Zachovanie vášho súkromia je pre nás dôležité. Z tohto dôvodu sme vyvinuli Zásady ochrany osobných údajov, ktoré popisujú, ako používame a uchovávame vaše informácie. Prečítajte si naše postupy ochrany osobných údajov a ak máte nejaké otázky, dajte nám vedieť.

Zhromažďovanie a používanie osobných údajov

Osobné údaje sú údaje, ktoré možno použiť na identifikáciu alebo kontaktovanie konkrétnej osoby.

Keď nás budete kontaktovať, môžete byť kedykoľvek požiadaní o poskytnutie svojich osobných údajov.

Nižšie sú uvedené niektoré príklady typov osobných údajov, ktoré môžeme zhromažďovať, a ako môžeme tieto informácie použiť.

Aké osobné údaje zhromažďujeme:

  • Keď odošlete žiadosť na stránke, môžeme zhromažďovať rôzne informácie vrátane vášho mena, telefónneho čísla, e-mailovej adresy atď.

Ako používame vaše osobné údaje:

  • Osobné údaje, ktoré zhromažďujeme, nám umožňujú kontaktovať vás s jedinečnými ponukami, propagačnými akciami a inými udalosťami a pripravovanými udalosťami.
  • Z času na čas môžeme použiť vaše osobné údaje na zasielanie dôležitých upozornení a komunikácie.
  • Osobné údaje môžeme použiť aj na interné účely, ako je vykonávanie auditov, analýza údajov a rôzne výskumy, aby sme zlepšili služby, ktoré poskytujeme, a poskytli vám odporúčania týkajúce sa našich služieb.
  • Ak sa zúčastníte žrebovania o ceny, súťaže alebo podobnej propagačnej akcie, môžeme použiť informácie, ktoré nám poskytnete, na správu takýchto programov.

Sprístupnenie informácií tretím stranám

Informácie, ktoré od vás dostaneme, nezverejňujeme tretím stranám.

Výnimky:

  • V prípade potreby – v súlade so zákonom, súdnym konaním, v súdnom konaní a/alebo na základe verejných žiadostí alebo žiadostí vládnych orgánov na území Ruskej federácie – poskytnúť vaše osobné údaje. Môžeme tiež zverejniť informácie o vás, ak zistíme, že takéto zverejnenie je potrebné alebo vhodné na účely bezpečnosti, presadzovania práva alebo na iné účely verejného významu.
  • V prípade reorganizácie, zlúčenia alebo predaja môžeme osobné údaje, ktoré zhromažďujeme, preniesť na príslušnú nástupnícku tretiu stranu.

Ochrana osobných údajov

Prijímame opatrenia – vrátane administratívnych, technických a fyzických – na ochranu vašich osobných údajov pred stratou, krádežou a zneužitím, ako aj neoprávneným prístupom, zverejnením, zmenou a zničením.

Rešpektovanie vášho súkromia na úrovni spoločnosti

Aby sme zaistili bezpečnosť vašich osobných údajov, informujeme našich zamestnancov o štandardoch ochrany osobných údajov a bezpečnosti a prísne presadzujeme postupy ochrany osobných údajov.

Trigonometria ako veda vznikla na starovekom východe. Prvé trigonometrické pomery odvodili astronómovia, aby vytvorili presný kalendár a orientáciu podľa hviezd. Tieto výpočty sa týkali sférickej trigonometrie, pričom v školskom kurze študujú pomer strán a uhlov rovinného trojuholníka.

Trigonometria je odvetvie matematiky, ktoré sa zaoberá vlastnosťami goniometrických funkcií a vzťahmi medzi stranami a uhlami trojuholníkov.

V období rozkvetu kultúry a vedy v 1. tisícročí nášho letopočtu sa poznatky rozšírili zo starovekého východu do Grécka. Ale hlavné objavy trigonometrie sú zásluhou mužov arabského kalifátu. Najmä turkménsky vedec al-Marazwi zaviedol funkcie ako tangens a kotangens a zostavil prvé tabuľky hodnôt pre sínus, tangens a kotangens. Pojmy sínus a kosínus zaviedli indickí vedci. Trigonometrii sa venovala veľká pozornosť v dielach takých veľkých postáv staroveku ako Euklides, Archimedes a Eratosthenes.

Základné veličiny trigonometrie

Základné goniometrické funkcie číselného argumentu sú sínus, kosínus, tangens a kotangens. Každý z nich má svoj vlastný graf: sínus, kosínus, tangens a kotangens.

Vzorce na výpočet hodnôt týchto veličín sú založené na Pytagorovej vete. Pre školákov je to lepšie známe z formulácie: „Pytagorejské nohavice sú rovnaké vo všetkých smeroch“, pretože dôkaz je uvedený na príklade rovnoramenného pravouhlého trojuholníka.

