Often we find shell casings from the Civil and Great Patriotic Wars in the ground. Almost all of them have some kind of their own difference. Today we will consider the marking of cartridge cases, which is located on the cartridge capsule, regardless of the brand and caliber of the weapon.

Consider some types and markings of the Austro-Hungarian types of cartridges of 1905-1916. For this type of cartridge case, the primer is divided into four parts with the help of dashes, the inscriptions are embossed. The left, respectively, and the right cell is the year of production, the upper month, and the designation of the plant in the lower part.

  • In Fig. 1. - G. Roth, Vienna.
  • Fig 2. - Bello and Celle, the city of Prague.
  • Fig 3. - Wöllersdorf plant.
  • Fig 4. - Hartenberg factory.
  • Figure 5. - the same Hartenberg, but the Kellery Co. plant.

Later Hungarian 1930-40s, have some differences. Fig 6. - Chapelsky arsenal, year of issue from the bottom. Fig 7. - Budapest. Fig 8. - Veszprem military plant.

Germany, imperialist war.

The German marking of the shell casings of the imperialist war has two types with a clear division (Fig. 9) using dashes into four equal parts of the primer and with a conditional one (Fig. 10). The inscription is embossed; in the second version, the letters and numbers of the designation are directed towards the primer.

In the upper part, the marking S 67, in different versions: together, separately, through a dot, without numbers. The lower part is the month of production, on the left is the year, and on the right is the plant. In some cases, the year and plant are reversed, or the location of all divisions is reversed completely.

Fascist Germany.

Sleeves and their markings in Nazi Germany (Mauser type) have many options, because the cartridges were produced in almost all factories of the occupied countries of Western Europe: Czechoslovakia, Denmark, Hungary, Austria, Poland, Italy.

Consider Figure 11-14, this case is made in Denmark. The capsule is divided into four parts: on the top is the letter P with numbers, on the bottom is the week, on the left side is the year, on the right is the letter S and a star (five-pointed or six-pointed). In figures 15-17 we see some more types of cartridges produced in Denmark.

In Figure 18 we see capsules, presumably of Czechoslovak and Polish production. The capsule is divided into four parts: at the top - Z, at the bottom - the month of manufacture, on the left and right - the year. There is an option when “SMS” is written at the top, and the caliber is 7.92 at the bottom.

  • In Fig. 19-23 German shells by G. Genshov and Co. in Durly;
  • Figure 24. - RVS, Browning, caliber 7.65, Nuremberg;
  • Figures 25 and 26 - DVM, Karlsruhe.

More options for Polish-made cartridges.


  • Figure 27 - Skarzysko-Kamenna;
  • Figure 28 and 29 - "Pochinsk", Warsaw.

The signs on the cartridges of the Mosin rifle are not depressed, but convex. Above is usually the letter of the manufacturer, below are the numbers of the year of manufacture.

  • Figure 30 - Lugansk plant;
  • Fig 31 - plant from Russia;
  • Figure 32 - Tula plant.

Some more capsule options:

  • Figure 33 - Tula plant;
  • Figure 34 - Russian plant;
  • Fig 35 - Moscow;
  • Figure 36 - Russian-Belgian;
  • Fig 37 - Riga;
  • Fig 38 - Leningrad;
  • Figure 39, 40, 41, 42 - different plants in Russia.

Here is a small illustration:

Suppose I read in a 12-volume book (which usually exaggerates the strength of the Germans and satellites opposing us) that by the beginning of 1944 on the Soviet-German front, the ratio of forces in artillery pieces and mortars was 1.7: 1 (95,604 Soviet against 54,570 enemy). More than one and a half overall superiority. That is, in active sectors it could be brought up to three times (for example, in the Belarusian operation, 29,000 Soviet against 10,000 enemy) Does this mean that the enemy could not raise his head under the hurricane fire of Soviet artillery? No, an artillery piece is just a tool for firing shells. There are no shells - and the gun is a useless toy. And providing shells is just the task of logistics.

In 2009, at VIF, Isaev posted a comparison of the ammunition consumption of Soviet and German artillery (1942: http://vif2ne.ru/nvk/forum/0/archive/1718/1718985.htm, 1943: http://vif2ne.ru/nvk/ forum/0/archive/1706/1706490.htm , 1944: http://vif2ne.ru/nvk/forum/0/archive/1733/1733134.htm , 1945: http://vif2ne.ru/nvk/forum/ 0/archive/1733/1733171.htm). I collected everything in a table, supplemented it with rocket artillery, for the Germans I added from Hann the consumption of captured calibers (often it gives a negligible addition) and the consumption of tank calibers for comparability - in Soviet figures, tank calibers (20-mm ShVAK and 85-mm non-anti-aircraft) are present. Posted. Well, grouped a little differently. It turns out to be pretty interesting. Despite the superiority of Soviet artillery in the number of barrels, the Germans shot more shells in pieces, if we take artillery calibers (i.e. guns 75 mm and above, without anti-aircraft guns) the Germans have more:
USSR Germany 1942 37,983,800 45,261,822 1943 82,125,480 69,928,496 1944 98,564,568 113,663,900
If translated into tons, then the superiority is even more noticeable:
USSR Germany 1942 446.113 709.957 1943 828.193 1.121.545 1944 1.000.962 1.540.933
Tons here are taken by the weight of the projectile, not the shot. That is, the weight of metal and explosives falling directly on the head of the opposing side. I note that I did not count the armor-piercing shells of tank and anti-tank guns for the Germans (I hope you understand why). It is not possible to exclude them for the Soviet side, but, judging by the Germans, the amendment will come out insignificant. In Germany, consumption is given on all fronts, which begins to play a role in 1944.

In the Soviet army, on average, 3.6-3.8 shells were fired per day on the barrel of a gun from 76.2 mm and above in the active army (without RGK). The figure is quite stable both in years and in calibers: in 1944, the average daily shot for all calibers was 3.6 per barrel, for a 122-mm howitzer - 3.0, for 76.2 mm barrels (regimental, divisional, tank) - 3.7. The average daily shot per mortar barrel, on the contrary, is growing year by year: from 2.0 in 1942 to 4.1 in 1944.

As for the Germans, I do not have the presence of guns in the army. But if we take the total availability of guns, then the average daily shot per barrel of 75-mm and higher caliber in 1944 will be about 8.5. At the same time, the main workhorse of divisional artillery (105-mm howitzers - almost a third of the total tonnage of shells) shot an average of 14.5 shells per barrel per day, and the second main caliber (150-mm divisional howitzers - 20% of the total tonnage) about 10, 7. Mortars were used much less intensively - 81-mm mortars fired 4.4 rounds per barrel per day, and 120-mm only 2.3. Regimental artillery guns gave a consumption closer to the average (75-mm infantry gun 7 rounds per barrel, 150-mm infantry gun - 8.3).

Another instructive metric is the expenditure of shells per division.

The division was the main organizational building block, but typically the divisions were reinforced by units. It is interesting to see what supported the middle division in terms of firepower. In 1942-44, the USSR had in the active army (without the RGC) about 500 calculated divisions (weighted average: 1942 - 425 divisions, 1943 - 494 divisions, 1944 - 510 divisions). There were approximately 5.5 million in the ground forces of the active army, that is, there were approximately 11 thousand people per division. This "had to" naturally, taking into account both the actual composition of the division, and all the reinforcement and support units that worked for it both directly and in the rear.

Among the Germans, the average number of troops per division of the Eastern Front, calculated in the same way, decreased from 16,000 in 1943 to 13,800 in 1944, approximately 1.45-1.25 times "thicker" than the Soviet one. At the same time, the average daily shot on the Soviet division in 1944 was about 5.4 tons (1942 - 2.9; 1943 - 4.6), and on the German - three times more (16.2 tons). If we calculate for 10,000 people of the active army, then from the Soviet side to support their actions in 1944 5 tons of ammunition were spent per day, and from the German 13.8 tons.

The American division in the European theater in this sense stands out even more. It had three times as many people as the Soviet one: 34,000 (this is without Supply Command troops), and the daily ammunition consumption was almost ten times more (52.3 tons). Or 15.4 tons per day per 10,000 people, that is, more than three times more than in the Red Army.

In this sense, it was the Americans who implemented the recommendation of Joseph Vissarionovich "to fight with little blood but with a lot of shells." It can be compared - in June 1944 the distance to the Elbe was approximately the same from Omaha Beach and from Vitebsk. The Russians and the Americans also reached the Elbe at about the same time. That is, they ensured the same speed of advancement for themselves. However, the Americans on this route used up 15 tons per day per 10,000 personnel and lost an average of 3.8% of troops per month in killed, wounded, captured and missing. Soviet troops advancing at the same speed spent (specifically) three times less shells, but they also lost 8.5% per month. Those. speed was provided by the expenditure of manpower.

