Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, которое тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определением вероятности следует считать классическое, которое возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

Поэтому об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, которое может произойти при осуществлении эксперимента, случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С - случаи А 3 , А 6 .

Классической вероятностью появления некоторого события называется отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) - вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) = , Р(С) = .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m = 9, n = 9 + 6 = 15, P(A) =

B - вынутые наугад два шара красные:

Из классического определения вероятности вытекают следующие свойства (показать самостоятельно):


1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Кроме того, слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. Однако такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определением вероятности пользуются и другими определениями вероятности.

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях:

где - вероятность появления события А;

Относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример : Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

Статистический способ определения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

Вероятностью наступления события A называется число, равное отношению числа случаев, благоприятствующих событию A , к общему числу случаев (исходов, шансов или элементарных событий).

Вероятность (Р )

Где n ‒ общее число случаев, m ‒ число случаев, благоприятствующих событию А .

Вероятность невозможного события:

Вероятность достоверного события:

Вероятность любого случайного события:

0 ≤ P (A ) ≤ 1

Статистическое определение вероятности

Статистической вероятностью события A называется относительная частота появления события в n ‒ произведенных испытаниях.

Опытная (экспериментальная) вероятность:

Следовательно,– есть доля тех фактически произведённых испытаний, в которых событиеA появилось. При ,P (A ) ≈ (A )

Пример 1.

В коробке лежит 7 синих, 8 красных и 5 зеленых шаров.

Решение:

Событие A ‒ шар зеленый;

Пример 2.

В коробке лежат 100 электроламп, из них 5 бракованных.

Решение:

Событие A ‒ на удачу, выбранные 2 электролампы исправны.

Пример 3.

В коробке лежит 10 шаров: 6 белых и 4 черных.

Найти:

Вероятность того, что из пяти взятых наугад шаров будет 4 белых.

Решение:

Найдем число благоприятных исходов: число способов, которыми можно взять 4 белых шара из 6 имеющихся шаров, равно:

Общее число исходов определяется числом сочетаний из 10 по 5:

Искомая вероятность P = 15/252 ≈ 0,06.

Геометрическая вероятность , то есть вероятность попадания точки в некоторую область, отрезок, часть плоскости.

Геометрической вероятностью события A называют отношение меры области, благоприятствующей появлению события A , к мере всей области.

где mes ‒мера (длина, площадь, объём области).

4.Алгебра событий. Операции над случайными событиями.

Определение 1. Суммой двух событий A и B называется событие C , состоящее в осуществлении хотя бы одного из событий A или B .

Возможны два случая:

1. Если A и B несовместны, тогда A +B означает, что произойдет или A , или В .

2. Если A и B совместны, тогда A +B означает, что произойдет или A , или B , или A и B одновременно.

Определение 2. Произведением двух событий A и B называется событие C , состоящее в одновременном осуществлении событий A и B .

Пример 1. Из колоды карт наудачу вынули одну карту.

Событие A ‒ карта дама.

Событие B ‒ карта пиковой масти.

Тогда A + B ‒ вынутая карта или дама, или карта пиковой масти, или пиковая дама.

AB ‒ вынутая карта пиковая дама.

Правило произведения событий.

Если какой ни будь объект A можно выбрать m ‒ способами и после каждого такого выбора другой объект B можно выбрать k ‒ способами, то пары объектов «A и B одновременно» можно выбрать mk ‒ способами.

Пример 2.

В лотерее из 50 билетов 8 выигрышных билетов.

Найти вероятность того, что среди первых 5‒ти наугад выбранных билетов 2 будут выигрышными.

Решение:

50 ‒ 8 = 42 ‒ билета невыигрышных.

Событие A ‒ среди первых 5‒ти билетов 2 выигрышных.

Пример3.

В ящике находится 10 стандартных и 5 нестан­дартных деталей.

Какова вероятность, что среди наугад взя­тых 6 деталей будет 4 стандартных и 2 нестандартных?

Решение:

Общее число исходов равно

Число благо­приятных исходов определяется произведением

где пер­вый сомножитель соответствует числу вариантов изъятия из ящика 4‒х стандартных деталей из 10, а второй ‒ числу вари­антов изъятия из ящика 2‒х нестандартных деталей из пяти. Отсюда следует, что искомая вероятность равна

Классическое определение вероятности предполагает, что все эле­ментарные исходы равновозможны . О равновозможности исходов опы­та заключают в силу соображений симметрии (как в случае монеты или игрального кубика). Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи с этим появилась необходимость введения еще одного определения вероятности, называемого статистическим . Чтобы дать это определение, предварительно вводят понятие относительной частоты события.

