Цель:
Познакомить учащихся с понятиями «количество вещества», «молярная масса» дать представление о постоянной Авогадро. Показать взаимосвязь количества вещества, числа частиц и постоянной Авогадро, а также взаимосвязь молярной массы, массы и количества вещества. Научить производить расчёты.

1)Что такое количество вещества?
2) Что такое моль?
3)Сколько структурных единиц содержится в 1 моле?
4) Через какие величины можно определить количество вещества?
5) Что такое молярная масса, с чем численно совпадает?
6)Что такое молярный объем?

Количество вещества - физическая величина, которая означает определенное число структурных элементов (молекул, атомов, ионов) Обозначается n (эн) измеряется в международной системе единиц (Си) моль
Число Авогадро - показывает число частиц в 1 моль вещества Обозначается NA измеряется в моль-1 имеет числовое значение 6,02*10^23
Молярная масса вещества численно равна его относительной молекулярной массе. Молярная масса - физическая величина, которая показывает массу в 1 моля вещества Обозначается М измеряется в г/моль М = m/n
Молярный объем - физическая величина, которая показывает объем, который занимает любой газ количеством вещества 1 моль Обозначается Vm измеряется в л/моль Vm = V/n При н.у. Vm=22,4л/моль
МОЛЬ - это КОЛИЧЕСТВО ВЕЩЕСТВА, равное 6,02 . 10 23 структурных единиц данного вещества – молекул (если вещество состоит из молекул), атомов (если это атомарное вещество), ионов (если вещество является ионным соединением).
1 моль (1 М) воды = 6 . 10 23 молекул Н 2 О,

1 моль (1 М) железа = 6 . 10 23 атомов Fe,

1 моль (1 М) хлора = 6 . 10 23 молекул Cl 2 ,

1 моль (1 М) ионов хлора Cl - = 6 . 10 23 ионов Cl - .

1 моль (1 М) электронов е - = 6 . 10 23 электронов е - .

Задачи:
1)Сколько молей кислорода содержится в 128 г кислорода?

2) При грозовых разрядах в атмосфере происходит следующая реакция: N 2 + O 2 ® NO 2 . Уравняйте реакцию. Сколько молей кислорода потребуется для полного превращения 1 моля азота в NO 2 ? Сколько это будет граммов кислорода? Сколько граммов NO 2 образуется?

3) В стакан налили 180 г воды. Сколько молекул воды в стакане? Сколько это молей H 2 O?

4)Смешали 4 г водорода и 64 г кислорода. Смесь взорвали. Сколько граммов воды получилось? Сколько граммов кислорода осталось не израсходованным?

Домашнее задание: параграф 15, упр. 1-3,5

Молярный объем газообразных веществ.
Цель:
образовательная – систематизировать знания учащихся о понятиях количество вещества, число Авогадро, молярная масса, на их основе сформировать представление о молярном объеме газообразных веществ; раскрыть сущность закона Авогадро и его практического применения;


развивающая – формировать способность к адекватному самоконтролю и самооценке; развивать умение логически мыслить, выдвигать гипотезы, делать аргументированные выводы.

Ход урока:
1.Организационный момент.
2.Объявление темы и целей урока.

3.Актуализация опорных знаний
4.Решение задач

Закон Авогадро – это один из самых важных законов химии (сформулирован Амадео Авогадро в 1811г), гласящий, что «в равных объемах разных газов, которые взяты при одинаковом давлении и температуре, содержится одинаковое число молекул».

Молярный объем газов – объем газа, содержащий 1 моль частиц этого газа.

Нормальные условия – температура 0 С (273 K) и давление 1 атм (760 мм ртутного столба или 101 325 Па).

Ответьте на вопросы:

1. Что называется атомом? (Атом – самая мелкая химически неделимая часть химического элемента, которая является носителем его свойств).

2. Что такое моль? (Моль - это количества вещества, которое равно 6,02.10^23 структурных единиц этого вещества – молекул, атомов, ионов. Это количество вещества, содержащее столько же частиц, сколько содержится атомов в 12 г углерода).

3. В чем измеряется количество вещества? (В моль).

4. В чем измеряется масса вещества? (Масса вещества измеряется в граммах).

5. Что такое молярная масса и в чем она измеряется? (Молярная масса – это масса 1 моль вещества. Она измеряется в г/моль).

Следствия закона Авогадро.

Из закона Авогадро вытекают 2 следствия:

1. Один моль любого газа занимает одинаковый объем при одинаковых условиях. В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона (Рисунок 3).

