисоциация се проявява в по-малка степен от предишния. Тоест, молекулите на H 3 PO 4 се дисоциират по-добре (в по-голяма степен) от H 2 PO 4 - йони, които от своя страна се дисоциират по-добре от HPO 4 2- йони. Това явление е свързано с увеличаване на заряда на киселинните остатъци, в резултат на което силата на връзката между тях и положителните Н + йони се увеличава.

От многоосновните киселини изключение прави сярната киселина. Тъй като тази киселина се дисоциира добре и в двата етапа, е допустимо да се напише уравнението на нейната дисоциация в един етап:

H 2 SO 4 2H + + SO 4 2-

2. Взаимодействие на киселини с метали

Седмата точка в класификацията на киселините са техните окислителни свойства. Беше заявено, че киселините са слаби окислители и силни окислители. По-голямата част от киселините (почти всички с изключение на H 2 SO 4 (конц.) и HNO 3) са слаби окислители, тъй като те могат да проявят своята окислителна способност само поради водородни катиони. Такива киселини могат да окисляват само тези метали, които са в серията активност вляво от водорода, и солта на съответния метал и водородът се образуват като продукти. Например:

H 2 SO 4 (разреден) + Zn ZnSO 4 + H 2

2HCl + Fe FeCl 2 + H 2

Що се отнася до силните окислителни киселини, т.е. H 2 SO 4 (конц.) и HNO 3 , тогава списъкът на металите, върху които те действат, е много по-широк и включва всички метали преди водорода в серията активност и почти всичко след това. Тоест, концентрирана сярна киселина и азотна киселина с всякаква концентрация, например, ще окислят дори нискоактивни метали като мед, живак и сребро. Взаимодействието на азотната киселина и концентрираната сярна киселина с метали, както и някои други вещества, поради тяхната специфика, ще бъдат разгледани отделно в края на тази глава.

3. Взаимодействие на киселини с основни и амфотерни оксиди

Киселините реагират с основни и амфотерни оксиди. Силициевата киселина, тъй като е неразтворима, не реагира с нискоактивни основни оксиди и амфотерни оксиди:

H 2 SO 4 + ZnO ZnSO 4 + H 2 O

6HNO 3 + Fe 2 O 3 2Fe(NO 3) 3 + 3H 2 O

H 2 SiO 3 + FeO ≠

4. Взаимодействие на киселини с основи и амфотерни хидроксиди

HCl + NaOH H 2 O + NaCl

3H 2 SO 4 + 2Al(OH) 3 Al 2 (SO 4) 3 + 6H 2 O

5. Взаимодействие на киселини със соли

Тази реакция възниква, ако се образува утайка, газ или значително по-слаба киселина от тази, която реагира. Например:

H 2 SO 4 + Ba(NO 3) 2 BaSO 4 ↓ + 2HNO 3

CH 3 COOH + Na 2 SO 3 CH 3 COONa + SO 2 + H 2 O

HCOONa + HCl HCOOH + NaCl

6. Специфични окислителни свойства на азотната и концентрираната сярна киселини

Както бе споменато по-горе, азотната киселина във всяка концентрация, както и сярната киселина изключително в концентрирано състояние, са много силни окислители. По-специално, за разлика от други киселини, те окисляват не само металите, които се намират преди водорода в серията на активност, но и почти всички метали след него (с изключение на платината и златото).

Например, те са способни да окисляват мед, сребро и живак. Въпреки това, човек трябва твърдо да разбере факта, че редица метали (Fe, Cr, Al), въпреки факта, че са доста активни (достъпни преди водорода), въпреки това не реагират с концентрирана HNO 3 и концентрирана H 2 SO 4 без причина за нагряване на явлението пасивация - върху повърхността на такива метали се образува защитен филм от твърди продукти на окисление, който не позволява на молекулите на концентрираната сярна и концентрирана азотна киселина да проникнат дълбоко в метала, за да настъпи реакцията. Въпреки това, при силно нагряване, реакцията все още се случва.

При взаимодействие с метали задължителните продукти винаги са солта на съответния метал и използваната киселина, както и водата. Винаги се изолира и трети продукт, чиято формула зависи от много фактори, по-специално като активността на металите, както и концентрацията на киселини и температурата на реакцията.

Високата окислителна способност на концентрираната сярна и концентрирана азотна киселина им позволява да реагират не само с почти всички метали от серията активност, но дори и с много твърди неметали, по-специално с фосфор, сяра и въглерод. Таблицата по-долу ясно показва продуктите от взаимодействието на сярна и азотна киселина с метали и неметали в зависимост от концентрацията:

7. Редуциращи свойства на безкислородните киселини

Всички безкислородни киселини (с изключение на HF) могат да проявяват редуциращи свойства поради химичния елемент, включен в аниона под действието на различни окислители. Например, всички халогеноводородни киселини (с изключение на HF) се окисляват от манганов диоксид, калиев перманганат и калиев дихромат. В този случай халидните йони се окисляват до свободни халогени:

4HCl + MnO 2 MnCl 2 + Cl 2 + 2H 2 O

18HBr + 2KMnO 4 2KBr + 2MnBr 2 + 8H 2 O + 5Br 2

14НI + K 2 Cr 2 O 7 3I 2 ↓ + 2Crl 3 + 2KI + 7H 2 O

Сред всички халогеноводородни киселини йодоводородна киселина има най-голяма редуцираща активност. За разлика от други халогеноводородни киселини, дори железният оксид и солите могат да го окислят.

6HI ​​+ Fe 2 O 3 2FeI 2 + I 2 ↓ + 3H 2 O

2HI + 2FeCl 3 2FeCl 2 + I 2 ↓ + 2HCl

Сероводородната киселина H 2 S също има висока редуцираща активност. Дори окислител като серен диоксид може да я окисли.