Идеальная жидкость, т.е. жидкость, движущаяся без трения, является абстрактным понятием. Всем реальным жидкостям и газам в большей или меньшей степени присуща вязкость или внутреннее трение. Вязкость (внутреннее трение) наряду с диффузией и теплопроводностью относится к явлениям переноса и наблюдается только в движущихся жидкостях и газах. Вязкость проявляется в том, что возникающее в жидкости или газе движение после прекращения действия причин, его вызвавших, постепенно прекращается.

Вязкость (внутреннее трение) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла энергии, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

В жидкостях, где расстояния между молекулами много меньше, чем в газах, вязкость обусловлена в первую очередь межмолекулярным взаимодействием, ограничивающим подвижность молекул. В жидкости молекула может проникнуть в соседний слой лишь при образовании в нём полости, достаточной для перескакивания туда молекулы. На образование полости (на «рыхление» жидкости) расходуется так называемая энергия активации вязкого течения. Энергия активации уменьшается с ростом температуры и понижением давления. В этом состоит одна из причин резкого снижения вязкости жидкостей с повышением температуры и роста её при высоких давлениях. При повышении давления до нескольких тыс. атмосфер вязкость увеличивается в десятки и сотни раз. Строгая теория вязкости жидкостей, в связи с недостаточной разработанностью теории жидкого состояния, ещё не создана.

Вязкость отдельных классов жидкостей и растворов зависит от температуры, давления и химического состава.

Вязкость жидкостей зависит от химической структуры их молекул. В рядах сходных химических соединений (насыщенные углеводороды, спирты, органические кислоты и т.д.) Вязкость изменяется закономерно — возрастает с возрастанием молекулярной массы. Высокая вязкость смазочных масел объясняется наличием в их молекулах циклов. Две жидкости различной вязкости, которые не реагируют друг с другом при смешивании, обладают в смеси средним значением вязкости. Если же при смешивании образуется химическое соединение, то вязкость смеси может быть в десятки раз больше, чем вязкость исходных жидкостей.


Возникновение в жидкостях (дисперсных системах или растворах полимеров) пространственных структур, образуемых сцеплением частиц или макромолекул, вызывает резкое повышение вязкости. При течении «структурированной» жидкости работа внешней силы затрачивается не только на преодоление вязкости, но и на разрушение структуры.

В газах расстояния между молекулами существенно больше радиуса действия молекулярных сил, поэтому Вязкость газов определяется главным образом молекулярным движением. Между движущимися относительно друг друга слоями газа происходит постоянный обмен молекулами, обусловленный их непрерывным хаотическим (тепловым) движением. Переход молекул из одного слоя в соседний, движущийся с иной скоростью, приводит к переносу от слоя к слою определённого импульса. В результате медленные слои ускоряются, а более быстрые замедляются. Работа внешней силы F , уравновешивающей вязкое сопротивление и поддерживающей установившееся течение, полностью переходит в теплоту. Вязкость газа не зависит от его плотности (давления), так как при сжатии газа общее количество молекул, переходящих из слоя в слой, увеличивается, но зато каждая молекула менее глубоко проникает в соседний слой и переносит меньший импульс (закон Максвелла).

Вязкость — важная физико-химическая характеристика веществ. Значение вязкости приходится учитывать при перекачивании жидкостей и газов по трубам (нефтепроводы, газопроводы). Вязкость расплавленных шлаков весьма существенна в доменном и мартеновском процессах. Вязкость расплавленного стекла определяет процесс его выработки. По вязкости во многих случаях судят о готовности или качестве продуктов или полупродуктов производства, поскольку вязкость тесно связана со структурой вещества и отражает те физико-химические изменения материала, которые происходят во время технологических процессов. Вязкость масел имеет большое значение для расчёта смазки машин и механизмов и т.д.

Прибор для измерения вязкости называется вискозиметром.

Рассмотрим ещё одну систему координат: υ от х (рис. 3.5).

Пусть в покоящемся газе вверх, перпендикулярно оси х , движется пластинка со скоростью υ 0 , причём (υ T – скорость теплового движения молекул). Пластинка увлекает за собой прилегающий слой га-за, тот слой – соседний и так далее. Весь газ делится как бы на тончай-шие слои, скользящие вверх тем медленнее, чем дальше они от пла-стинки. Раз слои газа движутся с разными скоростями, возникает тре-ние. Выясним причину трения в газе.


Рис. 3.5

Каждая молекула газа в слое принимает участие в двух движениях: тепловом и направленном.