Молярный объем газа при нормальных условиях - фундаментальная физическая постоянная, широко используемая в химических расчетах. Она позволяет применять объем газа вместо его массы. Значение молярного объема газа при н.у. является коэффициентом пропорциональности между постоянными Авогадро и Лошмидта

2. Молярная масса первого газа равна произведению массы молярной второго газа на относительную плотность по второму первого газа. Это положение имело огромное значение для развития химии, т.к. оно дало возможность определять частичный вес тел, которые способны переходить в парообразное или газообразное состояние. Следовательно, отношение массы определенного объема одного газа к массе такого же объема другого газа, взятого при тех же условиях, называется плотностью первого газа по второму

1. Заполните пропуски:

Молярный объем - это физическая величина, которая показывает....................., обозначается...................., измеряется в...................... .

2. Запишите формулу по правилу.

Объем газообразного вещества (V) равен произведению молярного объема

(Vm) на количество вещества (n) ............................. .

3. Используя материал задания 3, выведите формулы для расчета:

а) объема газообразного вещества.

б) молярного объема.

Домашнее задание: параграф 16,упр. 1-5

Решение задач на вычисление количества вещества, массы и объема.

Обобщение и систематизация знаний по теме «Простые вещества»
Цель:
обобщить и систематизировать знания обучающихся об основных классах соединений
Ход работы:

1)Организационный момент

2) Обобщение изученного материала:

а)Устный опрос по теме урока

б) Выполнение задания 1 (нахождение оксидов, оснований, кислот, солей среди заданных веществ)

в) Выполнение задания 2 (составление формул оксидов, оснований, кислот, солей)

3. Закрепление (самостоятельная работа)

5. Домашнее задание

2)
а)
- На какие две группы можно разделить вещества?

Какие вещества называются простыми?

На какие две группы делятся простые вещества?

Какие вещества называются сложными?

Какие сложные вещества известны?

Какие вещества называются оксидами?

Какие вещества называются основаниями?

Какие вещества называются кислотами?

Какие вещества называются солями?

б)
Выписать отдельно оксиды, основания, кислоты, соли:

KOH, SO 2 , HCI, BaCI 2 , P 2 O 5 ,

NaOH, CaCO 3 , H 2 SO 4 , HNO 3 ,

MgO, Ca(OH) 2 , Li 3 PO 4

Назвать их.

в)
Составить формулы оксидов, соответствующих основаниям и кислотам:

Гидроксид калия-оксид калия

Гидроксид железа(III)-оксид железа(III)

Фосфорная кислота-оксид фосфора(V)

Серная кислота-оксид серы(VI)

Составить формулу соли нитрата бария; по зарядам ионов, степени окисления элементов записать

формулы соответствующих гидроксидов, оксидов, простых веществ.

1. Степень окисления серы равна +4 в соединении:

2. К оксидам относится вещество:

3. Формула сернистой кислоты:

4. Основанием является вещество:

5. Соль K 2 CO 3 называется:

1- силикат калия

2- карбонат калия

3- карбид калия

4- карбонат кальция

6. В растворе какого вещества лакмус изменит окраску на красную:

2- в щелочи

3- в кислоте

Домашнее задание: повторить параграфы 13-16

Контрольная работа №2
«Простые вещества»

Степень окисления: бинарные соединения

Цель: научить составлять молекулярные формулы веществ, состоящих из двух элементов по степени окисления. продолжить закрепление навыка определения степени окисления элемента по формуле.
1. Степень окисления (с. о.) - это условный заряд атомов химического элемента в сложном веществе, вычисленный на основе предположения, что оно состоит из простых ионов.

Следует знать!

1) В соединениях с. о. водорода = +1, кроме гидридов .
2) В соединениях с. о. кислорода = -2, кроме пероксидов и фторидов
3) Степень окисления металлов всегда положительна.

Для металлов главных подгрупп первых трёх групп с. о. постоянна:
металлы IA группы - с. о. = +1,
металлы IIA группы - с. о. = +2,
металлы IIIA группы - с. о. = +3.
4) У свободных атомов и простых веществ с. о. = 0.
5) Суммарная с. о. всех элементов в соединении = 0.

2. Способ образования названий двухэлементных (бинарных) соединений.

3.

Задания:
Составьте формулы веществ по названию.

Сколько молекул содержится в 48 г оксида серы (IV)?

Степень окисления марганца в соединении К2МnO4 равна:

Максимальную степень окисления хлор проявляет в соединении, формула которого:

Домашнее задание: параграф 17, упр. 2,5,6

Оксиды. Летучие водородные соединения.
Цель: формирование знаний у учащихся о важнейших классах бинарных соединений – оксидах и летучих водородных соединениях.

Вопросы:
– Какие вещества называются бинарными?
– Что называется степенью окисления?
– Какую степень окисления будут иметь элементы, если они отдают электроны?
– Какую степень окисления будут иметь элементы, если они принимают электроны?
– Как определить, сколько электронов будут отдавать, или принимать элементы?
– Какую степень окисления будут иметь одиночные атомы или молекулы?
– Как будут называться соединения, если в формуле на втором месте стоит сера?
– Как будут называться соединения, если в формуле на втором месте стоит хлор?
– Как будут называться соединения, если в формуле на втором месте стоит водород?
– Как будут называться соединения, если в формуле на втором месте стоит азот?
– Как будут называться соединения, если в формуле на втором месте стоит кислород?
Изучение новой темы:
– Что общего в этих формулах?
– Как будут называться такие вещества?