Sínusové, kosínusové a iné vzťahy vytvárajú vzťah medzi ostrými uhlami a stranami akéhokoľvek pravouhlého trojuholníka. Uveďme vzorce na výpočet týchto veličín pre uhol A a nasledujme vzťahy medzi goniometrickými funkciami:

Ako vidíte, tg a ctg sú inverzné funkcie. Ak si vetvu a predstavíme ako súčin sínu A a prepony c a vetvu b ako cos A * c, dostaneme nasledujúce vzorce pre dotyčnicu a kotangens:

Trigonometrický kruh

Graficky možno vzťah medzi uvedenými veličinami znázorniť nasledovne:

Kruh v tomto prípade predstavuje všetky možné hodnoty uhla α - od 0° do 360°. Ako je možné vidieť z obrázku, každá funkcia nadobúda zápornú alebo kladnú hodnotu v závislosti od uhla. Napríklad sin α bude mať znamienko „+“, ak α patrí do 1. a 2. štvrtiny kruhu, to znamená, že je v rozsahu od 0° do 180°. Pre α od 180° do 360° (štvrtiny III a IV) môže byť sin α iba zápornou hodnotou.

Pokúsme sa zostaviť trigonometrické tabuľky pre konkrétne uhly a zistiť význam veličín.

Hodnoty α rovné 30°, 45°, 60°, 90°, 180° a tak ďalej sa nazývajú špeciálne prípady. Hodnoty goniometrických funkcií pre nich sú vypočítané a prezentované vo forme špeciálnych tabuliek.

Tieto uhly neboli zvolené náhodne. Označenie π v tabuľkách je pre radiány. Rad je uhol, pod ktorým dĺžka oblúka kružnice zodpovedá jej polomeru. Táto hodnota bola zavedená za účelom vytvorenia univerzálnej závislosti, pri výpočte v radiánoch nezáleží na skutočnej dĺžke polomeru v cm.

Uhly v tabuľkách pre goniometrické funkcie zodpovedajú radiánom:

Nie je teda ťažké uhádnuť, že 2π je úplný kruh alebo 360°.

Vlastnosti goniometrických funkcií: sínus a kosínus

Aby sme mohli zvážiť a porovnať základné vlastnosti sínusu a kosínusu, dotyčnice a kotangensu, je potrebné nakresliť ich funkcie. Dá sa to urobiť vo forme krivky umiestnenej v dvojrozmernom súradnicovom systéme.

Zvážte porovnávaciu tabuľku vlastností pre sínus a kosínus:

SínusoidaKosínus
y = sinxy = cos x
ODZ [-1; 1]ODZ [-1; 1]
sin x = 0, pre x = πk, kde k ϵ Zcos x = 0, pre x = π/2 + πk, kde k ϵ Z
sin x = 1, pre x = π/2 + 2πk, kde k ϵ Zcos x = 1, pri x = 2πk, kde k ϵ Z
sin x = - 1, pri x = 3π/2 + 2πk, kde k ϵ Zcos x = - 1, pre x = π + 2πk, kde k ϵ Z
sin (-x) = - sin x, teda funkcia je nepárnacos (-x) = cos x, t.j. funkcia je párna
funkcia je periodická, najmenšia perióda je 2π
sin x › 0, pričom x patrí do 1. a 2. štvrtiny alebo od 0° do 180° (2πk, π + 2πk)cos x › 0, pričom x patrí k I a IV štvrtine alebo od 270° do 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, pričom x patrí do tretej a štvrtej štvrtiny alebo od 180° do 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, pričom x patrí do 2. a 3. štvrtiny alebo od 90° do 270° (π/2 + 2πk, 3π/2 + 2πk)
nárasty v intervale [- π/2 + 2πk, π/2 + 2πk]rastie na intervale [-π + 2πk, 2πk]
klesá v intervaloch [π/2 + 2πk, 3π/2 + 2πk]klesá v intervaloch
derivát (sin x)’ = cos xderivát (cos x)’ = - sin x

Určenie, či je funkcia párna alebo nie, je veľmi jednoduché. Stačí si predstaviť trigonometrický kruh so znakmi trigonometrických veličín a mentálne „zložiť“ graf vzhľadom na os OX. Ak sa znamienka zhodujú, funkcia je párna, inak je nepárna.

Zavedenie radiánov a zoznam základných vlastností sínusových a kosínusových vĺn nám umožňuje predstaviť nasledujúci vzorec:

Overiť správnosť vzorca je veľmi jednoduché. Napríklad pre x = π/2 je sínus 1, rovnako ako kosínus x = 0. Kontrola sa môže vykonať pomocou tabuliek alebo sledovaním kriviek funkcií pre dané hodnoty.

Vlastnosti tangentoidov a kotangensoidov

Grafy funkcií tangens a kotangens sa výrazne líšia od funkcií sínus a kosínus. Hodnoty tg a ctg sú navzájom recipročné.

  1. Y = tan x.
  2. Dotyčnica smeruje k hodnotám y pri x = π/2 + πk, ale nikdy ich nedosiahne.
  3. Najmenšia kladná perióda tangentoidu je π.
  4. Tg (- x) = - tg x, t.j. funkcia je nepárna.
  5. Tg x = 0, pre x = πk.
  6. Funkcia sa zvyšuje.
  7. Tg x › 0, pre x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, pre x ϵ (— π/2 + πk, πk).
  9. Derivát (tg x)’ = 1/cos 2⁡x.