It is also interesting to see the distribution of the weight consumption of ammunition by types of guns:




I remind you that all the numbers here are for artillery of 75 mm and above, that is, without anti-aircraft guns, without 50 mm mortars, without battalion / anti-tank guns with a caliber of 28 to 57 mm. Infantry guns include German guns with this name, Soviet 76-mm regiments and American 75-mm howitzer. The remaining guns weighing less than 8 tons in combat position are counted as field guns. Systems such as the Soviet 152 mm ML-20 howitzer gun and the German s.FH 18 fall here at the upper limit. Heavier guns such as the Soviet 203 mm B-4 howitzer, the American 203 mm M1 howitzer or the German 210 mm mortar, as well as 152-155-170-mm long-range guns on their carriages fall into the next class - heavy and long-range artillery.

It can be seen that in the Red Army the lion's share of fire falls on mortars and regimental guns, i.e. to fire on the near tactical zone. Heavy artillery plays a very insignificant role (in 1945 more, but not by much). In field artillery, forces (by weight of projectiles fired) are roughly evenly distributed between the 76mm cannon, 122mm howitzer, and 152mm howitzer/howitzer cannon. Which leads to the fact that the average weight of the Soviet projectile is one and a half times less than the German one.

In addition, it should be noted that the farther the target, the (on average) it is less covered. In the near tactical zone, most of the targets are somehow dug / covered, while in the depths there are such uncovered targets as advancing reserves, enemy troops in clusters, headquarters locations, etc. In other words, a projectile that hits the target in depth on average does more damage than a projectile fired at the leading edge (on the other hand, the dispersion of projectiles at long distances is higher).

Then, if the enemy has parity in the weight of fired shells of shells, but at the same time keeps half as many people at the front, thereby he gives half as many targets to our artillery.

All this works for the observed loss ratio.

(As an extended commentary on

Universal shooting system of low ballistics for close combat of infantry units of the Red Army

The available information about the ampoule guns of the Red Army is extremely scarce and is mainly based on a couple of paragraphs from the memoirs of one of the defenders of Leningrad, a description of the design in the manual for the use of ampoule guns, as well as some conclusions and common conjectures of modern searchers-diggers. Meanwhile, in the museum of the capital's plant "Iskra" named after I.I. Kartukov for a long time lay like a dead weight in the amazing quality of the range of shooting front-line years. Text documents to it, obviously, are buried in the depths of the archive of the economy (or scientific and technical documentation) and are still waiting for their researchers. So when working on the publication, I had to generalize only known data and analyze references and images.
The existing concept of "ampulomet" in relation to the combat system developed in the USSR on the eve of the Great Patriotic War does not reveal all the possibilities and tactical advantages of this weapon. Moreover, all available information refers only, so to speak, to the late period of serial ampoule guns. In fact, this "pipe on the machine" was capable of throwing not only ampoules from a tin or bottle glass, but also more serious ammunition. And the creators of this simple and unpretentious weapon, the production of which was possible almost “on the knee”, no doubt deserve much more respect.

The simplest mortar

In the flamethrower system of weapons of the ground forces of the Red Army, the ampoule occupied an intermediate position between knapsack or easel flamethrowers, firing at short distances with a jet of liquid fire mixture, and field artillery (cannon and rocket), which occasionally used incendiary projectiles with solid incendiary mixtures such as military thermite at full range. brand 6. As conceived by the developers (and not the requirements of the customer), the ampoule gun was mainly (as in the document) intended to deal with tanks, armored trains, armored vehicles and fortified enemy firing points by firing at them with any ammunition of a suitable caliber.


Experienced 125-mm ampoule during factory testing in 1940

The opinion that the ampoule gun is a purely Leningrad invention is obviously based on the fact that this type of weapon was also produced in besieged Leningrad, and one of its samples is on display at the State Memorial Museum of the Defense and Siege of Leningrad. However, they developed ampoules (as, indeed, infantry flamethrowers) in the pre-war years in Moscow in the experimental design department of plant No. 145 named after SM. Kirov (chief designer of the plant - I.I. Kartukov), which is under the jurisdiction of the People's Commissariat of the Aviation Industry of the USSR. The names of the designers of ampoule guns, unfortunately, are unknown to me.


Transportation of an experienced 125-mm ampoule in the summer when changing the firing position.

It is documented that the 125-mm ampoule gun with ammunition from ampoules passed field and military tests in 1941 and was adopted by the Red Army. The description of the design of the ampoule gun, given on the Internet, is borrowed from the manual and only in general terms corresponds to pre-war prototypes: “The ampoule gun consists of a barrel with a chamber, a bolt, a firing device, sights and a carriage with a fork.” In the version supplemented by us, the barrel of a serial ampoule launcher was a seamless steel pipe made of Mannesmann rolled products with an inner diameter of 127 mm, or rolled from 2 mm sheet iron, muffled in the breech. The barrel of a regular ampoule gun was freely supported by trunnions on the lugs in the fork of a wheeled (summer) or ski (winter) machine. There were no horizontal or vertical aiming mechanisms.

In an experienced 125-mm ampoule gun, a blank cartridge from a 12-gauge hunting rifle with a folder sleeve and a 15-gram weight of black powder was locked with a rifle-type bolt in the chamber. The firing mechanism was released by pressing the thumb of the left hand on the trigger lever (forward or down, there were different options), located near the handles, similar to those used on easel machine guns and welded to the ampoule breech.


125 mm ampoule in combat position.

In a serial ampoule gun, the firing mechanism was simplified due to the manufacture of many parts by stamping, and the trigger lever was moved under the thumb of the right hand. Moreover, in mass production, the handles were replaced with steel pipes bent like ram's horns, structurally combining them with a piston valve. That is, now for loading the shutter was turned with both handles all the way to the left and, relying on the tray, they pulled it towards themselves. The entire breech with handles along the slots in the tray moved to the rearmost position, completely removing the spent cartridge case of the 12-gauge cartridge.

The sights of the ampoule gun consisted of a front sight and a folding sight stand. The latter was designed to fire at four fixed distances (obviously from 50 to 100 m), indicated by holes. And the vertical slot between them made it possible to shoot at intermediate ranges.
The photographs show that on the experimental version of the ampoule gun, a roughly made wheeled machine welded from steel pipes and an angle profile was used. It would be more correct to consider it a laboratory stand. At the ampoule machine proposed for service, all parts were more carefully finished and supplied with all the attributes necessary for operation in the troops: handles, coulters, slats, brackets, etc. However, the wheels (rollers) on both experimental and serial samples were provided with monolithic wooden , upholstered with a metal strip along the generatrix and with a metal sleeve as a plain bearing in the axial hole.

In the St. Petersburg, Volgograd and Arkhangelsk museums there are later versions of the factory-made ampoule gun on a simplified, lightweight, wheelless, non-folding machine with a support of two pipes, or without a machine at all. Tripods made of steel rods, wooden decks or oak crosses as gun carriages for ampoule guns were adapted already in wartime.

The manual mentions that the ammunition carried by the calculation of the ampoule gun was 10 ampoules and 12 expelling cartridges. On the machine of the pre-production version of the ampoule, the developers proposed to install two easily removable tin boxes with a capacity of eight ampoules each in the transport position. One of the fighters apparently carried two dozen rounds of ammunition in a standard hunting bandolier. In a combat position, boxes of ammunition were quickly removed and placed in a shelter.

On the barrel of the pre-production version of the ampoule gun, two welded swivels were provided for carrying it on a belt over the shoulder. Serial samples were devoid of any "architectural excesses", and the barrel was carried on the shoulder. Many note the presence of a metal divider grille inside the barrel, in its breech. This was not the case for the prototype. Obviously, the grate was needed to prevent the cardboard and felt wad of a blank cartridge from hitting the glass ampoule. In addition, it limited the movement of the ampoule into the breech until it stops, since the serial 125-mm ampoule had a chamber in this place. The factory data and characteristics of the 125 mm ampoule gun are somewhat different from those given in the descriptions and instructions for use.


Drawing of a serial 125-mm ampoule gun, proposed for mass production in 1940.


Rupture of a 125-mm ampoule filled with a self-igniting liquid KS in the target area.


