В курсе физики 8 класса вы познакомились с явлением преломления света. Теперь вы знаете, что свет представляет собой электромагнитные волны определенного диапазона частот. Опираясь на знания о природе света, вы сможете понять физическую причину преломления и объяснить многие другие связанные с ним световые явления.

Рис. 141. Переходя из одной среды в другую, луч преломляется, т. е. меняет направление распространения

Согласно закону преломления света (рис. 141):

  • лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред

где n 21 - относительный показатель преломления второй среды относительно первой.

Если луч переходит в какую-либо среду из вакуума, то

где n - абсолютный показатель преломления (или просто показатель преломления) второй среды. В этом случае первой «средой» является вакуум, абсолютный показатель которого принят за единицу.

Закон преломления света был открыт опытным путём голландским учёным Виллебордом Снеллиусом в 1621 г. Закон был сформулирован в трактате по оптике, который нашли в бумагах учёного после его смерти.

После открытия Снеллиуса несколькими учёными была выдвинута гипотеза о том, что преломление света обусловлено изменением его скорости при переходе через границу двух сред. Справедливость этой гипотезы была подтверждена теоретическими доказательствами, выполненными независимо друг от друга французским математиком Пьером Ферма (в 1662 г.) и голландским физиком Христианом Гюйгенсом (в 1690 г.). Разными путями они пришли к одному и тому же результату, доказав, что

  • отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:

(3)

Из уравнения (3) следует, что если угол преломления β меньше угла падения а, то свет данной частоты во второй среде распространяется медленнее, чем в первой, т. е. V 2

Взаимосвязь величин, входящих в уравнение (3), послужила веским основанием для появления ещё одной формулировки определения относительного показателя преломления:

  • относительным показателем преломления второй среды относительно первой называется физическая величина, равная отношению скоростей света в этих средах:

n 21 = v 1 / v 2 (4)

Пусть луч света переходит из вакуума в какую-либо среду. Заменив в уравнении (4) v1 на скорость света в вакууме с, а v 2 на скорость света в среде v, получим уравнение (5), являющееся определением абсолютного показателя преломления:

  • абсолютным показателем преломления среды называется физическая величина, равная отношению скорости света в вакууме к скорости света в данной среде:

Согласно уравнениям (4) и (5), n 21 показывает, во сколько раз меняется скорость света при его переходе из одной среды в другую, a n - при переходе из вакуума в среду. В этом заключается физический смысл показателей преломления.

Значение абсолютного показателя преломления п любого вещества больше единицы (в этом убеждают данные, содержащиеся в таблицах физических справочников). Тогда, согласно уравнению (5), c/v > 1 и с > v, т. е. скорость света в любом веществе меньше скорости света в вакууме.

Не приводя строгих обоснований (они сложны и громоздки), отметим, что причиной уменьшения скорости света при его переходе из вакуума в вещество является взаимодействие световой волны с атомами и молекулами вещества. Чем больше оптическая плотность вещества, тем сильнее это взаимодействие, тем меньше скорость света и тем больше показатель преломления. Таким образом, скорость света в среде и абсолютный показатель преломления определяются свойствами этой среды.

По числовым значениям показателей преломления веществ можно сравнивать их оптические плотности. Например, показатели преломления различных сортов стекла лежат в пределах от 1,470 до 2,040, а показатель преломления воды равен 1,333. Значит, стекло - среда оптически более плотная, чем вода.

Обратимся к рисунку 142, с помощью которого можно пояснить, почему на границе двух сред с изменением скорости меняется и направление распространения световой волны.

Рис. 142. При переходе световых волн из воздуха в воду скорость света уменьшается, фронт волны, а вместе с ним и её скорость меняют направление

На рисунке изображена световая волна, переходящая из воздуха в воду и падающая на границу раздела этих сред под углом а. В воздухе свет распространяется со скоростью v 1 , а в воде - с меньшей скоростью v 2 .

Первой до границы доходит точка А волны. За промежуток времени Δt точка В, перемещаясь в воздухе с прежней скоростью v 1 , достигнет точки В". За то же время точка А, перемещаясь в воде с меньшей скоростью v 2 , пройдёт меньшее расстояние, достигнув только точки А". При этом так называемый фронт волны А"В" в воде окажется повёрнутым на некоторый угол по отношению к фронту АВ волны в воздухе. А вектор скорости (который всегда перпендикулярен к фронту волны и совпадает с направлением её распространения) поворачивается, приближаясь к прямой ОО", перпендикулярной к границе раздела сред. При этом угол преломления β оказывается меньше угла падения α. Так происходит преломление света.