Zvážte grafický obrázok kotangentoidu nižšie v texte.

Hlavné vlastnosti kotangentoidov:

  1. Y = detská postieľka x.
  2. Na rozdiel od funkcií sínus a kosínus môže v tangentoide Y nadobudnúť hodnoty množiny všetkých reálnych čísel.
  3. Kotangentoid má tendenciu k hodnotám y pri x = πk, ale nikdy ich nedosiahne.
  4. Najmenšia kladná perióda kotangentoidu je π.
  5. Ctg (- x) = - ctg x, t.j. funkcia je nepárna.
  6. Ctg x = 0, pre x = π/2 + πk.
  7. Funkcia sa znižuje.
  8. Ctg x › 0, pre x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, pre x ϵ (π/2 + πk, πk).
  10. Derivát (ctg x)’ = - 1/sin 2 ⁡x Správne

Jednoducho povedané, ide o zeleninu varenú vo vode podľa špeciálnej receptúry. Zvážim dve počiatočné zložky (zeleninový šalát a vodu) a konečný výsledok - boršč. Geometricky si to možno predstaviť ako obdĺžnik, pričom jedna strana predstavuje šalát a druhá strana predstavuje vodu. Súčet týchto dvoch strán bude označovať boršč. Uhlopriečka a plocha takéhoto obdĺžnika „boršč“ sú čisto matematické pojmy a nikdy sa nepoužívajú v receptoch na boršč.


Ako sa šalát a voda premenia na boršč z matematického hľadiska? Ako sa súčet dvoch úsečiek môže stať trigonometriou? Aby sme to pochopili, potrebujeme lineárne uhlové funkcie.


V učebniciach matematiky nenájdete nič o lineárnych uhlových funkciách. Ale bez nich nemôže existovať matematika. Zákony matematiky, rovnako ako zákony prírody, fungujú bez ohľadu na to, či o ich existencii vieme alebo nie.

Lineárne uhlové funkcie sú zákony sčítania. Pozrite sa, ako sa algebra mení na geometriu a geometria na trigonometriu.

Je možné sa zaobísť bez lineárnych uhlových funkcií? Je to možné, pretože matematici sa zaobídu aj bez nich. Trik matematikov je v tom, že nám vždy hovoria len o tých problémoch, ktoré sami vedia vyriešiť, a nikdy nám nehovoria o problémoch, ktoré nevedia vyriešiť. Pozri. Ak poznáme výsledok sčítania a jedného člena, pomocou odčítania nájdeme druhý člen. Všetky. Iné problémy nepoznáme a nevieme, ako ich riešiť. Čo máme robiť, ak poznáme len výsledok sčítania a nepoznáme oba pojmy? V tomto prípade je potrebné výsledok sčítania rozložiť na dva členy pomocou lineárnych uhlových funkcií. Ďalej si sami vyberieme, čo môže byť jeden člen, a lineárne uhlové funkcie ukážu, aký by mal byť druhý člen, aby výsledok sčítania bol presne taký, aký potrebujeme. Takýchto dvojíc výrazov môže byť nekonečné množstvo. V bežnom živote sa máme dobre bez rozkladu súčtu, stačí nám odčítanie. Ale pri vedeckom výskume prírodných zákonov môže byť rozloženie sumy na jej zložky veľmi užitočné.

Ďalší zákon sčítania, o ktorom matematici neradi hovoria (ďalší z ich trikov), vyžaduje, aby výrazy mali rovnaké merné jednotky. Pre šalát, vodu a boršč to môžu byť jednotky hmotnosti, objemu, hodnoty alebo jednotky merania.

Obrázok ukazuje dve úrovne rozdielu pre matematické . Prvou úrovňou sú rozdiely v poli čísel, ktoré sú uvedené a, b, c. Toto robia matematici. Druhou úrovňou sú rozdiely v oblasti merných jednotiek, ktoré sú uvedené v hranatých zátvorkách a označené písmenom U. Toto robia fyzici. Môžeme pochopiť tretiu úroveň - rozdiely v oblasti popisovaných objektov. Rôzne objekty môžu mať rovnaký počet rovnakých merných jednotiek. Aké dôležité to je, môžeme vidieť na príklade borščovej trigonometrie. Ak k rovnakému označeniu jednotky pre rôzne objekty pridáme dolné indexy, môžeme presne povedať, aká matematická veličina popisuje konkrétny objekt a ako sa mení v čase alebo v dôsledku nášho konania. List W Vodu označím písmenom SŠalát označím písmenom B- boršč. Takto budú vyzerať lineárne uhlové funkcie pre boršč.

Ak zoberieme časť vody a časť šalátu, razom sa premenia na jednu porciu boršču. Tu vám navrhujem, aby ste si trochu oddýchli od boršču a zaspomínali si na svoje vzdialené detstvo. Pamätáte si, ako nás učili spájať zajačiky a kačice? Bolo potrebné zistiť, koľko zvierat tam bude. Čo nás vtedy naučili robiť? Naučili nás oddeľovať merné jednotky od čísel a sčítať čísla. Áno, k akémukoľvek inému číslu možno pridať jedno číslo. Toto je priama cesta k autizmu modernej matematiky – robíme to nepochopiteľne čo, nepochopiteľne prečo a veľmi zle rozumieme tomu, ako to súvisí s realitou, pretože kvôli trom úrovniam rozdielov matematici pracujú len s jednou. Správnejšie by bolo naučiť sa prechádzať z jednej meracej jednotky do druhej.