SiO 2 , H 2 O, CO 2 , AI 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , CO.
Оксиды – широко распространенный в природе класс веществ неорганических соединений. К оксидам относят такие хорошо известные соединения, как:

Песок (диоксид кремния SiO2 с небольшим количеством примесей);

Вода (оксид водорода H2O);

Углекислый газ (диоксид углерода CO2 IV);

Угарный газ (CO II оксид углерода);

Глина (оксид алюминия AI2O3 с небольшим количеством других соединений);

Большинство руд черных металлов содержат оксиды, например красный железняк - Fe2O3 и магнитный железняк - Fe3O4.

Летучие водородные соединения - наиболее практически важная группа соединений с водородом. К ним относятся такие часто встречающиеся в природе или используемые в промышленности вещества, как вода, метан и другие углеводороды, аммиак, сероводород, галогеноводороды. Многие из летучих водородных соединений находятся в виде растворов в почвенных водах, в составе живых организмов, а также в газах, образующихся при биохимических и геохимических процессах, поэтому весьма велика их биохимическая и геохимическая роль.
В зависимости от химических свойств различают:

Солеобразующие оксиды:

o основные оксиды (например, оксид натрия Na2O, оксид меди(II) CuO): оксиды металлов, степень окисления которых I-II;

o кислотные оксиды (например, оксид серы(VI) SO3, оксид азота(IV) NO2): оксиды металлов со степенью окисления V-VII и оксиды неметаллов;

o амфотерные оксиды (например, оксид цинка ZnO, оксид алюминия Al2О3): оксиды металлов со степенью окисления III-IV и исключения (ZnO, BeO, SnO, PbO);

Несолеобразующие оксиды: оксид углерода(II) СО, оксид азота(I) N2O, оксид азота(II) NO, оксид кремния(II) SiO.

Домашнее задание: параграф 18, упр.1,4,5

Основания.
Цель:

познакомить учащихся с составом, классификацией и представителями класса оснований

продолжить формирование знаний об ионах на примере сложных гидроксид-ионов

продолжить формирование знаний о степени окисления элементов, химической связи в веществах;

дать понятие о качественных реакциях и индикаторах;

формировать навыки обращения с химической посудой и реактивами;

формировать бережное отношение к своему здоровью.

Кроме бинарных соединений, существуют сложные вещества, например основания, которые состоят из трех элементов: металла, кислорода п водорода.
Водород и кислород в них входит в виде гидроксогруппы ОН -. Следовательно, гидроксогруппа ОН- представляет собой ион, только не простой, как Na+ или Сl-, а сложный - ОН- - гидроксид-ион.

Основания - это сложные вещества, состоящие из ионов металлов и связанных с ними одного или нескольких гидроксид ионов.
Если заряд иона металла 1+, то, разумеется, с ионом металла связана одна гидроксогруппа ОН-, если 2+, то две и т. д. Следовательно, состав основании можно записать общей формулой: М(ОН)n, где М - металл, m - число групп ОН и в то же время заряд иона (степень окисления) металла.

Названия оснований состоят из слова гидроксид н наименования металла. Например, Na0Н - гидроксид натрия. Са(0Н)2 - гидроксид кальция.
Если же металл проявляет переменную степень окисления, то ее величину так же, как и для бинарных соединений, указывают римской цифрой в скобках и произносят в конце названия основания, например: СuОН - гидроксид меди (I), читается "гидроксид меди один"; Сг(ОН), - гидроксид меди (II), читается «гидроксид меди два».

По отношению к воде основания делятся на две группы: растворимые NaOH, Са(ОН)2, K0Н, Ва(ОН)? и нерастворимые Сг(ОН)7, Ке(ОН)2. Растворимые основания также называют щелочами. О том, растворимо основание или нерастворимо в воде, можно узнать с помощью таблицы "Растворимость оснований, кислот и солей в воде".

Гидроксид натрия NaОН - твердое белое вещество, гигроскопичное и поэтому расплывающееся на воздухе; хорошо растворяется в воде, при этом выделяется теплота. Раствор гидроксида натрия в воде мылкий на ощупь и очень едкий. Он разъедает кожу, ткани, бумагу и другие материалы. За это свойство гидроксид натрия получил название едкого натра. С гидроксидом натрия и его растворами надо обращаться осторожно, опасаясь, чтобы они не попали на одежду, обувь, а тем более на руки и лицо. На коже от этого вещества образуются долго не заживающие раны. NaОН применяют в мыловарении, кожевенной и фармацевтической промышленности.