Warehouse of finished products of the workshop for the production of ampoules at the plant No. 455 of the NKAP in 1942

Incendiary ampoules

As indicated in the documents, the main ammunition for ampoule guns was aviation tin ampoules АЖ-2 of 125 mm caliber, equipped with a self-igniting variety of condensed kerosene of the KS grade. The first tin spherical ampoules entered mass production in 1936. In the late 1930s. they were also improved at the OKO of the 145th plant (in the evacuation, this is the OKB-NKAL of plant No. 455). In factory documents, they were called aviation liquid ampoules АЖ-2. But still right
it would be more correct to call the ampoules tin ampoules, since the Red Army Air Force planned to gradually replace the AK-1 glass ampoules, which had been in service since the early 1930s, with them. like chemical munitions.

There were constant complaints about glass ampoules that they were, de, fragile, and if broken ahead of time, they could poison both the aircraft crew and ground personnel with their contents. Meanwhile, mutually exclusive requirements were imposed on the glass of ampoules - strength in handling and fragility in use. The first, of course, prevailed, and some of them, with a wall thickness of 10 mm, even when bombed from a height of 1000 m (depending on the density of the soil) gave a very large percentage of not crashed. Theoretically, their thin-walled tin counterparts could solve the problem. As tests later showed, the aviators' hopes for this were also not fully justified.

This feature probably also manifested itself when firing from an ampoule, especially along flat trajectories for a short range. Note that the recommended type of targets for the 125mm ampoule launcher also consists entirely of objects with strong walls. In the 1930s. aviation tin ampoules were made by stamping two hemispheres from thin brass 0.35 mm thick. Apparently, since 1937 (with the beginning of the austerity of non-ferrous metals in the production of ammunition), their transfer to tinplate with a thickness of 0.2-0.3 mm began.

The configuration of parts for the production of tin ampoules varied greatly. In 1936, at the 145th plant, the design of Ofitserov-Kokoreva was proposed for the manufacture of AZh-2 from four spherical segments with two options for rolling the edges of parts. In 1937, even the AZH-2 consisted of a hemisphere with a filler neck and a second hemisphere of four spherical segments.

At the beginning of 1941, in connection with the expected transfer of the economy to a special period, technologies for the production of AZH-2 from black tin (thin rolled 0.5 mm pickled iron) were tested. From the middle of 1941, these technologies had to be used in full. Black tin during stamping was not as ductile as white or brass, and deep drawing of steel complicated production, therefore, with the outbreak of war, AZh-2 was allowed to be made from 3-4 parts (spherical segments or belts, as well as their various combinations with hemispheres).

Unexploded or unfired round glass ampoules AU-125 for firing from 125-mm ampoules are perfectly preserved in the ground for decades. Photos of our days.
Below: experimental ampoules АЖ-2 with additional fuses. Photo 1942

Soldering the seams of black tin products in the presence of special fluxes then also turned out to be quite an expensive pleasure, and academician E.O. Paton introduced into the production of ammunition only a year later. Therefore, in 1941, the parts of the AZh-2 hulls began to be connected by rolling the edges and sinking the seam flush with the contour of the sphere. By the way, before the birth of ampoules, the filling necks of metal ampoules were soldered on the outside (for use in aviation, this was not so important), but since 1940, the necks began to be fixed inside. This made it possible to avoid the diversity of ammunition for use in aviation and ground forces.

The filling of ampoules AZH-2KS, the so-called "Russian napalm" - condensed kerosene KS - was developed in 1938 by A.P. Ionov in one of the capital's research institutes with the assistance of chemists V.V. Zemskova, L.F. Shevelkin and A.V. Yasnitskaya. In 1939, he completed the development of a technology for the industrial production of powdered thickener OP-2. How the incendiary mixture acquired the properties of instantly self-igniting in air remains unknown. I'm not sure that the trivial addition of granules of white phosphorus to a thick incendiary mixture based on petroleum products here would guarantee their self-ignition. In general, be that as it may, already in the spring of 1941, at factory and field tests, the 125-mm ampoule gun AZH-2KS worked normally without fuses and intermediate igniters.

According to the original plan, the AZh-2s were designed to infect the terrain with persistent poisonous substances from aircraft, as well as to destroy manpower with persistent and unstable poisonous substances, later (when used with liquid fire mixtures) - to set fire to and smoke tanks, ships and firing points. Meanwhile, the use of military chemicals in ampoules against the enemy was not ruled out by using them from ampoules. With the beginning of the Great Patriotic War, the incendiary purpose of the ammunition was supplemented by the smoking out of manpower from field fortifications.

In 1943, in order to guarantee the operation of the AZh-2SOV or AZh-2NOV during bombing from any height and at any carrier speed, the ampoule developers supplemented their designs with fuses made of thermosetting plastic (resistant to the acid base of toxic substances). As conceived by the developers, such modified ammunition already affected manpower as fragmentation-chemical ones.

Ampoule fuses UVUD (universal impact fuse) belonged to the category of all-round, i.e. worked even when the ampoules fell sideways. Structurally, they were similar to those used on ADS aviation smoke bombs, but it was no longer possible to shoot such ampoules from ampoule guns: from overloads, a non-safety type fuse could work right in the barrel. During the war period and for incendiary ampoules, the Air Force sometimes used cases with fuses or with plugs instead.

In 1943-1944. AZH-2SOV or NOV ampoules were tested, intended for long-term storage in running order. To do this, their bodies were coated inside with bakelite resin. Thus, the resistance of the metal case to mechanical stress increased even more, and fuses were mandatory installed on such ammunition.

Today, in the places of past battles, "diggers" can already come across in a conditioned form only ampoules AK-1 or AU-125 (AK-2 or AU-260 - an extremely rare exotic) made of glass. Thin-walled tin ampoules are almost all decayed. Do not try to defuse glass ampoules if you can see that there is liquid inside. White or yellowish cloudy - this is the CS, which by no means lost its properties for self-ignition in air, even after 60 years. Transparent or translucent with yellow large crystals of sediment - this is SOV or NOV. In glass containers, their combat properties can also be preserved for a very long time.


Ampoules in battle

On the eve of the war, units of knapsack flamethrowers (flamethrower teams) were organizationally part of rifle regiments. However, due to the difficulties of using it in defense (extremely short range of flamethrowing and unmasking signs of the ROKS-2 backpack flamethrower), they were disbanded. Instead, in November 1941, teams and companies were created, armed with ampoules and rifle mortars for throwing metal and glass ampoules and Molotov cocktails at tanks and other targets. But, according to the official version, the ampoule guns also had significant drawbacks, and at the end of 1942 they were removed from service.
At the same time, there was no mention of the abandonment of rifle-bottle mortars. Probably, for some reason they did not have the shortcomings of ampoules. Moreover, in other divisions of the rifle regiments of the Red Army, it was proposed to throw bottles with KS at tanks exclusively by hand. The bottle-throwers of the flame-throwing teams, obviously, were revealed a terrible military secret: how to use the aiming bar of the Mosin rifle for aimed shooting with a bottle at a given distance, determined by eye. As I understand it, there was simply no time to teach the rest of the illiterate infantrymen this “tricky business”. Therefore, they themselves adapted a sleeve from a three-inch rifle to the cut of a rifle barrel and themselves "out of school hours" were trained in aimed bottle throwing.

When meeting with a solid barrier, the body of the AZh-2KS ampoule was torn, as a rule, along the solder seams, the incendiary mixture splashed out and ignited in air with the formation of a thick white-
th smoke. The combustion temperature of the mixture reached 800 ° C, which, when it got on clothes and open areas of the body, caused the enemy a lot of trouble. No less unpleasant was the meeting of the sticky CS with armored vehicles - starting from a change in the physicochemical properties of the metal during local heating to such a temperature and ending with an indispensable fire in the engine-transmission compartment of carburetor (and diesel) tanks. It was impossible to clean off the burning COP from the armor - all that was required was to stop the access of air. However, the presence of a self-igniting additive in the CS did not rule out spontaneous combustion of the mixture again.

Here are a few excerpts from the combat reports of the Great Patriotic War, published on the Internet: “We also used ampoules. From an obliquely mounted tube mounted on a sled, a shot of a blank cartridge pushed out a glass ampoule with a combustible mixture. She flew along a steep trajectory at a distance of up to 300-350 m. Breaking when falling, the ampoule created a small but stable fire, hitting the enemy’s manpower and setting fire to his dugouts. The consolidated ampoule company under the command of Senior Lieutenant Starkov, which included 17 crews, fired 1620 ampoules in the first two hours. “The ampoule-throwers moved in here. Acting under the cover of infantry, they set fire to an enemy tank, two guns and several firing points.