Zajačiky, kačice a malé zvieratká sa dajú spočítať na kusy. Jedna spoločná jednotka merania pre rôzne objekty nám umožňuje ich sčítanie. Toto je detská verzia problému. Pozrime sa na podobnú úlohu pre dospelých. Čo získate, keď pridáte zajačikov a peniaze? Tu sú dve možné riešenia.

Prvá možnosť. Určíme trhovú hodnotu zajačikov a pripočítame ju k dostupnej sume peňazí. Dostali sme celkovú hodnotu nášho bohatstva v peňažnom vyjadrení.

Druhá možnosť. K počtu bankoviek, ktoré máme, môžete pridať počet zajačikov. Množstvo hnuteľného majetku dostaneme po kusoch.

Ako vidíte, rovnaký zákon sčítania vám umožňuje získať rôzne výsledky. Všetko závisí od toho, čo presne chceme vedieť.

Ale vráťme sa k nášmu boršču. Teraz môžeme vidieť, čo sa stane pre rôzne hodnoty uhla lineárnych uhlových funkcií.

Uhol je nulový. Máme šalát, ale bez vody. Nemôžeme variť boršč. Množstvo boršču je tiež nulové. To vôbec neznamená, že nulový boršč sa rovná nule vody. Môže byť nulový boršč s nulovým šalátom (pravý uhol).


Pre mňa osobne je to hlavný matematický dôkaz toho, že . Nula po pridaní číslo nezmení. Stáva sa to preto, že samotné sčítanie nie je možné, ak existuje iba jeden výraz a druhý výraz chýba. Môžete to vnímať ako chcete, ale pamätajte – všetky matematické operácie s nulou vymysleli samotní matematici, takže zahoďte logiku a hlúpo napchajte definície vynájdené matematikmi: „delenie nulou je nemožné“, „akékoľvek číslo vynásobené nula sa rovná nule“, „za bodom vpichu nula“ a iné nezmysly. Stačí si raz zapamätať, že nula nie je číslo, a už nikdy si nebudete klásť otázku, či je nula prirodzené číslo alebo nie, pretože takáto otázka stráca zmysel: ako možno niečo, čo nie je číslo, považovať za číslo? ? Je to ako pýtať sa, do akej farby by mala byť klasifikovaná neviditeľná farba. Pridanie nuly k číslu je rovnaké ako maľovanie farbou, ktorá tam nie je. Zamávali sme suchým štetcom a všetkým sme povedali, že „maľovali sme“. Ale to som trochu odbočil.

Uhol je väčší ako nula, ale menší ako štyridsaťpäť stupňov. Máme veľa šalátu, ale málo vody. V dôsledku toho dostaneme hustý boršč.

Uhol je štyridsaťpäť stupňov. Máme rovnaké množstvo vody a šalátu. Toto je perfektný boršč (odpustite mi, kuchári, je to len matematika).

Uhol je väčší ako štyridsaťpäť stupňov, ale menší ako deväťdesiat stupňov. Máme veľa vody a málo šalátu. Dostanete tekutý boršč.

Pravý uhol. Máme vodu. Zo šalátu ostali len spomienky, keďže pokračujeme v meraní uhla od čiary, ktorá kedysi označovala šalát. Nemôžeme variť boršč. Množstvo boršču je nulové. V tomto prípade vydržte a pite vodu, kým ju máte)))

Tu. Niečo také. Môžem tu rozprávať iné príbehy, ktoré by sa sem hodili viac ako vhodné.

Dvaja priatelia mali podiely v spoločnom podniku. Po zabití jedného z nich prešlo všetko k druhému.

Vznik matematiky na našej planéte.

Všetky tieto príbehy sú rozprávané jazykom matematiky pomocou lineárnych uhlových funkcií. Inokedy vám ukážem skutočné miesto týchto funkcií v štruktúre matematiky. Medzitým sa vráťme k borščovej trigonometrii a zvážme projekcie.

Sobota 26. októbra 2019

Streda 7. augusta 2019

Na záver rozhovoru o, musíme zvážiť nekonečnú množinu. Ide o to, že pojem „nekonečno“ ovplyvňuje matematikov tak, ako boa constrictor ovplyvňuje králika. Chvejúca sa hrôza z nekonečna zbavuje matematikov zdravého rozumu. Tu je príklad:

Pôvodný zdroj sa nachádza. Alpha znamená skutočné číslo. Znamienko rovnosti vo vyššie uvedených výrazoch znamená, že ak k nekonečnu pridáte číslo alebo nekonečno, nič sa nezmení, výsledkom bude rovnaké nekonečno. Ak vezmeme ako príklad nekonečnú množinu prirodzených čísel, potom uvažované príklady môžu byť reprezentované v nasledujúcom tvare:

Aby jasne dokázali, že mali pravdu, matematici prišli s mnohými rôznymi metódami. Osobne sa na všetky tieto metódy pozerám ako na šamanov tancujúcich s tamburínami. V podstate sa všetko scvrkáva na to, že buď sú niektoré izby neobsadené a nasťahujú sa tam noví hostia, alebo že časť návštevníkov vyhodí na chodbu, aby uvoľnili miesto pre hostí (veľmi ľudsky). Svoj pohľad na takéto rozhodnutia som prezentovala formou fantasy príbehu o Blondýne. Na čom je založená moja úvaha? Premiestnenie nekonečného počtu návštevníkov trvá nekonečne dlho. Potom, čo uvoľníme prvú izbu pre hosťa, bude vždy jeden z návštevníkov chodiť po chodbe zo svojej izby do ďalšej až do konca vekov. Samozrejme, časový faktor možno hlúpo ignorovať, ale bude to patriť do kategórie „žiadny zákon nie je napísaný pre bláznov“. Všetko závisí od toho, čo robíme: prispôsobujeme realitu matematickým teóriám alebo naopak.

Čo je to „nekonečný hotel“? Nekonečný hotel je hotel, ktorý má vždy ľubovoľný počet prázdnych postelí bez ohľadu na to, koľko izieb je obsadených. Ak sú všetky izby v nekonečnej „návštevnej“ chodbe obsadené, je tu ďalšia nekonečná chodba s „hosťovskými“ izbami. Takýchto chodieb bude nekonečne veľa. Navyše, „nekonečný hotel“ má nekonečný počet poschodí v nekonečnom počte budov na nekonečnom počte planét v nekonečnom počte vesmírov vytvorených nekonečným počtom bohov. Matematici sa nedokážu dištancovať od banálnych každodenných problémov: vždy je len jeden Boh-Alah-Budha, je len jeden hotel, je len jedna chodba. Matematici sa teda snažia žonglovať so sériovými číslami hotelových izieb a presviedčajú nás, že je možné „strčiť aj nemožné“.

Logiku môjho uvažovania vám predvediem na príklade nekonečnej množiny prirodzených čísel. Najprv musíte odpovedať na veľmi jednoduchú otázku: koľko množín prirodzených čísel existuje - jedna alebo veľa? Na túto otázku neexistuje správna odpoveď, keďže čísla sme si vymysleli sami, čísla v prírode neexistujú. Áno, príroda je skvelá v počítaní, ale na to používa iné matematické nástroje, ktoré nám nie sú známe. Čo si myslí príroda, vám poviem inokedy. Keďže sme vymysleli čísla, sami rozhodneme, koľko množín prirodzených čísel existuje. Zvážme obe možnosti, ako sa na skutočných vedcov patrí.

Možnosť jedna. „Dajme nám“ jednu jedinú sadu prirodzených čísel, ktorá pokojne leží na poličke. Berieme túto sadu z police. To je všetko, na poličke nezostali žiadne ďalšie prirodzené čísla a ani ich niet kam vziať. Do tejto sady nemôžeme pridať jeden, pretože ho už máme. Čo ak naozaj chcete? Žiaden problém. Jednu z už odobratej sady si môžeme zobrať a vrátiť do poličky. Potom môžeme jeden vybrať z police a pridať k tomu, čo nám zostalo. V dôsledku toho opäť dostaneme nekonečnú množinu prirodzených čísel. Všetky naše manipulácie si môžete zapísať takto:

Zapísal som akcie v algebraickom zápise a v zápise teórie množín s podrobným zoznamom prvkov množiny. Dolný index naznačuje, že máme jednu a jedinú množinu prirodzených čísel. Ukazuje sa, že množina prirodzených čísel zostane nezmenená iba vtedy, ak sa od nej odčíta jedno a pridá sa rovnaká jednotka.

Možnosť dva. Na poličke máme veľa rôznych nekonečných množín prirodzených čísel. Zdôrazňujem – INÉ, napriek tomu, že sú prakticky na nerozoznanie. Zoberme si jednu z týchto sád. Potom vezmeme jedno z inej množiny prirodzených čísel a pridáme ho k množine, ktorú sme už zobrali. Môžeme dokonca sčítať dve sady prirodzených čísel. Toto dostaneme:

Dolné indexy „jeden“ a „dva“ označujú, že tieto prvky patrili do rôznych súborov. Áno, ak pridáte jednu do nekonečnej množiny, výsledkom bude tiež nekonečná množina, ale nebude rovnaká ako pôvodná množina. Ak k jednej nekonečnej množine pridáte ďalšiu nekonečnú množinu, výsledkom je nová nekonečná množina pozostávajúca z prvkov prvých dvoch množín.

Množina prirodzených čísel sa používa na počítanie rovnako ako pravítko na meranie. Teraz si predstavte, že ste pridali jeden centimeter na pravítko. Toto bude iná línia, ktorá sa nebude rovnať pôvodnej.