Гидроксид калия КОН - тоже твердое белое вещество, хорошо растворимое в воде, с выделением большого количества теплоты. Раствор гидроксида калия, как и раствор едкого натра, мылок на ощупь и очень едок. Поэтому гидроксид калия иначе называют едкое кали. Применяют его в качестве добавки при производстве мыла, тугоплавкого стекла.

Гидроксид кальция Са(ОН)2 или гашеная известь, - рыхлый белый порошок, немного растворимый в воде (в таблице растворимости против формулы Са(ОН)а стоит буква М, что означает малорастворимое вещество). Получается при взаимодействии негашеной извести СаО с водой. Этот процесс называют гашением. Гидроксид кальция применяют в строительстве при кладке и штукатурке стен, для побелки деревьев, для получения хлорной извести, которая является дезинфицирующим средством.

Прозрачный раствор гидроксида кальция называется известковой водой. При пропускании через известковую воду СО2 она мутнеет. Такой опыт служит для распознавания углекислого газа.

Реакции, с помощью которых распознают определенные химические вещества, называют качественными реакциями.

Для щелочей тоже существуют качественные реакции, с помощью которых растворы щелочей можно распознать среди растворов других веществ. Это реакции щелочей с особыми веществами - индикаторами (лат. «указателями»). Если к раствору щелочи добавить несколько капель раствора индикатора, то он изменит свой цвет


Домашнее задание: параграф 19 , упр.2-6, таблица 4

Прежде чем решать задачи, следует занть формулы и правила того, как найти объем газа. Следует вспомнить закон Авогадро. А сам объем газа можно вычислить при помощи нескольких формул, выбрав из них подходящую. При подборе необходимой формулы, большое значение имеют условия среды, в частности температура и давление.

Закон Авогадро

В нем говорится, что при одинаковом давлении и одинаковой температуре, в одних и тех же объемах разных газов, будет содержаться одинаковое число молекул. Количество молекул газа, содержащихся в одном моле, это есть число Авогадро. Из этого закона следует, что: 1 Кмоль (киломоль) идеального газа, причем любого, при одинаковом давлении и температуре (760 мм рт.ст. и t = 0*С) всегда занимает один объем = 22,4136 м3.

Как определить объем газа

  • Формулу V=n*Vm чаще всего можно встретить в задачах. Здесь объем газа в литрах - V, Vm – объем газа молярный (л/моль), который при нормальных условиях = 22,4 л/моль, а n – количество вещества в молях. Когда в условиях нет количества вещества, но при этом есть масса вещества, тогда поступаем таким образом: n=m/M. Здесь М – г/моль (молярная масса вещества), а масса вещества в граммах - m. В таблице Менделеева она написана под каждым элементом, как его атомная масса. Сложим все массы и получим искомую.
  • Итак, как рассчитать объем газа. Вот задача: в соляной кислоте растворить 10 г алюминия. Вопрос: сколько водорода может выделиться при н. у.? Уравнение реакции выглядит так: 2Al+6HCl(изб.)=2AlCl3+3H2. В самом начале находим алюминий (количество), вступивший в реакцию по формуле: n(Al)=m(Al)/M(Al). Массу алюминия (молярную) возьмем из таблицы Менделеева M(Al)=27г/моль. Подставим: n(Al)=10/27=0,37моль. Из химического уравнения видно, 3 моли водорода образовались при растворении 2-х молей алюминия. Следует рассчитать, а сколько же водорода выделится из 0,4 моли алюминия: n(H2)=3*0,37/2=0,56моль. Подставим данные в формулу и найдем объем этого газа. V=n*Vm=0,56*22,4=12,54л.

В химии не используют значения абсолютных масс молекул, а пользуются величиной относительная молекулярная масса. Она показывает, во сколько раз масса молекулы больше 1/12 массы атома углерода. Эту величину обозначают M r .

Относительная молекулярная масса равна сумме относительных атомных масс входящих в нее атомов. Вычислим относительную молекулярную массу воды.

Вы знаете, что в состав молекулы воды входят два атома водорода и один атом кислорода. Тогда ее относительная молекулярная масса будет равна сумме произведений относительной атомной массы каждого химического элемента на число его атомов в молекуле воды:

Зная относительные молекулярные массы газообразных веществ, можно сравнивать их плотности, т. е. вычислять относительную плотность одного газа по другому - D(А/Б). Относительная плотность газа А по газу Б равна отношению их относительных молекулярных масс:

Вычислим относительную плотность углекислого газа по водороду:

Теперь вычисляем относительную плотность углекислого газа по водороду:

D(угл. г./водор.) = M r (угл. г.) : M r (водор.) = 44:2 = 22.

Таким образом, углекислый газ в 22 раза тяжелее водорода.