By the way, intensive shooting with black powder cartridges inevitably created a thick layer of soot on the barrel walls. So after a quarter of an hour of such a cannonade, the ampoule-throwers would probably find that the ampoule rolls into the barrel with more and more difficulty. Theoretically, before this, carbon deposits, on the contrary, would somewhat improve the obturation of the ampoules in the barrel, increasing their firing range. However, the usual range marks on the sight bar, for sure, “floated”. About banniks and other tools and devices for cleaning ampoule gun barrels, probably, it was mentioned in the technical description ...

And here is a completely objective opinion of our contemporaries: “The calculation of the ampoule gun was three people. The loading was carried out by two people: the first number of the calculation inserted the expelling cartridge from the treasury, the second put the ampoule itself into the barrel from the muzzle. “The ampoules were very simple and cheap“ flamethrower mortars ”, they were armed with special ampouling platoons. The combat manual of the infantry of 1942 mentions the ampoule gun as a standard infantry weapon. In combat, the ampoule gun often served as the core of a group of tank destroyers. Its use in defense as a whole justified itself, while attempts to use it in the offensive led to large losses in crews due to the short firing range. True, they were not without success used by assault groups in urban battles - in particular, in Stalingrad.

There are also memories of veterans. The essence of one of them boils down to the fact that in early December 1941, Major General D.D. Lelyushenko was delivered 20 ampoules. The designer of this weapon also came here, as well as the commander himself, who decided to personally test the new equipment. In response to the designer's comments on loading the ampoule launcher, Lelyushenko grumbled that everything hurts cunningly and for a long time, and the German tank will not wait ... At the first shot, the ampoule broke in the ampoule launcher barrel, and the entire installation burned down. Lelyushenko, already with metal in his voice, demanded a second ampoule. Everything happened again. The general became "angry", switching to profanity, forbade the fighters to use weapons so unsafe for calculations and crushed the remaining ampoules with a tank.


The use of APC-203 for filling ampoules of AJ-2 with military chemical substances. The leaning fighter pumps out excess liquid, standing near the tripod installs plugs on the filling necks of the AZh-2. Photo 1938

Quite a likely story, although not very pleasant in the general context. As if the ampoule guns did not pass factory and field tests ... Why could this happen? As a version: the winter of 1941 (all eyewitnesses mentioned this) was very frosty, and the glass ampoule became more fragile. Here, unfortunately, the respected veteran did not specify what material those ampoules were made of. The difference in temperatures of thick-walled glass (local heating), which is fired when fired by the flame of the expelling charge, can also affect. Obviously, in severe frost it was necessary to shoot only with metal ampoules. But "in the hearts" the general could easily ride through the ampoules!


Filling station ARS-203. Photo 1938

Fire cocktail frontline spill

It is only at first glance that the scheme for using the ampoule gun in the troops seems to be primitively simple. For example, the crew of an ampoule gun at a combat position fired off the wearable ammunition and dragged the second ammunition load ... What is simpler - take it and shoot. Look, Senior Lieutenant Starkov's two-hour consumption of the unit exceeded one and a half thousand ampoules! But in fact, when organizing the supply of troops with incendiary ampoules, it was necessary to solve the problem of transportation over long distances from factories from the deep rear of incendiary ammunition that is far from safe to handle.

Ampoule tests in the pre-war period showed that these munitions, when fully equipped, can withstand transportation no further than 200 km along peacetime roads in compliance with all rules and with the complete exclusion of "road adventures". In wartime, things got much more complicated. But here, no doubt, the experience of Soviet aviators came in handy, where ampoules were equipped at airfields. Prior to the mechanization of the process, the filling of ampoules, taking into account the unscrewing and wrapping of the fitting plug, required 2 man-hours per 100 pieces.

In 1938, for the Red Army Air Force at the 145th NKAP plant, a towed aircraft filling station ARS-203, made on a single-axle semi-trailer, was developed and later put into service. A year later, the self-propelled ARS-204 also entered service, but it was focused on servicing aircraft pouring devices, and we will not consider it. ARSs were mainly intended for pouring military chemicals into ammunition and isolated tanks, but they turned out to be simply irreplaceable for working with a ready-made self-igniting incendiary mixture.

In theory, in the rear of each rifle regiment, a small unit was supposed to work to equip ampoules with a mixture of KS. Without a doubt, it had an ARS-203 station. But KS was also not transported in barrels from factories, but cooked on the spot. To do this, any products of oil distillation (gasoline, kerosene, solarium) were used in the frontline zone, and according to the tables compiled by A.P. Ionov, different amounts of a thickener were added to them. As a result, despite the difference in the initial components, a CS was obtained. Further, it was obviously pumped into the ARS-203 tank, where the self-ignition component of the fire mixture was added.

However, the option of adding the component directly into the ampoules, and then pouring the CS liquid into them is not excluded. In this case, ARS-203, in general, was not so necessary. And an ordinary soldier's aluminum mug could also serve as a dispenser. But such an algorithm required that the self-igniting component be inert for some time in the open air (for example, wet white phosphorus).

ARS-203 was specially designed to mechanize the process of filling ampoules АЖ-2 to the working volume in the field. On it, from a large reservoir, liquid was first poured simultaneously into eight measuring tanks, and then eight ampoules were filled at once. Thus, it was possible to fill 300-350 ampoules in an hour, and after two hours of such work, the 700-liter tank of the station was emptied, and it was again filled with CS liquid. It was impossible to speed up the process of filling the ampoules: all the overflows of liquids took place in a natural way, without pressurization of the container. The filling cycle of eight ampoules was 17-22 s, and 610 liters were pumped into the working capacity of the station using a Garda pump in 7.5-9 minutes.


The PRS station is ready to fill four ampoules АЖ-2. The pedal is pressed, and the process has begun! Refueling incendiary mixtures made it possible to do without a gas mask. Photo 1942

Obviously, the experience of operating the ARS-203 in the ground forces turned out to be unexpected: the performance of the station, focused on the needs of the Air Force, was considered excessive, as well as its dimensions, weight and the need to be towed by a separate vehicle. The infantry needed something smaller, and in 1942, in the OKB-NKAP of the 455th plant, the Kartukovites developed a field filling station for the PRS. In its design, dipsticks were abolished, and the filling level of opaque ampoules was controlled using a Glass SIG-Extremely simplified version of the ORS nasal tube. for use in the field. Capacity of working re-
the tank was 107 liters, and the mass of the entire station did not exceed 95 kg. The PRS was designed in a "civilized" version of the workplace on a folding table and in an extremely simplified one, with the installation of a working container "on stumps". The productivity of the station was limited to 240 ampoules of AZh-2 per hour. Unfortunately, when the field tests of the PRS were completed, the ampoule guns in the Red Army had already been removed from service.

Russian reusable "faustpatron"?

However, it would not be entirely correct to unconditionally classify a 125-mm ampoule gun as an incendiary weapon. After all, no one allows himself to consider the barreled artillery system or the Katyusha MLRS as flamethrowers, which fired, if necessary, incendiary ammunition. By analogy with the use of aviation ampoules, the designers of the 145th plant proposed to expand the arsenal of ammunition for the ampoule gun by using modified Soviet anti-tank bombs PTAB-2.5 of cumulative action, created at the very beginning of World War II.

In the book by E. Pyryev and S. Reznichenko "Bomber armament of Russian aviation in 1912-1945." in the PTAB section it is said that small cumulative bombs in the USSR were developed only in GSKB-47, TsKB-22 and SKB-35. From December 1942 to April 1943, they managed to design, test and work out the full program of 1.5-kg PTAB cumulative action. However, at the 145th plant I.I. Kartukov dealt with this problem much earlier, back in 1941. Their 2.5-kg ammunition was called the AFBM-125 high-explosive armor-piercing mine of 125 mm caliber.

Outwardly, such a PTAB strongly resembled the high-explosive bombs of Colonel Gronov of small calibers during the First World War. Since the wings of the cylindrical tail were welded to the body of the aviation ammunition by spot welding, it was not possible to manage to use the mine in the infantry by simply replacing its tail. The new mortar-type plumage was installed on aerial bombs with an additional propellant charge built into it in a capsule. The ammunition was fired as before, with a blank 12-gauge rifle cartridge. Thus, in relation to the ampoule-launcher, the system was obtained in some Step-Mina fBM. 125 without additional NO active-reactive. contact fuse fuse.

For quite a long time, the designers had to work on improving the reliability of cocking the mine's contact fuse on the trajectory.


BFM-125 mine without an additional contact fuse fuse.