Môžete prijať alebo neprijať moju úvahu - je to vaša vlastná vec. Ale ak sa niekedy stretnete s matematickými problémami, zamyslite sa nad tým, či nejdete cestou falošného uvažovania vyšliapaného generáciami matematikov. Štúdium matematiky v nás totiž v prvom rade formuje ustálený stereotyp myslenia a až potom pridáva na našich rozumových schopnostiach (alebo nás naopak zbavuje voľnomyšlienkárstva).

pozg.ru

Nedeľa 4. augusta 2019

Dokončoval som dodatok k článku o a videl som tento úžasný text na Wikipédii:

Čítame: "...bohatý teoretický základ matematiky Babylonu nemal holistický charakter a bol zredukovaný na súbor rôznorodých techník, bez spoločného systému a dôkazovej základne."

Wow! Akí sme šikovní a ako dobre vieme vidieť nedostatky druhých. Je pre nás ťažké pozerať sa na modernú matematiku v rovnakom kontexte? Mierne parafrázujúc vyššie uvedený text, osobne som dostal nasledovné:

Bohatý teoretický základ modernej matematiky nemá holistický charakter a je zredukovaný na súbor nesúrodých častí bez spoločného systému a dôkazovej základne.

Nebudem chodiť ďaleko, aby som potvrdil svoje slová – má jazyk a konvencie, ktoré sa líšia od jazyka a konvencií mnohých iných odvetví matematiky. Rovnaké názvy v rôznych odvetviach matematiky môžu mať rôzny význam. Najzrejmejším chybám modernej matematiky chcem venovať celú sériu publikácií. Do skorého videnia.

Sobota 3. augusta 2019

Ako rozdeliť množinu na podmnožiny? Ak to chcete urobiť, musíte zadať novú jednotku merania, ktorá je prítomná v niektorých prvkoch vybranej sady. Pozrime sa na príklad.

Nech máme veľa A pozostávajúci zo štyroch ľudí. Táto množina je tvorená na základe „ľudí“. Prvky tejto množiny označme písmenom A, dolný index s číslom bude uvádzať poradové číslo každej osoby v tomto súbore. Predstavme si novú mernú jednotku „pohlavie“ a označme ju písmenom b. Keďže sexuálne vlastnosti sú vlastné všetkým ľuďom, znásobujeme každý prvok súboru A na základe pohlavia b. Všimnite si, že náš súbor „ľudí“ sa teraz stal súborom „ľudí s rodovými charakteristikami“. Potom môžeme rozdeliť pohlavné znaky na mužské bm a dámske bw sexuálne charakteristiky. Teraz môžeme použiť matematický filter: vyberieme jednu z týchto sexuálnych charakteristík, bez ohľadu na to, ktorá z nich - mužská alebo ženská. Ak ho má človek, tak ho vynásobíme jednou, ak také znamienko neexistuje, vynásobíme ho nulou. A potom používame bežnú školskú matematiku. Pozrite, čo sa stalo.

Po znásobení, zmenšení a preskupení sme skončili s dvomi podskupinami: podskupinou mužov Bm a podskupina žien Bw. Matematici uvažujú približne rovnakým spôsobom, keď aplikujú teóriu množín v praxi. Ale nepovedia nám podrobnosti, ale dávajú nám konečný výsledok - "veľa ľudí pozostáva z podskupiny mužov a podskupiny žien." Prirodzene, môžete si položiť otázku: ako správne bola matematika použitá vo vyššie načrtnutých transformáciách? Dovolím si vás uistiť, že transformácie boli v podstate urobené správne, stačí poznať matematický základ aritmetiky, booleovskej algebry a iných odvetví matematiky. Čo to je? Inokedy vám o tom poviem.

Pokiaľ ide o nadmnožiny, môžete skombinovať dve sady do jednej nadmnožiny výberom mernej jednotky prítomnej v prvkoch týchto dvoch sád.

Ako vidíte, jednotky merania a obyčajná matematika robia z teórie množín relikt minulosti. Znakom toho, že s teóriou množín nie je všetko v poriadku, je to, že matematici prišli s vlastným jazykom a notáciou pre teóriu množín. Matematici sa správali ako kedysi šamani. Iba šamani vedia, ako „správne“ uplatniť svoje „vedomosti“. Učia nás týmto „vedomostiam“.

Na záver vám chcem ukázať, ako matematici manipulujú .

Pondelok 7. januára 2019

V piatom storočí pred Kristom sformuloval staroveký grécky filozof Zenón z Eley svoje slávne apórie, z ktorých najznámejšia je apória „Achilles a korytnačka“. Znie to takto:

Povedzme, že Achilles beží desaťkrát rýchlejšie ako korytnačka a je za ňou tisíc krokov. Počas toho, ako Achilles prebehne túto vzdialenosť, korytnačka preplazí sto krokov rovnakým smerom. Keď Achilles prebehne sto krokov, korytnačka sa plazí ďalších desať krokov atď. Proces bude pokračovať donekonečna, Achilles korytnačku nikdy nedohoní.