Как известно, закон Авогадро применим только к газообразным веществам. Но химикам необходимо иметь представление о количестве молекул и в порциях жидких или твердых веществ. Поэтому для сопоставления числа молекул в веществах химиками была введена величина - молярная масса .

Молярная масса обозначается М , она численно равна относительной молекулярной массе.

Отношение массы вещества к его молярной массе называется количеством вещества .

Количество вещества обозначается n . Это количественная характеристика порции вещества, наряду с массой и объемом. Измеряется количество вещества в молях.

Слово «моль» происходит от слова «молекула». Число молекул в равных количествах вещества одинаково.

Экспериментально установлено, что 1 моль вещества содержит частиц (например, молекул). Это число называется числом Авогадро. А если к нему добавить единицу измерения - 1/моль, то это будет физическая величина - постоянная Авогадро, которая обозначается N А.

Молярная масса измеряется в г/моль. Физический смысл молярной массы в том, что эта масса 1 моль вещества.

В соответствии с законом Авогадро, 1 моль любого газа будет занимать один и тот же объем. Объем одного моля газа называется молярным объемом и обозначается V n .

При нормальных условиях (а это 0 °С и нормальное давление - 1 атм. или 760 мм рт. ст. или 101,3 кПа) молярный объем равен 22,4 л/моль.

Тогда количество вещества газа при н.у. можно вычислить как отношение объема газа к молярному объему.

ЗАДАЧА 1 . Какое количество вещества соответствует 180 г воды?

ЗАДАЧА 2. Вычислим объем при н.у., который займет углекислый газ количеством 6 моль.

Список литературы

  1. Сборник задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. - М.: АСТ: Астрель, 2006. (с. 29-34)
  2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с. 27-32)
  3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005. (§§ 12, 13)
  4. Химия: неорг. химия: учеб. для 8 кл. общеобр.учрежд. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§§ 10, 17)
  5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.
  1. Единая коллекция цифровых образовательных ресурсов ().
  2. Электронная версия журнала «Химия и жизнь» ().
  3. Тесты по химии (онлайн) ().

Домашнее задание

1. с.69 № 3; с.73 №№ 1, 2, 4 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. №№ 65, 66, 71, 72 из Сборника задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. - М.: АСТ: Астрель, 2006.

Наряду с массой и объемом в химических расчетах часто используется количество вещества, пропорциональное числу содержащихся в веществе структурных единиц. При этом в каждом случае должно быть указано, какие именно структурные единицы (молекулы, атомы, ионы и т. д.) имеются в виду. Единицей количества вещества является моль.

Моль - количество вещества, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится атомов в 12 г изотопа углерода 12С.

Число структурных единиц, содержащихся в 1 моле вещества (постоянная Авогадро) определено с большой точностью; в практических расчетах его принимают равным 6,02 1024 моль -1 .

Нетрудно показать, что масса 1 моля вещества (мольная масса), - выраженная в граммах, численно равна относительной молекулярной массе этого вещества.

Так, относительная молекулярная масса (или, сокращенно молекулярная масса) свободного хлора С1г равна 70,90. Следовательно, мольная масса молекулярного хлора составляет 70,90 г/моль. Однако мольная масса атомов хлора вдвое меньше (45,45 г/моль), так как 1 моль молекул хлора Сl содержит 2 моля атомов хлора.

Согласно закону Авогадро, в равных объемах любых газов, взятых при одной и той же температуре и одинаковом давлении, содержится одинаковое число молекул. Иными словами, одно и то же число молекул любого газа занимает при одинаковых условиях один и тот же объем. Вместе с тем 1 моль любого газа содержит одинаковое число молекул. Следовательно, при одинаковых условиях 1 моль любого газа занимает один и тот же объем. Этот объем называется мольным объемом газа и при нормальных условиях (0°С, давление 101, 425 кПа) равен 22,4 л.

Например, утверждение «содержание диоксида углерода в воздухе составляет 0,04% (об.)» означает, что при парциальном давлении СО 2 , равном давлению воздуха, и при той же температуре диоксид углерода, содержащийся в воздухе, займет 0,04% общего объема, занимаемого воздухом.

Контрольное задание

1. Сопоставить числа молекул, содержащихся в 1 г NH 4 и в 1 г N 2 . В каком случае и во сколько раз число молекул больше?

2. Выразить в граммах массу одной молекулы диоксида серы.



4. Сколько молекул содержится в 5,00 мл хлора при нормальных условиях?

4. Какой объем при нормальных условиях занимают 27 10 21 молекул газа?

5. Выразить в граммах массу одной молекулы NО 2 -

6. Каково соотношение объемов, занимаемых 1 молем О 2 и 1 молем Оз (условия одинаковые)?

7. Взяты равные массы кислорода, водорода и метана при одинаковых условиях. Найти отношение объемов взятых газов.