Так как направление теплового движения хаотически меняется, то в среднем вектор тепловой скорости равен нулю . При направленном движении вся совокупность молекул будет дрейфовать с посто-янной скоростью υ. Таким образом, средний импульс отдельной моле-кулы массой m в слое определяется только дрейфовой скоростью υ:

Но так как молекулы участвуют в тепловом движении, они будут переходить из слоя в слой. При этом они будут переносить с собой до-бавочный импульс, который будет определяться молекулами того слоя, куда перешла молекула. Перемешивание молекул разных слоёв приво-дит к выравниванию дрейфовых скоростей разных слоёв, что и прояв-ляется макроскопически как действие сил трения между слоями.

Вернемся к рис. 3.5 и рассмотрим элементарную площадку dS перпендикулярно оси х . Через эту площадку за время dt влево и вправо пе-реходят потоки молекул:

Но эти потоки переносят разный импульс: и .

При переносе импульса от слоя к слою происходит изменение им-пульса этих слоёв. Это значит, что на каждый из этих слоёв действует сила, равная изменению импульса. Сила эта есть не что иное, как сила трения между слоями газа, движущимися с различными скоростями. Отсюда и название – внутреннее трение .

Закон вязкости был открыт И. Ньютоном в 1687 г.

Переносимый за время dt импульс равен:

Отсюда получим силу, действующую на единицу площади поверхности, разделяющей два соседних слоя газа:

Вязкость (внутреннее трение) (англ . viscosity) - одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей - это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно. Основной закон вязкого течения был установлен И. Ньютоном (1687): В применении к жидкостям различают вязкость:

  • Динамическая (абсолютная) вязкость µ – сила, действующая на единичную площадь плоской поверхности, которая перемещается с единичной скоростью относительно другой плоской поверхности, находящейся от первой на единичном расстоянии. В системе СИ динамическая вязкость выражается в Па×с (паскаль-секунда), внесистемная единица П (пуаз).
  • Кинематическая вязкость ν – отношение динамической вязкости µ к плотности жидкости ρ .
ν= µ / ρ ,
  • ν , м 2 /с – кинематическая вязкость;
  • μ , Па×с – динамическая вязкость;
  • ρ , кг/м 3 – плотность жидкости.

Сила вязкого трения

Это явление возникновения касательных сил, препятствующих перемещению частей жидкости или газа друг по отношению к другу. Смазка между двумя твердыми телами заменяет сухое трение скольжения трением скольжения слоев жидкости или газа по отношению друг к другу. Скорость частиц среды плавно меняется от скорости одного тела до скорости другого тела.

Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h .

F=-V S / h ,

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости . Самое важное в характере сил вязкого трения то, что при наличии любой сколь угодно малой силы тела придут в движение, то есть не существует трения покоя . Качественно существенное отличие сил вязкого трения от сухого трения

Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды . При этом участки среды (жидкости или газа), непосредственно прилегающие к движущемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности.

Сила сопротивления среды зависит от:

  • ее вязкости
  • от формы тела
  • от скорости движения тела относительно среды.

Например, при медленном движении шарика в вязкой жидкости силу трения можно найти, используя формулу Стокса:

F=-6 R V,

Качественно существенное отличие сил вязкого трения от сухого трения , кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот - под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Вязкость газов

Вязкость газов (явление внутреннего трения) - это появление сил трения между слоями газа , движущимися друг относительно друга параллельно и с разными по величине скоростями. Вязкость газов увеличивается с ростом температуры

Взаимодействие двух слоев газа рассматривается как процесс, в ходе которого от одного слоя к другому передается импульс. Сила трения на единицу площади между двумя слоями газа, равная импульсу, передаваемому за секунду от слоя к слою через единицу площади, определяется законом Ньютона:


τ=-η dν / dz

где:
dν / dz - градиент скорости в направлении перпендикулярном направлению движения слоев газа.
Знак минус указывает, что импульс переносится в направлении убывания скорости.
η - динамическая вязкость.


η= 1 / 3 ρ(ν) λ, где:

ρ - плотность газа,
(ν) - средняя арифметическая скорость молекул
λ - средняя длина свободного пробега молекул.