Táto úvaha sa stala logickým šokom pre všetky nasledujúce generácie. Aristoteles, Diogenes, Kant, Hegel, Hilbert... Všetci tak či onak považovali Zenónovu apóriu. Šok bol taký silný, že " ... diskusie pokračujú dodnes, vedecká obec zatiaľ nedokázala dospieť k jednotnému názoru na podstatu paradoxov ... do skúmania problematiky sa zapojila matematická analýza, teória množín, nové fyzikálne a filozofické prístupy ; žiadna z nich sa nestala všeobecne akceptovaným riešením problému..."[Wikipedia, "Zeno's Aporia". Každý chápe, že je oklamaný, ale nikto nechápe, v čom spočíva ten podvod.

Z matematického hľadiska Zeno vo svojich apóriách jasne demonštroval prechod od kvantity k . Tento prechod znamená aplikáciu namiesto trvalých. Pokiaľ som pochopil, matematický aparát na používanie premenných meracích jednotiek buď ešte nebol vyvinutý, alebo nebol aplikovaný na Zenónovu apóriu. Uplatnenie našej bežnej logiky nás vedie do pasce. My zo zotrvačnosti myslenia aplikujeme na recipročnú hodnotu konštantné jednotky času. Z fyzikálneho hľadiska to vyzerá tak, že sa čas spomaľuje, až sa úplne zastaví v momente, keď Achilles korytnačku dobehne. Ak sa čas zastaví, Achilles už nemôže predbehnúť korytnačku.

Ak otočíme našu obvyklú logiku, všetko zapadne na svoje miesto. Achilles beží konštantnou rýchlosťou. Každý nasledujúci úsek jeho cesty je desaťkrát kratší ako predchádzajúci. Čas strávený na jeho prekonanie je teda desaťkrát kratší ako ten predchádzajúci. Ak v tejto situácii použijeme pojem „nekonečno“, potom by bolo správne povedať: „Achilles dohoní korytnačku nekonečne rýchlo“.

Ako sa vyhnúť tejto logickej pasci? Zostaňte v konštantných jednotkách času a neprechádzajte na recipročné jednotky. V Zenónovom jazyku to vyzerá takto:

Za čas, ktorý potrebuje Achilles prejsť tisíc krokov, korytnačka preplazí sto krokov rovnakým smerom. Počas nasledujúceho časového intervalu, ktorý sa rovná prvému, Achilles prebehne ďalších tisíc krokov a korytnačka prejde sto krokov. Teraz je Achilles osemsto krokov pred korytnačkou.

Tento prístup adekvátne popisuje realitu bez akýchkoľvek logických paradoxov. Ale to nie je úplné riešenie problému. Einsteinov výrok o neodolateľnosti rýchlosti svetla je veľmi podobný Zenónovej apórii „Achilles a korytnačka“. Tento problém musíme stále študovať, premýšľať a riešiť. A riešenie treba hľadať nie v nekonečne veľkých číslach, ale v merných jednotkách.

Ďalšia zaujímavá aporia Zeno hovorí o lietajúcom šípe:

Letiaci šíp je nehybný, pretože je v každom okamihu v pokoji, a keďže je v každom okamihu v pokoji, je vždy v pokoji.

V tejto apórii je logický paradox prekonaný veľmi jednoducho - stačí objasniť, že letiaci šíp je v každom okamihu v pokoji v rôznych bodoch priestoru, čo je v skutočnosti pohyb. Tu je potrebné poznamenať ďalší bod. Z jednej fotografie auta na ceste nie je možné určiť ani skutočnosť jeho pohybu, ani vzdialenosť k nemu. Ak chcete zistiť, či sa auto pohybuje, potrebujete dve fotografie nasnímané z rovnakého bodu v rôznych časových bodoch, ale nemôžete určiť vzdialenosť od nich. Na určenie vzdialenosti od auta potrebujete dve fotografie nasnímané z rôznych bodov vo vesmíre v jednom časovom bode, ale z nich nemôžete určiť skutočnosť pohybu (samozrejme, stále potrebujete ďalšie údaje na výpočty, pomôže vám trigonometria ). Osobitne chcem upozorniť na to, že dva body v čase a dva body v priestore sú rozdielne veci, ktoré by sa nemali zamieňať, pretože poskytujú rôzne príležitosti na výskum.
Ukážem vám postup na príklade. Vyberáme „červenú tuhú látku v pupienku“ - to je náš „celok“. Zároveň vidíme, že tieto veci sú s mašľou a sú bez mašle. Potom vyberieme časť „celku“ a vytvoríme sadu „s mašličkou“. Takto sa šamani dostávajú k potrave spájaním svojej teórie množín s realitou.

Teraz urobme malý trik. Vezmime si „pevné s pupienkom s mašľou“ a skombinujeme tieto „cely“ podľa farby, pričom vyberieme červené prvky. Dostali sme veľa „červenej“. Teraz posledná otázka: sú výsledné zostavy „s mašľou“ a „červenou“ tou istou sadou alebo dvoma rôznymi zostavami? Odpoveď poznajú iba šamani. Presnejšie, oni sami nič nevedia, ale ako sa hovorí, tak bude.