8. На вопрос, какой объем займет 1 моль воды при нормальных условиях, получен ответ: 22,4 л. Правильный ли это ответ?

9. Выразить в граммах массу одной молекулы HCl.

Сколько молекул диоксида углерода находится в 1 л воздуха, если объемное содержание СО 2 составляет 0,04% (условия нормальные)?

10. Сколько молей содержится в 1 м 4 любого газа при нормальных условиях?

11. Выразить в граммах массу одной молекулы Н 2 О-

12. Сколько молей кислорода находится в 1 л воздуха, если объемное

14. Сколько молей азота находится в 1 л воздуха, если объемное содержание его составляет 78% (условия нормальные)?

14. Взяты равные массы кислорода, водорода и азота при одинаковых условиях. Найти отношение объемов взятых газов.

15. Сопоставить числа молекул, содержащихся в 1 г NО 2 и в 1 г N 2 . В каком случае и во сколько раз число молекул больше?

16. Сколько молекул содержится в 2,00 мл водорода при нормальных условиях?

17. Выразить в граммах массу одной молекулы Н 2 О-

18. Какой объем при нормальных условиях занимают 17 10 21 молекул газа?

СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

При определении понятия скорости химической реакции необходимо различать гомогенные и гетерогенные реакции. Если реакция протекает в гомогенной системе, например, в растворе или в смеси газов, то она идет во всем объеме системы. Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени в единице объема системы. Поскольку отношение числа молей вещества к объему, в котором оно распределено, есть молярная концентрация вещества, скорость гомогенной реакции можно также определить как изменение концентрации в единицу времени какого-либо из веществ: исходного реагента или продукта реакции . Чтобы результат расчета всегда был положительным, независимо, от того, производится он по реагенту или продукту, в формуле используется знак «±»:



В зависимости от характера реакции время может быть выражено не только в секундах, как требует система СИ, но также в минутах или часах. В ходе реакции величина ее скорости не постоянна, а непрерывно изменяется: уменьшается, так как уменьшаются концентрации исходных веществ. Вышеприведенный расчет дает среднее значение скорости реакции за некоторый интервал времени Δτ = τ 2 – τ 1 . Истинная (мгновенная) скорость определяется как предел к которому стремится отношение ΔС / Δτ при Δτ → 0, т. е. истинная скорость равна производной концентрации по времени.

Для реакции, в уравнении которой есть стехиометрические коэффициенты, отличающиеся от единицы, значения скорости, выраженные по разным веществам, неодинаковы. Например для реакции А + 4В = D + 2Е расход вещества А равен одному молю, вещества В – трем молям, приход вещества Е – двум молям. Поэтому υ (А) = ⅓υ (В) = υ (D) =½υ (Е) или υ (Е) . = ⅔υ (В) .

Если реакция протекает между веществами, находящимися в различных фазах гетерогенной системы, то она может идти только на поверхности раздела этих фаз. Например, взаимодействие раствора кислоты и куска металла происходит только на поверхности металла. Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени на единице поверхности раздела фаз:

.

Зависимость скорости химической реакции от концентрации реагирующих веществ выражается законом действующих масс: при постоянной температуре скорость химической реакции прямо пропорциональна произведению молярных концентраций реагирующих веществ, возведенных в степени, равные коэффициентам при формулах этих веществ в уравнении реакции . Тогда для реакции

2А + В → продукты

справедливо соотношение υ ~ ·С А 2 ·С В, а для перехода к равенству вводится коэффициент пропорциональности k , называемый константой скорости реакции :

υ = k ·С А 2 ·С В = k ·[А] 2 ·[В]

(молярные концентрации в формулах могут обозначаться как буквой С с со­ответствующим индексом, так и формулой вещества, заключенной в квадратные скобки). Физический смысл константы скорости реакции – скорость реакции при концентрациях всех реагирующих веществ, равных 1 моль/л. Размерность константы скорости реакции зависит от числа сомножителей в правой части уравнения и может быть с –1 ; с –1 ·(л/моль); с –1 ·(л 2 /моль 2) и т. п., то есть такой, чтобы в любом случае при вычислениях скорость реакции выражалась в моль·л –1 ·с –1 .

Для гетерогенных реакций в уравнение закона действия масс входят концентрации только тех веществ, которые находятся в газовой фазе или в растворе. Концентрация вещества, находящегося в твердой фазе, представ­ляет постоянную величину и входит в константу скорости, например, для процесса горения угля С + О 2 = СО 2 закон действия масс записывается:

υ = k I ·const··= k ·,

где k = k I ·const.

В системах, где одно или несколько веществ являются газами, скорость реакции зависит также и от давления. Например, при взаимодействии водорода с парами иода H 2 + I 2 =2HI скорость химической реакции будет определяться выражением:

υ = k ··.