Относительной частотой события , или частотой , называется от­ношение числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события через , тогда по определению

(1.4.1)
где - число опытов, в которых появилось событие и - число всех произведенных опытов.

Частота события обладает следующими свойствами.

Наблюдения позволили установить, что относительная частота об­ладает свойствами статистической устойчивости: в различных сериях многочленных испытаний (в каждом из которых может появиться или не появиться это событие) она принимает значения, достаточно близкие к некоторой постоянной. Эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного со­бытия.

Вероятностью события называется число, около которого группи­руются значения,частоты данного события в различных сериях большо­го числа испытаний.

Это определение вероятности называется статистическим .

В случае статистического определения вероятность обладает сле­дующими свойствами:
1) вероятность достоверного события равна еди­нице;
2) вероятность невозможного события равна нулю;
3) вероятность случайного события заключена между нулем и единицей;
4) вероятность суммы двух несовместных событий равна сумме вероятностей этих со­бытий.

Пример 1. Из 500 взятых наудачу деталей оказалось 8 бракован­ных. Найти частоту бракованных деталей.

Решение. Так как в данном случае = 8, = 500, то в соответствии с формулой (1.4.1) находим

Пример 2 . Игральный кубик подброшен 60 раз, при этом шестерка появилась 10 раз. Какова частота появления шестерки ?

Решение. Из условия задачи следует, что = 60, = 10, поэтому

Пример 3. Среди 1000 новорожденных оказалось 515 мальчиков.Чему равна частота рождения мальчиков?
Решение. Поскольку в данном случае , , то .

Пример 4. В результате 20 выстрелов по мишени получено 15 попаданий. Какова частота попаданий?

Решение. Так как = 20, = 15, то

Пример 5. При стрельбе по мишени частота попаданий = 0,75. Найти число попаданий при 40 выстрелах.

Решение. Из формулы (1.4.1) следует, что . Так как = 0,75, = 40, то . Таким образом, было получено 30 попаданий.

Пример 6. www.. Из высе­янных семян взошло 970. Сколько семян было высеяно?

Решение. Из формулы (1.4.1) следует, что . Поскольку , , то . Итак, было высеяно 1000 семян.

Пример 7. На отрезке натурального ряда от 1 до 20 найти частоту простых чисел.

Решение. На указанном отрезке натурального ряда чисел находятся следующие простые числа: 2, 3, 5, 7, 11, 13, 17, 19; всего их 8. Так как = 20, = 8, то искомая частота

.

Пример 8. Проведены три серии многократных подбрасываний симметричной монеты, подсчитаны числа появлений герба: 1) = 4040, =2048, 2) = 12000, = 6019; 3) = 24000, = 12012. Найти частоту появления герба в каждой серии испытаний.

Решение . В соответствии с формулой (1.4.1) находим:

Замечание. Эти примеры свидетельствуют о том, что при многократ­ных испытаниях частота события незначительно отличается от его вероятности. Вероятность появления герба при подбрасывании монеты р = 1/2 = 0,5 , так как в этом случае n = 2, m = 1.

Пример 9. Среди 300 деталей, изготовленных на автоматическом станке, оказалось 15, не отвечающих стандарту. Найти частоту появле­ния нестандартных деталей.

Решение. В данном случае n = 300, m = 15, поэтому

Пример 10. Контролер, проверяя качество 400 изделий установил, что 20 из них относятся ко второму сорту, а остальные - к первому. Най­ти частоту изделий первого сорта, частоту изделий второго сорта.

Решение. Прежде всего, найдем число изделий первого сорта: 400 - 20 = 380. Поскольку n = 400, = 380, то частота изделий перво­го сорта

Аналогично находим частоту изделий второго сорта:

Задачи

  1. Отдел технического контроля обнаружил 10 нестандартных изде­лий в партии из 1000 изделий. Найдите частоту изготовления бракован­ных изделий.
  2. Для выяснения качества семян было отобрано и высеяно в лабо­раторных условиях 100 штук. 95 семян дали нормальный всход. Какова частота нормального всхода семян?
  3. Найдите частоту появления простых чисел в следующих отрезках натурального ряда: а) от 21 до 40; б) от 41 до 50; в) от 51 до 70.
  4. Найдите частоту появления цифры при 100 подбрасываниях сим­метричной монеты. (Опыт проводите самостоятельно).
  5. Найдите частоту появления шестерки при 90 подбрасываниях иг­рального кубика.
  6. Путем опроса всех студентов Вашего курса определите частоту дней рождения, попадающих на каждый месяц года.
  7. Найдите частоту пятибуквенных слов в любом газетном тексте.