Tento jednoduchý príklad ukazuje, že teória množín je úplne zbytočná, pokiaľ ide o realitu. Aké je to tajomstvo? Vytvorili sme súbor "červenej pevnej látky s pupienkom a lukom." Formovanie prebiehalo v štyroch rôznych merných jednotkách: farba (červená), sila (pevná), drsnosť (pupienok), zdobenie (s mašľou). Iba súbor meracích jednotiek nám umožňuje adekvátne opísať skutočné objekty v jazyku matematiky. Takto to vyzerá.

Písmeno "a" s rôznymi indexmi označuje rôzne jednotky merania. Jednotky merania, podľa ktorých sa rozlišuje „celok“ v predbežnej fáze, sú zvýraznené v zátvorkách. Jednotka merania, ktorou je zostava vytvorená, je vybratá zo zátvoriek. Posledný riadok zobrazuje konečný výsledok - prvok sady. Ako vidíte, ak použijeme jednotky merania na vytvorenie množiny, potom výsledok nezávisí od poradia našich akcií. A toto je matematika a nie tanec šamanov s tamburínami. Šamani môžu „intuitívne“ dospieť k rovnakému výsledku, argumentujúc, že ​​je to „zrejmé“, pretože merné jednotky nie sú súčasťou ich „vedeckého“ arzenálu.

Pomocou jednotiek merania je veľmi jednoduché rozdeliť jednu sadu alebo spojiť niekoľko sád do jednej nadmnožiny. Pozrime sa bližšie na algebru tohto procesu.

Ak ste už oboznámení s trigonometrický kruh a chcete si len osviežiť pamäť na určité prvky, alebo ste úplne netrpezliví, tak tu je:

Tu si všetko podrobne rozoberieme krok za krokom.

Trigonometrický kruh nie je luxus, ale nutnosť

Trigonometria Mnoho ľudí si to spája s nepreniknuteľnou húštinou. Zrazu sa nahromadí toľko hodnôt goniometrických funkcií, toľko vzorcov... Ale akože, na začiatku to nevyšlo a... ideme... úplné nedorozumenie...

Je veľmi dôležité nevzdávať sa hodnoty goniometrických funkcií, - hovorí sa, že na ostrohu sa dá vždy pozrieť tabuľkou hodnôt.

Ak sa neustále pozeráte na tabuľku s hodnotami trigonometrických vzorcov, zbavme sa tohto zvyku!

On nám pomôže! Budete s tým pracovať niekoľkokrát a potom vám to vyskočí v hlave. Ako je to lepšie ako stôl? Áno, v tabuľke nájdete obmedzený počet hodnôt, ale na kruhu - VŠETKO!

Povedzte napríklad pri pohľade na štandardná tabuľka hodnôt trigonometrických vzorcov , aký je sínus rovný napríklad 300 stupňom alebo -45.


V žiadnom prípade?... môžete sa, samozrejme, pripojiť redukčné vzorce... A pri pohľade na trigonometrický kruh môžete ľahko odpovedať na takéto otázky. A čoskoro budete vedieť ako!

A pri riešení goniometrických rovníc a nerovností bez trigonometrickej kružnice nie je absolútne nikde.

Úvod do trigonometrického kruhu

Poďme pekne po poriadku.

Najprv si napíšme tento rad čísel:

A teraz toto:

A nakoniec tento:

Samozrejme, je jasné, že v skutočnosti je na prvom mieste , na druhom mieste je a na poslednom mieste je . To znamená, že nás bude viac zaujímať reťaz.

Ale ako krásne to dopadlo! Ak sa niečo stane, obnovíme tento „zázračný rebrík“.

A prečo to potrebujeme?

Tento reťazec je hlavnými hodnotami sínusu a kosínusu v prvom štvrťroku.

Nakreslíme kružnicu s jednotkovým polomerom v pravouhlom súradnicovom systéme (to znamená, že zoberieme ľubovoľný polomer dĺžky a jeho dĺžku vyhlásime za jednotku).

Z lúča „0-Start“ položíme rohy v smere šípky (pozri obrázok).

Získame zodpovedajúce body na kruhu. Ak teda premietneme body na každú z osí, dostaneme presne tie hodnoty z vyššie uvedeného reťazca.

Prečo je to, pýtate sa?

Neanalyzujme všetko. Uvažujme princíp, ktorá vám umožní vyrovnať sa s inými, podobnými situáciami.

Trojuholník AOB je obdĺžnikový a obsahuje . A vieme, že oproti uhlu b leží rameno o polovičnej veľkosti prepony (máme preponu = polomer kružnice, teda 1).

To znamená AB= (a teda OM=). A to podľa Pytagorovej vety

Dúfam, že sa už niečo vyjasňuje?

Takže bod B bude zodpovedať hodnote a bod M bude zodpovedať hodnote

To isté s ostatnými hodnotami prvého štvrťroka.

Ako ste pochopili, známa os (vôl) bude kosínusová os, a os (oy) – os sínusov . Neskôr.

Naľavo od nuly pozdĺž kosínusovej osi (pod nulou pozdĺž sínusovej osi) budú samozrejme záporné hodnoty.

Takže, tu je, VŠEMOHÚCI, bez ktorého nie je v trigonometrii nič.

Ale budeme hovoriť o tom, ako použiť trigonometrický kruh.