Meanwhile, the problem in the episode of 1941 mentioned above with the commander of the 30th Army, D.D. Lelyushenko could also occur when firing early models of FBM-125 high-explosive armor-piercing mines from ampoules. This is also indirectly indicated by Lelyushenko’s grumbling: “Everything hurts cunningly and for a long time, the German tank will not wait,” since inserting an ampoule and loading a cartridge into a conventional ampoule gun did not require special tricks. In the case of the use of the FBM-125, before firing, the safety key had to be unscrewed from the ammunition, opening the fire to the powder press of the safety mechanism holding the inertial striker of the contact fuse in the rear position. To do this, all such ammunition was supplied with a cardboard cheat sheet with the inscription "Turn out before firing", tied to a key.

The cumulative recess in the front of the mine was hemispherical, and its thin-walled steel lining rather formed a given configuration when filling explosives, rather than playing the role of a shock core during the cumulation of a combat charge of ammunition. The documents indicated that the FBM-125, when fired from standard ampoules, was designed to disable tanks, armored trains, armored vehicles, vehicles, as well as to destroy fortified firing points (DOTov.DZOTovipr.).


Armored plate with a thickness of 80 mm, confidently pierced by the FBM-125 mine at field tests.


The nature of the outlet of the same punched armor plate.

Landfill tests of the ammunition took place in 1941. Their result was the launch of the mine into pilot production. Military tests of the FBM-125 were successfully completed in 1942. The developers proposed, if necessary, to equip such mines with irritant military chemicals (chloracetophenone or adamsite), but this did not come to that. In parallel with the FBM-125, the OKB-NKAP of the 455th plant also developed the armor-piercing high-explosive mine BFM-125. Unfortunately, its combat properties are not mentioned in the factory certificates.

Cover the infantry with smoke

In 1941, it passed field tests developed at the plant No. 145 named after. CM. Kirov aviation smoke bomb ADSH. It was intended for setting up vertical camouflage (blinding the enemy) and poisonous smoke (fettering and exhausting the enemy’s combat forces) curtains when dropping bombs from an aircraft. On aircraft, the ADS were loaded into ampoule-bomb cartridges, after removing the safety forks of the fuses. Checkers spilled out in one gulp when the doors of one of the sections of the cassette were opened. Ampoule-bomb cartridges were also developed at the 145th plant for fighters, attack aircraft, long-range and short-range bombers.

The contact fuse has already been made with an all-round mechanism, which ensured its operation when the ammunition fell to the ground in any position. The fuse spring protected the fuse from triggering in the event of an accidental fall, which did not allow the drummer to prick the igniter primer with insufficient overloads (when falling from a height of up to 4 m onto concrete).

It is probably no coincidence that this ammunition also turned out to be made in 125 mm caliber, which, according to the assurances of the developers, made it possible to use ADSh from standard ampoule guns. By the way, when fired from an ampoule gun, the ammunition received an overload much greater than when it fell from 4 m, which means that the saber began to smoke already in flight.

Even in the pre-war years, it was scientifically proven that covering your troops is much more effective if you smoke it, and not your own infantry, in an attack on a firing point. Thus, the ampoule gun would turn out to be a very necessary thing when, before an attack, it was necessary to throw a few checkers a couple of hundred meters to the bunker or bunker. Unfortunately, it is not known whether ampoule guns were used on the fronts in this variant...

When firing heavy ADSh bombs from a 125-mm ampoule gun, its sights could only be used with amendments. However, great accuracy of shooting was not required: one ADS created an impenetrable creeping cloud up to 100 m long.
an additional expelling charge was impossible, for firing at the maximum distance it was required to use a steep trajectory at elevation angles close to 45 °.

Regimental agitation initiative

The plot for this section of the article about the ampoule was also borrowed by me from the Internet. Its essence was that one day the political officer, having come to the sappers in the battalion, asked who could make a propaganda mortar mine? Pavel Yakovlevich Ivanov volunteered. He found the tools at the site of the destroyed forge, he made the body of the ammunition from a chock, adapting a small powder charge to break it in the air, the fuse from a fuse cord, and the stabilizer from cans. However, the wooden mortar mine turned out to be light and fell slowly into the barrel without breaking through the primer.

Ivanov reduced its diameter so that the air from the barrel came out more freely, and the primer stopped falling on the firing pin. In general, the craftsman did not sleep for days, but on the third day the mine flew and exploded. The leaflets swirled over the enemy trenches. Later, he adapted an ampoule gun for firing wooden mines. And in order not to cause return fire on his trenches, he carried it to the neutral zone or to the side. Result: German soldiers once crossed over to our side in a group, drunk, in broad daylight.

This story is also quite plausible. It is quite difficult to make an agitation in a metal case from improvised means in the field, but from wood it is quite possible. In addition, such ammunition, according to common sense, should be non-lethal. Otherwise, what kind of propaganda is there! But factory propaganda mines and artillery shells were in metal cases. To a greater extent, so that they fly further and so as not to greatly disrupt ballistics. However, before that, it never occurred to the designers of the ampoule gun to enrich the arsenal of their offspring with such a kind of ammunition ...

noloader, with a piston valve. Shooting mechanisms - similar in systems of both calibers.
The Ampulomet easel mortars were not put into service. According to the classification of artillery systems, samples of both calibers can be attributed to hard-type mortars. Theoretically, the recoil forces when firing high-explosive armor-piercing mines should not have increased compared to throwing ampoules. The mass of the FBM was greater than that of the AZh-2KS, but less than that of the ADSH. And the expelling charge is the same. However, despite the fact that the Ampulomet mortars fired along more flat trajectories than the classic mortars and bombers, the former were still much more “mortar” than the Katyusha Guards mortars.

conclusions

So, the reason for the removal of ampoule guns from the armament of the ground forces of the Red Army at the end of 1942 was officially their insecurity in handling and use. But in vain: ahead of our army was not only an offensive, but also numerous battles in settlements. That's where it would come in handy.
100-mm mounted anti-tank mortar in the process of loading.

By the way, the safety of using a knapsack flamethrower in an offensive battle is also very doubtful. Nevertheless, they were returned "to service" and used until the end of the war. There are front-line memories of a sniper, where he claims that an enemy flamethrower is always visible from afar (a number of unmasking signs), therefore it is better to aim it at chest level. Then, from short distances, a bullet of a powerful rifle cartridge pierces right through both the body and the tank with the fire mixture. That is, the flamethrower and the flamethrower "cannot be restored."
The calculation of the ampoule gun could also be in exactly the same situation when bullets or shrapnel hit incendiary ampoules. Glass ampoules in general could be smashed against each other by a shock wave from a close gap. And in general, the whole war is a very risky business ... And thanks to the "hussars of the generals Lelyushenko" such hasty conclusions were born about the low quality and combat inefficiency of individual types of weapons. Remember, for example, the pre-war ordeals of the designers of the Katyusha MLRS, mortar weapons, submachine guns, the T-34 tank, etc. Our gunsmith designers in the overwhelming majority were not amateurs in their field of knowledge and no less than generals sought to bring victory closer. And they were "dipped" like kittens. The generals are also easy to understand - they needed reliable models of weapons and with "fool protection".

And then, the warm memories of infantrymen about the effectiveness of Molotov cocktails against tanks against tanks look somehow illogical against the backdrop of a very cool attitude towards ampoules. Both are weapons of the same order. Unless the ampoule was exactly twice as powerful, and it could be thrown 10 times further. It is not entirely clear here why there were more claims "in the infantry": to the ampoule gun itself or to its ampoules?


External suspended non-drop container ABK-P-500 for salvo use of small-caliber air bombs from high-speed and dive bombers. In the foreground are ampoules АЖ-2KS made of four spherical segments with edges sealed inside.


One of the options for a hand-held (non-branded) flamethrower developed by the designers of plant No. 145 of the NKAP during tests in 1942. At such a range, only hogs can be tarred from this “aerosol can”.

At the same time, the same “very dangerous” AZH-2KS ampoules in Soviet attack aviation remained in service at least until the end of 1944 - beginning of 1945 (in any case, M.P. Odintsov’s attack aviation regiment used them already on the German territory by tank columns hiding in the forests). And this is on attack aircraft! With unarmored bomb bays! When from the ground all the infantry of the enemy is hitting them from anything! The pilots were well aware of what would happen if only one stray bullet hit the ampoule cassette, but, nevertheless, they flew. By the way, the timid mention on the Internet that ampoules were used in aviation when firing from such aircraft ampoule guns is absolutely untrue.

Thanks to Soviet films about the war, most people have a strong opinion that the mass small arms (photo below) of the German infantry during the Second World War is an automatic machine (submachine gun) of the Schmeisser system, which is named after its designer. This myth is still actively supported by domestic cinema. However, in fact, this popular machine gun was never a mass weapon of the Wehrmacht, and it was not Hugo Schmeisser who created it at all. However, first things first.