Из рисунка видно также, что при переходе в другую среду и повороте волнового фронта меняется и длина волны: при переходе в оптически более плотную среду уменьшается скорость, длина волны тоже уменьшается (λ 2 < λ 1). Это согласуется и с известной вам формулой λ = V/v, из которой следует, что при неизменной частоте v (которая не зависит от плотности среды и поэтому не меняется при переходе луча из одной среды в другую) уменьшение скорости распространения волны сопровождается пропорциональным уменьшением длины волны.

Вопросы

  1. Какое из двух веществ является оптически более плотным?
  2. Как определяются показатели преломления через скорость света в средах?
  3. Где свет распространяется с наибольшей скоростью?
  4. Какова физическая причина уменьшения скорости света при его переходе из вакуума в среду или из среды с меньшей оптической плотностью в среду с большей?
  5. Чем определяются (т. е. от чего зависят) абсолютный показатель преломления среды и скорость света в ней?
  6. Расскажите, что иллюстрирует рисунок 142.

Упражнение

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.


Как сделать бумажный светильник своими руками
Как проверить работоспособность светодиодной ленты

К ЛЕКЦИИ №24

«ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ АНАЛИЗА»

РЕФРАКТОМЕТРИЯ.

Литература:

1. В.Д. Пономарёв «Аналитическая химия» 1983год 246-251

2. А.А. Ищенко «Аналитическая химия» 2004 год стр 181-184

РЕФРАКТОМЕТРИЯ.

Рефрактометрия является одним их самых простых физических методов анализа с затратой минимального количества анализируемого вещества и проводится за очень короткое время.

Рефрактометрия - метод, основанный на явлении преломления или рефракции т.е. изменении направления распространения света при переходе из одной среды в другую.

Преломление, так же как и поглощение света, является следствием взаимодействия его со средой. Слово рефрактометрия означает измерение преломления света, которое оценивается по величине показателя преломления.

Величина показателя преломления n зависит

1)от состава веществ и систем,

2) от того, в какой концентрации и какие молекулы встречает световой луч на своем пути, т.к. под действием света молекулы разных веществ поляризуются по-разному. Именно на этой зависимости и основан рефрактометрический метод.

Метод этот обладает целым рядом преимуществ, в результате чего он нашел широкое применение как в химических исследованиях, так и при контроле технологических процессов.

1)Измерение показатели преломления являются весьма простым процессом, который осуществляется точно и при минимальных затратах времени и количества вещества.

2) Обычно рефрактометры обеспечивают точность до 10% при определении показателя преломления света и содержания анализируемого вещества

Метод рефрактометрии применяют для контроля подлинности и чистоты, для идентификации индивидуальных веществ, для определения строения органических и неорганических соединений при изучении растворов. Рефрактометрия находит применение для определения состава двухкомпонентных растворов и для тройных систем.

Физические основы метода

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ.

Отклонение светового луча от первоначального направления при переходе его из одной среды в другую тем больше, чем больше разница в скоростях распространения света в двух



данных средах.

Рассмотрим преломление светового луча на границе каких-либо двух прозрачных сред I и II(См. Рис.). Условимся, что среда II обладает большей преломляющей способностью и, следовательно, n 1 и n 2 - показывает преломление соответствующих сред. Если среда I -это не вакуум и не воздух, то отношение sin угла падения светового луча к sin угла преломления даст величину относительного показателя преломления n отн. Величина n отн. может быть так же определена как отношение показателей преломления рассматриваемых сред.

n отн. = ----- = ---

Величина показателя преломления зависит от

1) природы веществ

Природу вещества в данном случае определяет степень деформируемости его молекул под действием света - степень поляризуемости. Чем интенсивней поляризуемость, тем сильнее преломление света.

2)длины волны падающего света

Измерение показателя преломления проводится при длине волны света 589,3 нм (линия D спектра натрия).

Зависимость показателя преломления от длины световой волны называется дисперсией. Чем меньше длина волны, тем значительнее преломление . Поэтому, лучи разных длин волн преломляются по-разному.

3)температуры , при которой проводится измерение. Обязательным условием определения показателя преломления является соблюдение температурного режима. Обычно определение выполняется при 20±0,3 0 С.

При повышении температуры величина показателя преломления уменьшается, при понижении - увеличивается .

Поправку на влияние температуры рассчитывают по следующей формуле:

n t =n 20 + (20-t) ·0,0002, где

n t – показатель преломления при данной температуре,

n 20 -показатель преломления при 20 0 С

Влияние температуры на значения показателей преломления газов и жидких тел связано с величинами их коэффициентов объемного расширения. Объем всех газов и жидких тел при нагревании увеличивается, плотность уменьшается и,следовательно, уменьшается показатель

Показатель преломления, измеренный при 20 0 С и длине волны света 589,3 нм, обозначается индексом n D 20

Зависимость показателя преломления гомогенной двухкомпонентной системы от ее состояния устанавливается экспериментально, путем определения показателя преломления для ряда стандартных систем(например,растворов), содержание компонентов в которых известно.