Ответы

  1. 0,01. 2. 0,95; 0,05. 3. а) 0,2; б) 0,3; в) 0,2.

Вопросы

  1. Что такое частота события?
  2. Чему равна частота достоверного события?
  3. Чему равна частота невозможного события?
  4. В каких пределах заключена частота случайного события?
  5. Чему равна частота суммы двух несовместных событий?
  6. Какое определение вероятности называют статистическим?
  7. Какими свойствами обладает статистическая вероятность?

Билеты по теории вероятностей.

Теория вероятностей - раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними

Теория вероятностей изучает случайные явления под случайными явлениями понимают такие, которые имеют место в совокупностях большего числа равноправных или почти равноправных объектов и определяются массовым характером явления.

Теория вероятности – отражает закономерности присущие случайным событиям массового характера и в основном этой теории лежат основные понятия.

События и их классификация.

Возможность определения события характеризуется вероятностью события.

Где - кол-во интересующих событий, - кол-во наблюдаемых событий.

Достоверное событие , если вероятность появления его равна 1.

Недостоверное событие называется, если вероятность равна 0.

Несовместные события – события, при которых в данном опыте не могут появиться 2 из них.

Равновозможные события – события, при которых в данном опыте не одно из них не является объективно возможным.

Противоположные события – события, которые образуют полную группу из 2-х событий.

Независимые события – такие, при которых не зависимы каждое из 2-х событий.(Корреляция-не зависимость)

Совместные события – такие события, при которых появление 1 из них не исключает появление вругово в одном и том же опыте.

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие - четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение . Вероятность события равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где - вероятность события , - число благоприятствующих событию исходов, - общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.

Пример. Известно, что в поступившей партии из 30 швейных машинок 10 имеют внутренний дефект. Определить вероятность того, что из партии в 5 наудачу взятых машинок 3 окажутся бездефектными.

Решение. Для решения данной задачи введем обозначения. Пусть - общее число машинок, - число бездефектных машинок, - число отобранных в партию машинок, - число бездефектных машинок в отобранной партии.

Общее число комбинаций по машинок, т.е. общее число возможных исходов будет равно числу сочетаний из элементов по , т.е. . Но в каждой отобранной комбинации должно содержаться по три бездефектные машинки. Число таких комбинаций равно числу сочетаний из элементов по , т.е. .

С каждой такой комбинацией в отобранной партии оставшиеся дефектные элементы тоже образуют множество комбинаций, число которых равно числу сочетаний из элементов по , т.е. .

Это значит, что общее число благоприятствующих исходов определяется произведением . Откуда получаем

Понятие вероятности события относится к фундаментальным понятиям теории вероятностей. Вероятность - это количественная мера возможности появления случайного события А. Обозначается она Р(А) и имеет следующие свойства.

Вероятность есть положительное число, заключенное в интервале от нуля до единицы:

Вероятность невозможного события равна нулю

Вероятность достоверного события равна единице

Классическое определение вероятности. Пусть = { 1 , 2 ,…, n } - пространство элементарных событий, которые описывают все возможные элементарные исходы и образуют полную группу несовместных и равновозможных событий. Пусть событию А соответствует подмножество m элементарных исходов

эти исходы называют благоприятствующими событию А. В классическом определении вероятности полагают, что вероятность любого элементарного исхода

а вероятность события А, которому благоприятствуют m исходов, равна

Отсюда определение:

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Вероятность определяется формулой

где m - число элементарных исходов, благоприятствующих событию А, а _ число всех возможных элементарных исходов испытания.

Классическое определение вероятности дает возможность в некоторых задачах аналитически вычислить вероятность события.

Пусть проводится опыт, в результате которого могут наступить те или иные события. Если эти события образуют полную группу попарно несовместных и равновозможных событий, то говорят, что опыт обладает симметрией возможных исходов и сводится к "схеме случаев". Для опытов, которые сводятся к схеме случаев, применима классическая формула вероятности.

Пример 1.13. В лотерее разыгрывается 1000 билетов, среди которых 5 выигрышных. Определить вероятность того, что при покупке одного билета лотереи будет получен выигрыш

Элементарным событием этого опыта является покупка билета. Каждый билет лотереи неповторим, так как имеет свой номер, и купленный билет не возвращается обратно. Событие А заключается в том, что куплен выигрышный билет. При покупке одного из 1000 билетов всевозможных исходов этого опыта будет =1000, исходы образуют полную группу несовместных событий. Число исходов, благоприятных событию А, будет равно =5. Тогда вероятность получить выигрыш, купив один билет, равна

Р(А) = = 0.005

Для непосредственного подсчета вероятностей удобно применять формулы комбинаторики. Покажем это на примере задачи выборочного контроля.