How myths are created

Everyone should remember the shots from domestic films dedicated to the attacks of the German infantry on our positions. Brave blond guys walk without bending down, while firing from machine guns “from the hip”. And the most interesting thing is that this fact does not surprise anyone, except for those who were in the war. According to the movies, the "Schmeissers" could conduct aimed fire at the same distance as the rifles of our fighters. In addition, the viewer, when watching these films, had the impression that the entire personnel of the German infantry during the Second World War was armed with machine guns. In fact, everything was different, and the submachine gun is not a mass small arms weapon of the Wehrmacht, and it is impossible to shoot from it “from the hip”, and it is not called “Schmeisser” at all. In addition, to carry out an attack on a trench by a submachine gunners unit, in which there are fighters armed with magazine rifles, is an obvious suicide, since simply no one would have reached the trenches.

Debunking the Myth: The MP-40 Automatic Pistol

This Wehrmacht small arms in WWII is officially called the MP-40 submachine gun (Maschinenpistole). In fact, this is a modification of the MP-36 assault rifle. The designer of this model, contrary to popular belief, was not the gunsmith H. Schmeisser, but the no less famous and talented craftsman Heinrich Volmer. And why is the nickname “Schmeisser” so firmly entrenched behind him? The thing is that Schmeisser owned a patent for the store that is used in this submachine gun. And in order not to violate his copyright, in the first batches of MP-40, the inscription PATENT SCHMEISSER was stamped on the store receiver. When these machine guns came as trophies to the soldiers of the allied armies, they mistakenly thought that the author of this model of small arms, of course, was Schmeisser. This is how the given nickname was fixed for the MP-40.

Initially, the German command armed only command staff with machine guns. So, in the infantry units, only the commanders of battalions, companies and squads should have MP-40s. Later, drivers of armored vehicles, tankers and paratroopers were supplied with automatic pistols. Massively, no one armed the infantry with them either in 1941 or after. According to the archives in 1941, the troops had only 250 thousand MP-40 assault rifles, and this is for 7,234,000 people. As you can see, a submachine gun is not at all a mass weapon of the Second World War. In general, for the entire period - from 1939 to 1945 - only 1.2 million of these machine guns were produced, while over 21 million people were called up in the Wehrmacht.

Why were the infantry not armed with the MP-40?

Despite the fact that later experts recognized that the MP-40 is the best small arms of the Second World War, only a few of them had it in the infantry units of the Wehrmacht. This is explained simply: the aiming range of this machine gun for group targets is only 150 m, and for single targets - 70 m. This despite the fact that Soviet soldiers were armed with Mosin and Tokarev (SVT) rifles, the aiming range of which was 800 m for group targets and 400 m for single targets. If the Germans had fought with such weapons, as shown in domestic films, then they would never have been able to reach the enemy trenches, they would simply have been shot, as in a shooting gallery.

Shooting on the move "from the hip"

The MP-40 submachine gun vibrates a lot when firing, and if you use it, as shown in the films, the bullets will always miss the target. Therefore, for effective shooting, it must be pressed tightly against the shoulder, after unfolding the butt. In addition, this machine gun was never fired in long bursts, as it quickly heated up. Most often they were beaten in a short burst of 3-4 rounds or fired single shots. Despite the fact that the performance characteristics indicate that the rate of fire is 450-500 rounds per minute, in practice this result has never been achieved.

Advantages of the MP-40

It cannot be said that this rifle was bad, on the contrary, it is very, very dangerous, but it must be used in close combat. That is why sabotage units were armed with it in the first place. They were also often used by scouts of our army, and the partisans respected this machine gun. The use of light, rapid-fire small arms in close combat provided tangible advantages. Even now, the MP-40 is very popular with criminals, and the price of such a machine is very high. And they are delivered there by “black archaeologists”, who excavate in places of military glory and very often find and restore weapons from the Second World War.

Mauser 98k

What can you say about this rifle? The most common small arms in Germany are the Mauser rifle. Its aiming range is up to 2000 m when firing. As you can see, this parameter is very close to the Mosin and SVT rifles. This carbine was developed back in 1888. During the war, this design was significantly upgraded, mainly to reduce costs, as well as to rationalize production. In addition, this Wehrmacht small arms were equipped with optical sights, and sniper units were equipped with it. The Mauser rifle at that time was in service with many armies, for example, Belgium, Spain, Turkey, Czechoslovakia, Poland, Yugoslavia and Sweden.

Self-loading rifles

At the end of 1941, the first automatic self-loading rifles of the Walter G-41 and Mauser G-41 systems entered the infantry units of the Wehrmacht for military trials. Their appearance was due to the fact that the Red Army was armed with more than one and a half million such systems: SVT-38, SVT-40 and ABC-36. In order not to be inferior to the Soviet fighters, the German gunsmiths urgently had to develop their own versions of such rifles. As a result of the tests, the G-41 system (Walter system) was recognized and adopted as the best. The rifle is equipped with a trigger-type percussion mechanism. Designed for firing only single shots. Equipped with a magazine with a capacity of ten rounds. This automatic self-loading rifle is designed for aimed fire at a distance of up to 1200 m. However, due to the large weight of this weapon, as well as low reliability and sensitivity to pollution, it was released in a small series. In 1943, the designers, having eliminated these shortcomings, proposed an upgraded version of the G-43 (Walter system), which was produced in the amount of several hundred thousand units. Before its appearance, Wehrmacht soldiers preferred to use captured Soviet (!) SVT-40 rifles.

And now back to the German gunsmith Hugo Schmeisser. He developed two systems, without which the Second World War could not have done.

Small arms - MP-41

This model was developed simultaneously with the MP-40. This machine gun was significantly different from the “Schmeisser” familiar to everyone from the movies: it had a handguard trimmed with wood, which protected the fighter from burns, was heavier and longer. However, this Wehrmacht small arms were not widely used and were not produced for long. In total, about 26 thousand units were produced. It is believed that the German army abandoned this machine in connection with the lawsuit of ERMA, which claimed that its patented design was illegally copied. Small arms MP-41 was used by parts of the Waffen SS. It was also successfully used by Gestapo units and mountain rangers.

MP-43, or StG-44

The next weapon of the Wehrmacht (photo below) was developed by Schmeisser in 1943. At first it was called MP-43, and later - StG-44, which means "assault rifle" (sturmgewehr). This automatic rifle in appearance, and in some technical characteristics, resembles (which appeared later), and differs significantly from the MP-40. Its range of aimed fire was up to 800 m. The StG-44 even provided for the possibility of mounting a 30 mm grenade launcher. For firing from cover, the designer developed a special nozzle, which was worn on the muzzle and changed the trajectory of the bullet by 32 degrees. This weapon entered mass production only in the fall of 1944. During the war years, about 450 thousand of these rifles were produced. So few of the German soldiers managed to use such a machine gun. StG-44s were supplied to the elite units of the Wehrmacht and to Waffen SS units. Subsequently, this weapon of the Wehrmacht was used in

FG-42 automatic rifles

These copies were intended for parachute troops. They combined the fighting qualities of a light machine gun and an automatic rifle. The Rheinmetall company took up the development of weapons already during the war, when, after evaluating the results of airborne operations carried out by the Wehrmacht, it turned out that the MP-38 submachine guns did not fully meet the combat requirements of this type of troops. The first tests of this rifle were carried out in 1942, and at the same time it was put into service. In the process of using the mentioned weapon, shortcomings were also revealed, associated with low strength and stability during automatic firing. In 1944, the upgraded FG-42 rifle (Model 2) was released, and Model 1 was discontinued. The trigger mechanism of this weapon allows automatic or single fire. The rifle is designed for the standard 7.92 mm Mauser cartridge. Magazine capacity is 10 or 20 rounds. In addition, the rifle can be used to fire special rifle grenades. In order to increase stability when firing, a bipod is fixed under the barrel. The FG-42 rifle is designed for firing at a range of 1200 m. Due to the high cost, it was produced in limited quantities: only 12 thousand units of both models.

Luger P08 and Walter P38

Now consider what types of pistols were in service with the German army. "Luger", its second name "Parabellum", had a caliber of 7.65 mm. By the beginning of the war, the units of the German army had more than half a million of these pistols. This small arms of the Wehrmacht was produced until 1942, and then it was replaced by a more reliable "Walter".

This pistol was put into service in 1940. It was intended for firing 9 mm rounds, the magazine capacity is 8 rounds. Sighting range at "Walter" - 50 meters. It was produced until 1945. The total number of P38 pistols produced was approximately 1 million units.