4)концентрации вещества в растворе.

Для многих водных растворов веществ показатели преломления при разных концентрациях и температурах надежно измерены, и в этих случаях можно пользоваться справочными рефрактометрическими таблицами . Практика показывает, что при содержании растворенного вещества, не превышающем 10-20%, наряду с графическим методом в очень многих случаях можно пользоваться линейным уравнением типа:

n=n о +FC,

n- показатель преломления раствора,

- показатель преломления чистого растворителя,

C - концентрация растворенного вещества,%

F -эмпирический коэффициент, величина которого найдена

путем определения коэффициентов преломления растворов известной концентрации.

РЕФРАКТОМЕТРЫ.

Рефрактометрами называют приборы, служащие для измерения величины показателя преломления. Существует 2 вида этих приборов: рефрактометр типа Аббе и типа Пульфриха. И в тех и в др. измерения основаны на определении величины предельного угла преломления. На практике применяются рефрактометры различных систем: лабораторный-РЛ, универсальный РЛУ и др.

Показатель преломления дистиллированной воды n 0 =1,33299, практически же этот показатель принимает в качестве отсчетного как n 0 =1,333.

Принцип работы на рефрактометрах основан на определении показателя преломления методом предельного угла (угол полного отражения света).

Ручной рефрактометр

Рефрактометр Аббе

Эта статья раскрывает сущность такого понятия оптики, как показатель преломления. Приводятся формулы получения этой величины, дается краткий обзор применения явления преломления электромагнитной волны.

Способность видеть и показатель преломления

На заре зарождения цивилизации люди задавали вопросом: как видит глаз? Высказывались предположения, что человек испускает лучи, которые ощупывают окружающие предметы, или, наоборот, все вещи испускают такие лучи. Ответ на этот вопрос был дан в семнадцатом веке. Он содержится в оптике и связан с тем, что такое показатель преломления. Отражаясь от различных непрозрачных поверхностей и преломляясь на границе с прозрачными, свет дает человеку возможность видеть.

Свет и показатель преломления

Наша планета окутана светом Солнца. И именно с волновой природой фотонов связано такое понятие, как абсолютный показатель преломления. Распространяясь в вакууме, фотон не встречает препятствий. На планете свет встречает множество разных более плотных сред: атмосфера (смесь газов), вода, кристаллы. Будучи электромагнитной волной, фотоны света имеют в вакууме одну фазовую скорость (обозначается c ), а в среде - другую (обозначается v ). Соотношение первой и второй и является тем, что называют абсолютный показатель преломления. Формула выглядит так: n = c / v.

Фазовая скорость

Стоит дать определение фазовой скорости электромагнитной среды. Иначе понять, что такое показатель преломления n , нельзя. Фотон света - волна. Значит, его можно представить как пакет энергии, который колеблется (представьте отрезок синусоиды). Фаза - это тот отрезок синусоиды, который проходит волна в данный момент времени (напомним, что это важно для понимания такой величины, как показатель преломления).

Например, фазой может быть максимум синусоиды или какой-то отрезок ее склона. Фазовая скорость волны - это скорость, с которой движется конкретно эта фаза. Как поясняет определение показателя преломления, для вакуума и для среды эти величины различаются. Мало того, каждая среда обладает своим значением этой величины. Любое прозрачное соединение, каким бы ни был его состав, имеет показатель преломления, отличный от всех прочих веществ.

Абсолютный и относительный показатель преломления

Выше уже было показано, что абсолютная величина отсчитывается относительно вакуума. Однако с этим на нашей планете туго: свет чаще попадает на границу воздуха и воды или кварца и шпинели. Для каждой из этих сред, как уже было сказано выше, показатель преломления свой. В воздухе фотон света идет вдоль одного направления и имеет одну фазовую скорость (v 1), но, попадая в воду, меняет направление распространения и фазовую скорость (v 2). Однако оба эти направления лежат в одной плоскости. Это очень важно для понимания того, как формируется изображение окружающего мира на сетчатке глаза или на матрице фотоаппарата. Соотношение двух абсолютных величин дает относительный показатель преломления. Формула выглядит так: n 12 = v 1 / v 2 .

Но как же быть, если свет, наоборот, выходит из воды и попадает в воздух? Тогда эта величина будет определяться формулой n 21 = v 2 / v 1 . При перемножении относительных показателей преломления получаем n 21 * n 12 = (v 2 * v 1) / (v 1 * v 2) = 1. Это соотношение справедливо для любой пары сред. Относительный показатель преломления можно найти из синусов углов падения и преломления n 12 = sin Ɵ 1 / sin Ɵ 2 . Не стоит забывать, что углы отсчитывают от нормали к поверхности. Под нормалью подразумевается линия, перпендикулярная поверхности. То есть если в задаче дан угол α падения относительно самой поверхности, то надо считать синус от (90 - α).