Вязкость некоторых газов (при 0°C)

Вязкость жидкости

Вязкость жидкости - это свойство, проявляющееся только при движении жидкости, и не влияющее на покоящиеся жидкости. Вязкое трение в жидкостях подчиняется закону трения, принципиально отличному от закона трения твёрдых тел, т.к. зависит от площади трения и скорости движения жидкости.
Вязкость – свойство жидкости оказывать сопротивление относительному сдвигу ее слоев. Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхностях их соприкосновения возникают силы сопротивления сдвигу, называемые силами внутреннего трения, или силами вязкости. Если рассмотреть то, как распределяются скорости различных слоёв жидкости по сечению потока, то можно легко заметить, что чем дальше от стенок потока, тем скорость движения частиц больше. У стенок потока скорость движения жидкости равна нулю. Иллюстрацией этого является рисунок, так называемой, струйной модели потока.

Медленно движущийся слой жидкости «тормозит» соседний слой жидкости, движущийся быстрее, и наоборот, слой, движущийся с большей скоростью, увлекает (тянет) за собой слой, движущийся с меньшей скоростью. Силы внутреннего трения появляются вследствие наличия межмолекулярных связей между движущимися слоями. Если между соседними слоями жидкости выделить некоторую площадку S , то согласно гипотезе Ньютона:

F=μ S (du / dy),
  • μ - коэффициент вязкого трения;
  • S – площадь трения;
  • du/dy - градиент скорости

Величина μ в этом выражении является динамическим коэффициентом вязкости , равным:

μ= F / S 1 / du / dy , μ=τ 1 / du / dy ,
  • τ – касательное напряжение в жидкости (зависит от рода жидкости).

Физический смысл коэффициента вязкого трения - число, равное силе трения, развивающейся на единичной поверхности при единичном градиенте скорости.

На практике чаще используется кинематический коэффициент вязкости , названный так потому, что в его размерности отсутствует обозначение силы. Этот коэффициент представляет собой отношение динамического коэффициента вязкости жидкости к её плотности:

ν= μ / ρ ,

Единицы измерения коэффициента вязкого трения:

  • Н·с/м 2 ;
  • кГс·с/м 2
  • Пз (Пуазейль) 1(Пз)=0,1(Н·с/м 2).

Анализ свойства вязкости жидкости

Для капельных жидкостей вязкость зависит от температуры t и давления Р , однако последняя зависимость проявляется только при больших изменениях давления, порядка нескольких десятков МПа.

Зависимость коэффициента динамической вязкости от температуры выражается формулой вида:

μ t =μ 0 e -k t (T-T 0) ,
  • μ t - коэффициент динамической вязкости при заданной температуре;
  • μ 0 - коэффициент динамической вязкости при известной температуре;
  • Т - заданная температура;
  • Т 0 - температура, при которой измерено значение μ 0 ;
  • e

Зависимость относительного коэффициента динамической вязкости от давления описывается формулой:

μ р =μ 0 e -k р (Р-Р 0) ,
  • μ Р - коэффициент динамической вязкости при заданном давлении,
  • μ 0 - коэффициент динамической вязкости при известном давлении (чаще всего при нормальных условиях),
  • Р - заданное давление,;
  • Р 0 - давление, при которой измерено значение μ 0 ;
  • e – основание натурального логарифма равное 2,718282.

Влияние давления на вязкость жидкости проявляется только при высоких давлениях.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье - Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье).

Внутреннее трение возникает в жидкости вследствие взаимодействия молекул. В отличие от внешнего трения, возникающего в месте соприкосновения двух тел, внутреннее трение имеет место внутри движущейся среды между слоями с различными скоростями движения.

При скоростях выше критической скорости слои, близкие к стенкам, заметно отстают вследствие трения от средних, возникают значительные разности скоростей, что влечёт за собой образование вихрей.

Итак, вязкость , или внутреннее трение в жидкостях , обусловливает не только потери энергии на трение, но ещё и новые образования – вихри .

Ньютон установил, что сила вязкости, или внутреннего трения, должна быть пропорциональна градиенту скорости (величина, показывающая, как быстро меняется скорость при переходе от слоя к слою в направлении , перпендикулярном направлению движения слоёв) и площади , на которой обнаруживается действие этой силы. Таким образом, мы приходим к формуле Ньютона:

, (I.149)

где - коэффициент вязкости , или внутреннего трения , постоянное число, характеризующее данную жидкость или газ.

Чтобы выяснить физический смысл , положим в формуле (I.149) сек –1 , м 2 ; тогда численно ; следовательно, коэффициент вязкости равен силе трения , которая возникает в жидкости между двумя площадками в м 2 , если между ними градиент скорости равен единице .

Единица СИ динамической вязкости = паскаль - секунда (Па·с).