Weapons of World War II: MG-34, MG-42 and MG-45

In the early 30s, the German military decided to create a machine gun that could be used both as an easel and as a manual one. They were supposed to fire at enemy aircraft and arm tanks. The MG-34, designed by Rheinmetall and put into service in 1934, became such a machine gun. By the beginning of hostilities, the Wehrmacht had about 80 thousand units of this weapon. The machine gun allows you to fire both single shots and continuous. To do this, he had a trigger with two notches. When you click on the top, shooting was carried out with single shots, and when you click on the bottom - in bursts. It was intended for Mauser rifle cartridges 7.92x57 mm, with light or heavy bullets. And in the 40s, armor-piercing, armor-piercing tracer, armor-piercing incendiary and other types of cartridges were developed and used. This suggests the conclusion that the impetus for changes in weapons systems and tactics for their use was the Second World War.

The small arms that were used in this company were replenished with a new type of machine gun - MG-42. It was developed and put into service in 1942. The designers have greatly simplified and reduced the cost of the production of these weapons. So, in its production, spot welding and stamping were widely used, and the number of parts was reduced to 200. The trigger mechanism of the machine gun in question allowed only automatic firing - 1200-1300 rounds per minute. Such significant changes adversely affected the stability of the unit during firing. Therefore, to ensure accuracy, it was recommended to fire in short bursts. Ammunition for the new machine gun remained the same as for the MG-34. The range of aimed fire was two kilometers. Work on improving this design continued until the end of 1943, which led to the creation of a new modification, known as the MG-45.

This machine gun weighed only 6.5 kg, and the rate of fire was 2400 rounds per minute. By the way, not a single infantry machine gun of that time could boast of such a rate of fire. However, this modification appeared too late and was not in service with the Wehrmacht.

PzB-39 and Panzerschrek

PzB-39 was developed in 1938. This weapon of the Second World War was used with relative success at the initial stage to combat tankettes, tanks and armored vehicles with bulletproof armor. Against heavily armored B-1s, British Matildas and Churchills, Soviet T-34s and KVs), this gun was either ineffective or completely useless. As a result, it was soon replaced by anti-tank grenade launchers and reactive anti-tank rifles "Pantsershrek", "Ofenror", as well as the famous "Faustpatrons". The PzB-39 used a 7.92 mm cartridge. The firing range was 100 meters, the penetration ability made it possible to "flash" 35-mm armor.

"Panzerschreck". This German light anti-tank weapon is a modified copy of the American Bazooka rocket-propelled gun. German designers provided him with a shield that protected the shooter from hot gases escaping from the grenade nozzle. Anti-tank companies of motorized rifle regiments of tank divisions were supplied as a matter of priority with these weapons. Rocket guns were exceptionally powerful weapons. "Panzershreki" were weapons for group use and had a service crew consisting of three people. Since they were very complex, their use required special training in calculations. In total, in 1943-1944, 314 thousand units of such guns and more than two million rocket-propelled grenades were produced for them.

Grenade launchers: "Faustpatron" and "Panzerfaust"

The early years of the Second World War showed that anti-tank guns could not cope with the tasks set, so the German military demanded anti-tank weapons with which to equip an infantryman, acting on the principle of "shot and thrown." The development of a disposable hand grenade launcher was started by HASAG in 1942 (chief designer Langweiler). And in 1943 mass production was launched. The first 500 Faustpatrons entered the troops in August of the same year. All models of this anti-tank grenade launcher had a similar design: they consisted of a barrel (smooth-bore seamless pipe) and an over-caliber grenade. An impact mechanism and an aiming device were welded to the outer surface of the barrel.

"Panzerfaust" is one of the most powerful modifications of the "Faustpatron", which was developed at the end of the war. Its firing range was 150 m, and its armor penetration was 280-320 mm. The Panzerfaust was a reusable weapon. The barrel of the grenade launcher is equipped with a pistol grip, in which there is a firing mechanism, the propellant charge was placed in the barrel. In addition, the designers were able to increase the speed of the grenade. In total, over eight million grenade launchers of all modifications were manufactured during the war years. This type of weapon inflicted significant losses on Soviet tanks. So, in the battles on the outskirts of Berlin, they knocked out about 30 percent of armored vehicles, and during street fighting in the capital of Germany - 70%.

Conclusion

The Second World War had a significant impact on small arms, including the world, its development and tactics of use. Based on its results, we can conclude that, despite the creation of the most modern weapons, the role of rifle units is not decreasing. The accumulated experience of using weapons in those years is still relevant today. In fact, it became the basis for the development and improvement of small arms.

I I - period up to 1941

In December 1917, the Council of People's Commissars announced the demobilization of military factories, but by this time the production of ammunition in the country had practically ceased. By 1918, all the main stocks of weapons and ammunition left over from the world war were already exhausted. However, by the beginning of 1919, only the Tula Cartridge Plant remained operational. Lugansk patron in 1918 was initially captured by the Germans, then was occupied by the White Guard army of Krasnov.

For the newly created plant in Taganrog, the White Guards took from the Lugansk plant 4 machine tools from each development, 500 pounds of gunpowder, non-ferrous metals, and also part of the finished cartridges.
So Ataman Krasnov resumed production on RUSSIAN - BALTIC plant Rus.-Balt. share about-va shipbuilding and mechanical plants. (Founded in 1913 in Revel, in 1915 evacuated to Taganrog, in Soviet times the Taganrog Combine Plant.) and by November 1918, the productivity of this plant had increased to 300,000 rifle cartridges per day (Kakurin N E. "How the revolution fought")

“On January 3 (1919), the allies saw the Russian-Baltic plant in Taganrog already revived and put into operation, where they made shells, cast bullets, inserted them into cupronickel shells, poured cartridges with gunpowder - in a word, the plant was already in full swing. (Peter Nikolaevich Krasnov "The Great Don Army") In the Krasnodar Territory and in the Urals, cartridge cases are found marked D.Z.
Most likely, this marking denotes the "Don Plant" of Taganrog

Simbirsk, which was under construction, was under threat of capture. In the spring of 1918 The evacuation of the Petersburg Cartridge Plant to Simbirsk began. About 1,500 workers from Petrograd arrived in Simbirsk in July 1919 to set up the production of cartridges.
In 1919, the plant begins to produce products, and since 1922 the Ulyanovsk plant has been renamed the Volodarsky Plant.

In addition, the Soviet government is building a new cartridge factory in Podolsk. A part of the shell factory, located in the premises of the former Singer factory, was taken under it. The remnants of equipment from Petrograd were sent there. Since the autumn of 1919, the Podolsk plant began to remake foreign cartridges, and in November 1920 the first batch of rifle cartridges was produced.

From 1924 the production of cartridges is carried out by the State Association "Main Directorate of the Military Industry of the USSR", which includes Tula, Lugansk, Podolsk, Ulyanovsk factories.

Since 1928, cartridge factories, in addition to Tula, received numbers: Ulyanovsk - 3, Podolsk - 17, Lugansk - 60. (But Ulyanovsk retained its ZV marking until 1941)
Since 1934, new workshops have been built south of Podolsk. Soon they began to be called the Novopodolsky plant, and since 1940 the Klimovsky plant No. 188.
In 1939 cartridge factories were reassigned to the 3rd Main Directorate of the People's Commissariat of Armaments. It included the following plants: Ulyanovsk No. 3, Podolsky No. 17, Tula No. 38, Experienced Patr. plant (Maryina. Grove, Moscow) No. 44, Kuntsevsky (Red Equipment) No. 46, Lugansky No. 60 and Klimovsky No. 188.

The markings of Soviet-made cartridges remain mostly with a protruding imprint.

At the top - the number or name of the plant, at the bottom - the year of manufacture.

At the cartridges of the Tula plant in 1919-20. a quarter is indicated, possibly in 1923-24. only the last digit of the year of issue is indicated, and the Lugansk plant in 1920-1927. indicates the period (1,2,3) in which they were produced. The Ulyanovsk plant in 1919-30 puts the name of the plant (C, U, ZV) at the bottom.

In 1930, the spherical bottom part of the sleeve was replaced by a flat one with a chamfer. The replacement was caused by problems that arose when firing from the Maxim machine gun. The protruding marking is located along the edge of the bottom of the sleeve. And only in the 1970s, the sleeves began to be marked with an extruded impression on a flat surface closer to the center.

Marking

Start marking

End of marking

Klimovsky plant

Kuntsevsky plant
"Red Gear"
Moscow

Produced cartridges for ShKAS and with special bullets T-46, ZB-46
Apparently experienced parties

*Note. The table is not complete, there may be other options

Cases of the Lugansk factory with additional designations + are very rare. Most likely, these are technological designations and the cartridges were intended only for test firing.