Если увеличить давление, например, в 4 раза, то во столько же раз уменьшится объем, занимаемый системой, и, следовательно, во столько же раз увеличатся концентрации каждого из реагирующих веществ. Скорость реакции в этом случае возрастет в 9 раз

Зависимость скорости реакции от температуры описывается правилом Вант-Гоффа: при повышении температуры на каждые 10 градусов скорость реакции увеличивается в 2‑4 раза . Это означает, что при повышении температуры в арифметической прогрессии скорость химической реакции возрастает в геометрической прогрессии. Основанием в формуле прогрессии является температурный коэффициент скорости реакции γ, показывающий, во сколько раз увеличива­ется скорость данной реакции (или, что то же самое – константа скорости) при росте температуры на 10 градусов. Математически правило Вант-Гоффа выражается формулами:

или

где и – скорости реакции соответственно при начальной t 1 и конечной t 2 температурах. Правило Вант-Гоффа может быть также выражено следующими соотношениями:

; ; ; ,

где и – соответственно скорость и константа скорости реакции при тем­пературе t ; и – те же величины при температуре t +10n ; n – число «десятиградусных» интервалов (n =(t 2 –t 1)/10), на которые изменилась температура (может быть числом целым или дробным, положительным или отрицательным).

Контрольное задание

1. Найти значение константы скорости реакции А + В -> АВ, если при концентрациях веществ А и В, равных соответственно 0,05 и 0,01 моль/л, скорость реакции равна 5 10 -5 моль/(л-мин).

2. Во сколько раз изменится скорость реакции 2А + В -> А2В, если концентрацию вещества А увеличить в 2 раза, а концентрацию вещества В уменьшить в 2 раза?

4. Во сколько раз следует увеличить концентрацию вещества, В 2 в системе 2А 2 (г.) + В 2 (г.) = 2А 2 В(г.), чтобы при уменьшении концентрации вещества А в 4 раза скорость прямой реакции не изменилась?

4. Через некоторое время после начала реакции ЗА+В->2C+D концентрации веществ составляли: [А] =0,04 моль/л; [В] = 0,01 моль/л; [С] =0,008 моль/л. Каковы исходные концентрации веществ А и В?

5. В системе СО + С1 2 = СОС1 2 концентрацию увеличили от 0,04 до 0,12 моль/л, а концентрацию хлора - от 0,02 до 0,06 моль/л. Во сколько раз возросла скорость прямой реакции?

6. Реакция между веществами А и В выражается уравнением: А + 2В → С. Начальные концентрации составляют: [А] 0 = 0,04 моль/л, [В] о = 0,05 моль/л. Константа скорости реакции равна 0,4. Найти начальную скорость реакции и скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшится на 0,01 моль/л.

7. Как изменится скорость реакции 2СO + О2 = 2СО2 , протекающей в закрытом сосуде, если увеличить давление в 2 раза?

8. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 20 °С до 100 °С, приняв значение температурного коэффициента скорости реакции равным 4.

9. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если увеличить давление в системе в 4 раза;

10. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если уменьшить объем системы в 4 раза?

11. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если повысить концентрацию NO в 4 раза?

12. Чему равен температурный коэффициент скорости реакции, если при увеличении температуры на 40 градусов скорость реакции

возрастает в 15,6 раза?

14. . Найти значение константы скорости реакции А + В -> АВ, если при концентрациях веществ А и В, равных соответственно 0,07 и 0,09 моль/л, скорость реакции равна 2,7 10 -5 моль/(л-мин).

14. Реакция между веществами А и В выражается уравнением: А + 2В → С. Начальные концентрации составляют: [А] 0 = 0,01 моль/л, [В] о = 0,04 моль/л. Константа скорости реакции равна 0,5. Найти начальную скорость реакции и скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшится на 0,01 моль/л.

15. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если увеличить давление в системе в 2 раза;

16. В системе СО + С1 2 = СОС1 2 концентрацию увеличили от 0,05 до 0,1 моль/л, а концентрацию хлора - от 0,04 до 0,06 моль/л. Во сколько раз возросла скорость прямой реакции?

17. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 20 °С до 80 °С, приняв значение температурного коэффициента скорости реакции равным 2.

18. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 40 °С до 90 °С, приняв значение температурного коэффициента скорости реакции равным 4.

ХИМИЧЕСКАЯ СВЯЗЬ. ОБРАЗОВАНИЕ Й СТРУКТУРА МОЛЕКУЛ

1.Какие типы химической связи Вам известны? Приведите пример образования ионной связи по методу валентных связей.

2. Какую химическую связь называют ковалентной? Что характерно для ковалентного типа связи?

4. Какими свойствами характеризуется ковалентная связь? Покажите это на конкретных примерах.

4. Какой тип химической связи в молекулах Н 2; Cl 2 НС1?