(Па·с) равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным (м/с) на (м), возникает сила внутреннего трения в (Н) на (м 2) поверхности касания слоёв ( Па·с= Н·с/м 2).

Единица, допускавшаяся к применению до 1980 г.: пуаз (П), по имени французского учёного Пуазейля, который один из первых (1842 г.) начал точные исследования вязкости при течении жидкостей в тонких трубках (соотношение между единицами динамической вязкости: 1 П = 0,1 Па·с)

Пуазейль , наблюдая движение жидкостей в капиллярных трубках, вывел закон , согласно которому:

, (I.150)

где - объём жидкости, протекающий по трубке за время ;

Радиус трубки (с гладкими стенками);

Разность давлений на концах трубки;

Продолжительность протекания жидкости;

Длина трубки.

Чем больше вязкость, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причём характер этой зависимости для жидкостей и газов различен:

q динамическая вязкость жидкостей резко уменьшается с повышением температуры;

q динамическая вязкость газов увеличивается с повышением температуры.

Кроме понятия динамической вязкости применяются понятия текучести и кинематической вязкости .

Текучестью называется величина, обратная динамической вязкости.

Единица СИ текучести =м 2 /(Н·с)=1/(Па·с).

Кинематической вязкостью называется отношение динамической вязкости к плотности среды.

Единица СИ кинематической вязкости м 2 /с.

До 1980 г. к применению допускалась единица: стокс (Ст). Соотношение между единицами кинематической вязкости:

1 стокс (Ст) = 10 –4 м 2 /с.

Когда тело шарообразной формы движется в жидкости, ему приходится преодолевать силу трения:

. (I.153)

Формула (I.153) представляет собой закон Стокса .

На законе Стокса основано определение вязкости жидкости вискозиметром Гёпплера. В трубу определённого диаметра, заполненную жидкостью, вязкость которой надо определить, опускают шарик и измеряют скорость его падения, которая и является мерой вязкости жидкости.

Английский учёный О. Рейнольдс в 1883 г. в результате своих исследований пришёл к заключению, что критерием характеризующем движение жидкостей и газов, могут служить числа, определяемые безразмерной совокупностью величин, относящихся к данной жидкости и данному её движению. Состав этих отвлечённых чисел, называемых числами Рейнольдса , таков.

Вязкость (внутреннее трение) - это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев. Действие этих сил проявляется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

Сила внутреннего трения F тем больше, чем больше рассматриваемая площадь поверхности слоя S (рис. 52), и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою.

На рисунке представлены два слоя, отстоящие друг от друга на расстоянии х и движущиеся со скоростями v 1 и v 2 При этом v 1 -v 2 = v. Направление, в котором отсчитывается расстояние между слоями, перпендикулярно скорости течения слоев. Величина v/x показывает, как быстро меняется скорость при переходе от слоя к слою в направлении х, перпендикулярном направлению движения слоев, и называется градиентом скорости. Таким образом, модуль силы внутреннего трения

где коэффициент пропорциональности , зависящий от природы жидкости, называется динамической вязкостью (или просто вязкостью).

Единица вязкости - паскаль секунда (Па с):1 Па с равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения в 1 Н на 1 м 2 поверхности касания слоев (1 Па с=1 Н с/м 2).

Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей т] с увеличением температуры уменьшается, у газов, наоборот, увеличивается), что указывает на различие в них

механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18-40 ° С падает в четыре раза. Советский физик П. Л. Капица (1894-1984; Нобелевская премия 1978г.) открыл, что при температуре 2,17 К жидкий гелий переходит в сверхтекучее состояние, в котором его вязкость равна нулю.

Существует два режима течения жидкостей. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы.

При турбулентном течении частицы жидкости приобретают составляющие скоростей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверхности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента

скоростей у поверхности трубы обычно происходит образование вихрей.

Профиль усредненной скорости при турбулентном течении в трубах;(рис. 53) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения.

Английский ученый О. Рейнольдс (1842-1912) в 1883 г. установил, что характер течения зависит от безразмерной величины, называемой числом Рейнольдса:

где v = / - кинематическая вязкость;

 - плотность жидкости; (v)-средняя по сечению трубы скорость жидкости; d - характерный линейный размер, например диаметр трубы.

При малых значениях числа Рейнольдса (Re1000) наблюдается ламинарное течение, переход от ламинарного течения к турбулентному происходит в области 1000:Re2000, а при Re = 2300 (для гладких труб) течение - турбулентное. Если число Рейнольдса одинаково, то режим течения различных жидкостей (газов) в трубах разных сечений одинаков.