There is an opinion that in 1928-1936 the Penza plant produced cartridges marked No. 50, but it is more likely that this is an indistinct mark No. 60

Perhaps, at the end of the thirties, cartridges or shells were produced at the Moscow “Shot-Foundry Plant” No. 58, which then produced tail cartridges for mortar mines.

In 1940-41 in Novosibirsk, plant No. 179 NKB (People's Commissariat of Ammunition) produced rifle cartridges.

The cartridge case for the ShKAS machine gun, unlike an ordinary rifle cartridge case, has, in addition to the factory number and year of manufacture, an additional stamp - the letter "Sh".
Cartridges with a ShKAS sleeve, having a red primer, were used for firing only from synchronous air machine guns.

R. Chumak K. Solovyov Cartridges for a super-machine gun Magazine "Kalashnikov" No. 1 2001

Notes:
Finland, which used the Mosin rifle, produced, and also purchased in the USA and other countries, 7.62x54 cartridges, which are found on the battlefields of the Soviet-Finnish war of 1939 and the Second World War. Probably, cartridges of pre-revolutionary Russian production were also used.

Suomen Ampuma Tarvetehdas OY (SAT) , Riihimaki, Finland(1922-26)

In the 1920s and 30s, the United States used Mosin rifles left over from the Russian order for training purposes and sold them for private use, releasing cartridges for this. Deliveries were made to Finland in 1940

(UMC- Union Metallic Cartridge Co. affiliatedtoRemington Co.)

WinchesterRepeating Arms Co., Bridgeport, CT
Middle drawing - factoryEastAlton
Right picture - plantNewHaven

During World War I, Germany used the captured Mosin rifle to arm auxiliary and rear units.

It is possible that, initially, German cartridges were produced without marking, but there will probably be no reliable information about this.

Deutsche Waffen-u. Munitionsfabriken A.-G., Fruher Lorenz , Karlsruhe, Germany

Spain during the civil war received a large number of various, mostly obsolete, weapons from the USSR. Including the Mosin rifle. The production of cartridges was established. It is possible that at first Soviet-made cartridge cases were used, which were reloaded and new markings were applied to them.

Fabrica Nacional de Toledo. Spain

The English company Kynoch supplied cartridges to Finland and Estonia. According to the data providedGOST of "P.labbett &F.A.brown.foreignrifle-caliberammunition manufactured in Britain.London, 1994., "Kynoch signed contracts for the supply of 7.62x54 cartridges:

1929 Estonia (with tracer)
1932 Estonia (with a heavy bullet weighing 12.12 gr.)
1938 Estonia (with tracer)
1929 Finland (with tracer, armor-piercing bullet)
1939 Finland (with tracer)

The 7.62x54 cartridge was produced in the 20-40s and in other countries for commercial purposes:

ARS-it is unlikely that thisA. RSAtelierdeConstuctiondeRennes, Rennes, France, since the cartridges of this company areRS, most likely equipped in Estonia with the participation of Finland

FNC- (Fabrica Nacional de Cartuchos, Santa Fe), Mexico

FN-(Fabrique Nationale d "Armes de Guerre, Herstal) Belgium,

Pumitra Voina Anonima, Romania
Probably for the remaining captured rifles after World War 1, but there is no exact data on the manufacturer

It is possible that some of the foreign ammunition listed above could have ended up in Soviet warehouses in small quantities as a result of the annexation of the western territories and the Finnish War, and were most likely used by units of the "people's militia" in the initial period of the Second World War. Also now often found in archaeological studies of the battlefields of the Great Patriotic War in Soviet positions, shells and cartridges made in the USA and England commissioned by Russia for World War 1. The order was not completed in full on time, and already during the years of the civil war it was supplied to the White Army. After the end of the civil war, the remnants of these ammunition settled in warehouses, they were probably used by security units and OSOAVIAKhIM, but they turned out to be in demand with the beginning of the Second World War.
Sometimes there are cases of 7.7mm English rifle cartridges (.303 British) on the battlefields, which are mistaken for 7.62x54R ammunition. These cartridges were used, in particular, by the armies of the Baltic states and in 1940 were used for the Red Army. Near Leningrad, such cartridges are found with the marking of the V-Riga plant "Vairogs" (VAIROGS, formerly Sellier & Bellot)
.
Later, such cartridges of English and Canadian production came under Lend-Lease.

I I I - period 1942-1945

In 1941, all factories, except for Ulyanovsk, were partially or completely evacuated, and the old factory numbers were kept in the new location. For example, the Barnaul plant, transported from Podolsk, produced its first products on November 24, 1941. Some plants were re-created. The numbering of all cartridge productions is given, since there is no exact data on the range of their products.

Marking with
1941-42

Factory location

Marking with
1941-42

Factory location

New Lyalya

Sverdlovsk

Chelyabinsk

Novosibirsk

According to B. Davydov, during the war years, rifle cartridges were produced at factories 17 ,38 (1943), 44 (1941-42),46 ,60 ,179 (1940-41),188 ,304 (1942),529 ,539 (1942-43),540 ,541 (1942-43), 543 ,544 ,545 ,710 (1942-43),711 (1942).

During the restoration in 1942-1944, the plants received new designations.

This brand is probably the products manufactured by the Podolsk plant during the period of its resumption of work.
There may be other designations. For example, No. 10 in 1944 (found on TT cartridges), but the location of production is unknown, perhaps it is the Perm plant or the poorly readable stamp of the Podolsk plant.

Since 1944, the designation of the month of issue of the cartridge is possible.
For example, the training cartridge of 1946 has such a marking.

IV - Post-war period

In the postwar years in the USSR, factories in Klimovsk-No. 711, Tula-No. 539, Voroshilovgrad (Lugansk)-No. 270, Ulyanovsk-No. 3, Yuryuzan-No. 38, Novosibirsk-No. 188, Barnaul-No. 17 and Frunze remained in cartridge production. -#60.

The markings on rifle cartridges from this production period remain mostly with a raised impression. At the top - the plant number, at the bottom - the year of manufacture.

In 1952-1956, the following designations are used to designate the year of issue:

D = 1952, D = 1953, E = 1954, I = 1955, K = 1956.

After the Second World War, the 7.62 caliber cartridge was also produced in the Warsaw Pact countries, China, Iraq and Egypt, and other countries .. Designation options are possible

Czechoslovakia

aimbxnzv

Bulgaria

Hungary

Poland

Yugoslavia

P P U

31 51 61 71 321 671

This cartridge is still being produced at Russian factories in combat and hunting performance.

Modern names and some of the variants of commercial markings on Russian cartridges since 1990

The designs, characteristics of various bullets for cartridges of 7.62 caliber are quite well represented in modern weapons literature and therefore only the color designations of bullets are given according to the “Handbook of Cartridges ...” 1946.

Light bullet L arr. 1908

Heavy bullet D arr. 1930, the tip is painted yellow for a length of 5 mm
Since 1953 it has been replaced by an LPS bullet painted on the tip until 1978 in silver color

Armor-piercing bullet B-30 arr. 1930
tip painted 5 mm black

Armor-piercing incendiary bullet B-32 arr. 1932 tip painted 5 mm long black with a red border stripe
Bullet BS-40 arr. 1940 it was painted black for a length of 5 mm, and the rest of the protruding part of the bullet from the sleeve was red.

Sighting and incendiary bullet PZ model 1935 the tip is painted red for a length of 5 mm

Tracer bullet T-30 arr. 1930 and T-46 mod. 1938 the tip is painted 5 mm green.
The T-46 bullet was developed at the Kuntsevsky Plant (Red Equipment) No. 46 and from here got its number in the title.

Most of the above information was provided by the director of the local history museum of the Lomonosovsky district of the Leningrad region
Vladimir Andreevich Golovatyuk , who has been dealing with the history of small arms and ammunition for many years.
The museum has collected a lot of materials and exhibits on the history of the region, military operations on the territory of the region during the Second World War. Excursions are regularly held for schoolchildren and all comers. T museum telephone 8 812 423 05 66

In addition, I give the information I have on rifle cartridges from an earlier period:
Cartridge for rifle Krnka, Baranova
Produced at the St. Petersburg plant (and some workshops without designations)

Probably L is the name of the St. Petersburg Foundry Workshop.

Probably VGO - Vasileostrovsky cartridge case department of the St. Petersburg cartridge factory.

The designation of the third of the year of manufacture appears

Petersburg plant

Unfortunately, I do not have information on designations before 1880, most likely the letter V denotes the Vasileostrovsky cartridge case department of the St. Petersburg cartridge factory, and the upper mark is the name of the brass manufacturer.

Manufactured by Keller & Co., Hirtenberg Austria, probably commissioned by Bulgaria for the Serbian-Bulgarian war.