5.Какой характер имеют связи в молекулах NCI 4 , CS 2 , СО 2 ? Укажите для каждой нз них направление смещения общей электронной пары.

6. Какую химическую связь называют ионной? Что характерно для ионного типа связи?

7. Какой тип связи в молекулах NaCl, N 2 , Cl 2 ?

8. Изобразите все возможные способы перекрывания s-орбитали с р-орбиталью;. Укажите направленность связи при этом.

9. Объясните донорно-акцепторный механизм ковалентной связи на примере образования иона фосфония [РН 4 ]+.

10.В молекулах СО, С0 2 , связь полярная или неполярная? Объясните. Опишите водородную связь.

11. Почему некоторые молекулы, имеющие полярные связи, в целом являются неполярными?

12.Ковалентный или ионный тип связи характерен для следующих соединений: Nal, S0 2 , KF? Почему ионная связь является предельным случаем ковалентной?

14. Что такое металлическая связь? Чем она отличается от ковалентной связи? Какие свойства металлов она обусловливает?

14. Каков характер связей между атомами в молекулах; KHF 2 , Н 2 0, HNO?

15. Чем объяснить высокую прочность связи между атомами в молекуле азота N 2 и значительно меньшую в молекуле фосфора Р 4 ?

16 . Какую связь называют водородной? Почему для молекул H2S и НС1 в отличие от Н2О и HF образование водородных связей не характерно?

17. Какую связь называют ионной? Обладает ли ионная связь свойствами насыщаемости и направленности? Почему она является предельным случаем ковалентной связи?

18. Какой тип связи в молекулах NaCl, N 2 , Cl 2 ?

При изучении химических веществ важными понятиями являются такие величины, как молярная масса, плотность вещества, молярный объем. Так, что же такое молярный объем, и в чем его отличие для веществ в разном агрегатном состоянии?

Молярный объем: общая информация

Чтобы вычислить молярный объем химического вещества необходимо молярную массу этого вещества разделить на его плотность. Таким образом, молярный объем вычисляется по формуле:

где Vm – молярный объем вещества, М – молярная масса, p – плотность. В Международной системе СИ эта величина измеряется в кубический метр на моль (м 3 /моль).

Рис. 1. Молярный объем формула.

Молярный объем газообразных веществ отличается от веществ, находящихся в жидком и твердом состоянии тем, что газообразный элемент количеством 1 моль всегда занимает одинаковый объем (если соблюдены одинаковые параметры).

Объем газа зависит от температуры и давления, поэтому при расчетах следует брать объем газа при нормальных условиях. Нормальными условиями считается температура 0 градусов и давление 101,325 кПа.

Молярный объем 1 моля газа при нормальных условиях всегда одинаков и равен 22,41 дм 3 /моль. Этот объем называется молярным объемом идеального газа. То есть, в 1 моле любого газа (кислород, водород, воздух) объем равен 22,41 дм 3 /м.

Молярный объем при нормальных условиях можно вывести, используя уравнение состояния для идеального газа, которое называется уравнением Клайперона-Менделеева:

где R – универсальная газовая постоянная, R=8.314 Дж/моль*К=0,0821 л*атм/моль К

Объем одного моля газа V=RT/P=8.314*273.15/101.325=22.413 л/моль, где Т и Р – значение температуры (К) и давления при нормальных условиях.

Рис. 2. Таблица молярных объемов.

Закон Авогадро

В 1811 году А. Авогадро выдвинул гипотезу, что в равных объемах различных газов при одинаковых условиях (температуре и давлении) содержится одинаковой число молекул. Позже гипотеза подтвердилась и стала законом, носящим имя великого итальянского ученого.

Рис. 3. Амедео Авогадро.

Закон становится понятен, если вспомнить, что в газообразном виде расстояние между частицами несопоставимо больше, чем размеры самих частиц.

Таким образом, из закона Авогадро можно сделать следующие выводы:

  • В равных объёмах любых газов, взятых при одной и той же температуре и при одном и том же давлении, содержится одно и то же число молекул.
  • 1 моль совершенно различных газов при одинаковых условиях занимает одинаковый объем.
  • Один моль любого газа при нормальных условиях занимает объем 22,41 л.

Следствие из закона Авогадро и понятие молярного объема основаны на том, что моль любого вещества содержит одинаковое число частиц (для газов – молекул), равное постоянной Авогадро.

Чтобы узнать число молей растворенного вещества содержится в одном литре раствора, необходимо определить молярную концентрацию вещества по формуле c=n/V, где n – количество растворенного вещества, выражаемое в молях, V – объем раствора, выражаемый в литрах С – молярность.

Что мы узнали?

В школьной программе по химии 8 класса изучается тема «Молярный объем». В одном моле газа всегда содержится одинаковый объем, равный 22,41 кубический метр/моль. Этот объем называется молярным объемом газа.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 64.