Пример 1.14 Пусть имеется партия из изделий, среди них есть бракованных. Для контроля отбирается часть из изделий. Какова вероятность того, что среди отобранных изделий будет ровно бракованных

Элементарным событием в этом опыте является выбор элементного подмножества из исходного элементного множества. Выбор любой части изделий из партии в изделий можно считать равновозможными событиями, поэтому данный опыт сводится к схеме случаев. Для вычисления вероятности события А={среди изделий бракованных, если они отбирались из партии в изделий с бракованными} можно применить классическую формулу вероятности. Число всех возможных исходов опыта - это число способов, которыми можно отобрать изделий из партии в, оно равно числу сочетаний из элементов по: . Событие, благоприятное событию А, состоит из произведения двух элементарных событий: {из бракованных изделий выбраны }{из _ стандартных изделий выбраны _}. Число таких событий, в соответствии с правилом умножения комбинаторики, будет

Тогда искомая вероятность

Например, пусть =100, =10, =10, =1. Тогда вероятность того, что среди отобранных 10 изделий будет ровно одно бракованное, равна

Статистическое определение вероятности. Для того, чтобы применить в условиях данного опыта классическое определение вероятности, необходимо, чтобы опыт соответствовал схеме случаев и для большинства реальных задач эти требования практически невыполнимы. Однако вероятность события - это объективная реальность, которая существует независимо от того, применимо или нет классическое определение. Возникает необходимость в другом определении вероятности, применимом тогда, когда опыт не отвечает схеме случаев.

Пусть эксперимент заключается в проведении серии испытаний, повторяющих один и тот же опыт, и пусть событие А наступило раз в серии из опытов. Относительной частотой события W(A) называют отношение числа опытов, в которых наступило событие А, к числу всех проведенных опытов

Экспериментально доказано, что частота обладает свойством устойчивости: если число опытов в серии достаточно велико, то относительные частоты события А в различных сериях одного и того же эксперимента мало отличаются друг от друга.

Статистической вероятностью события называют число, к которому стремятся относительные частоты, если число опытов неограниченно возрастает

В отличие от априорной (вычисленной до опыта) классической вероятности статистическая вероятность является апостериорной (полученной после опыта).

Пример 1.15 Метеорологические наблюдения в течении 10 лет в некоторой местности показали, что число дождливых дней в июле было в разные года равно: 2; 4; 3; 2; 4; 3; 2; 3; 5; 3. Определить вероятность того, что какой-либо определенный день июля будет дождливым

Событие А заключается в том, что определенный день июля, например, 10 июля, пойдет дождь. Выданная статистика не содержит информации о том, в какие конкретно дни июля шел дождь, поэтому можно считать, что все дни равновозможные для этого события. Пусть один год - это одна серия испытаний из 31 одного дня. Всего серий 10. Относительные частоты серий равны:

Частоты различны, но наблюдается их группировка возле числа 0.1. Это число и можно принять за вероятность события А. Если за одну серию испытаний принять все дни июля за десять лет, то статистическая вероятность события А будет равна

Геометрическое определение вероятности. Это определение вероятности обобщает классическое определение на случай, когда пространство элементарных исходов включает несчетное множество элементарных событий, и появления каждого из событий одинаково возможно. Геометрической вероятностью события А называется отношение меры (А) области, благоприятствующей появлению события, к мере () всей области

Если области представляют собой а) длины отрезков, б) площади фигур, в) объемы пространственных фигур, то геометрические вероятности соответственно равны

Пример 1.16. Рекламные объявления развешены с интервалом в 10 метров вдоль торгового ряда. Широта обзора у некоторого покупателя составляет 3 метра. Какова вероятность того, что он не заметит рекламу, если он движется перпендикулярно торговому ряду и пересечь ряд может в любой точке?

Участок торгового ряда, расположенный между двумя объявлениями, можно представить как отрезок прямой АВ (рис. 1.6). Тогда для того, чтобы покупатель заметил объявления, он должен пройти через отрезки прямых АС или ДВ, равные 3м. Если же он пересечет торговый ряд в одной из точек отрезка СД, длина которого 4м, то он не заметит рекламы. Вероятность этого события будет