Красота показателя преломления и его применение

В спокойный солнечный день на дне озера играют блики. Темно-синий лед покрывает скалу. На руке женщины бриллиант рассыпает тысячи искр. Эти явления - следствие того, что все границы прозрачных сред имеют относительный показатель преломления. Кроме эстетического наслаждения, это явление можно использовать и для практического применения.

Вот примеры:

  • Линза из стекла собирает пучок солнечного света и поджигает траву.
  • Лазерный луч фокусируется на больном органе и отрезает ненужную ткань.
  • Солнечный свет преломляется на древнем витраже, создавая особую атмосферу.
  • Микроскоп увеличивает изображение очень маленьких деталей
  • Линзы спектрофотометра собирают свет лазера, отраженный от поверхности изучаемого вещества. Таким образом, можно понять структуру, а потом и свойства новых материалов.
  • Существует даже проект фотонного компьютера, где передавать информацию будут не электроны, как сейчас, а фотоны. Для такого устройства однозначно потребуются преломляющие элементы.

Длина волны

Однако Солнце снабжает нас фотонами не только видимого спектра. Инфракрасные, ультрафиолетовые, рентгеновские диапазоны не воспринимаются человеческим зрением, но влияют на нашу жизнь. ИК-лучи согревают нас, УФ-фотоны ионизируют верхние слои атмосферы и дают возможность растениям с помощью фотосинтеза вырабатывать кислород.

И чему показатель преломления равен, зависит не только от веществ, между которыми пролегает граница, но и длине волны падающего излучения. О какой именно величине идет речь, обычно понятно из контекста. То есть если книга рассматривает рентген и его влияние на человека, то и n там определяется именно для этого диапазона. Но обычно подразумевается видимый спектр электромагнитных волн, если не указано нечто иное.

Показатель преломления и отражение

Как стало ясно из написанного выше, речь идет о прозрачных средах. В качестве примеров мы приводили воздух, воду, алмаз. Но как быть с деревом, гранитом, пластиком? Существует ли для них такое понятие, как показатель преломления? Ответ сложен, но в целом - да.

Прежде всего, следует учитывать, с каким именно светом мы имеем дело. Те среды, которые непрозрачны для видимых фотонов, прорезаются насквозь рентгеновским или гамма-излучением. То есть если бы мы все были суперменами, то весь мир вокруг был бы для нас прозрачен, но в разной степени. Например, стены из бетона были бы не плотнее желе, а металлическая арматура была бы похожа на кусочки более плотных фруктов.

Для других элементарных частиц, мюонов, наша планета вообще прозрачна насквозь. В свое время ученым доставило немало хлопот доказательство самого факта их существования. Мюоны миллионами пронзают нас каждую секунду, но вероятность столкновения хоть одной частицы с материей очень мала, и зафиксировать это очень сложно. Кстати, в скором времени Байкал станет местом «ловли» мюонов. Его глубокая и прозрачная вода подходит для этого идеально - особенно зимой. Главное, чтобы датчики не замерзли. Таким образом, показатель преломления бетона, например, для рентгеновских фотонов имеет смысл. Мало того, облучение вещества рентгеном - это один из наиболее точных и важных способов исследования строения кристаллов.

Также стоит помнить, что в математическом смысле непрозрачные для данного диапазона вещества обладают мнимым показателем преломления. И наконец, надо понимать, что температура вещества тоже может влиять на его прозрачность.

Преломление света - явление, при котором луч света, переходя из одной среды в другую, изменяет направление на границе этих сред.

Преломление света происходит по следующему закону:
Падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:
,
где α - угол падения,
β - угол преломления,
n - постоянная величина, не зависящая от угла падения.

При изменении угла падения изменяется и угол преломления. Чем больше угол падения, тем больше угол преломления.
Если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения: β < α.
Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

абсолютный показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде n=c/v
Величина n, входящая в закон преломления, называется относительным показателем преломления для пары сред.

Величина n есть относительный показатель преломления среды В по отношению к среде А, а n" = 1/n есть относительный показатель преломления среды А по отношению к среде В.
Эта величина при прочих равных условиях больше единицы при переходе луча из среды более плотной в среду менее плотную, и меньше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая.
Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на нее из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления.

(Абсолютный - относительно вакуума.
Относительный - относительно любого другого вещества (того же воздуха, например).
Относительный показатель двух веществ есть отношение их абсолютных показателей.)

Полное внутреннее отражение - внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.

В оптике это явление наблюдается для широкого спектра электромагнитного излучения, включая рентгеновский диапазон.

В геометрической оптике явление объясняется в рамках закона Снелла. Учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего показателя преломления к большему показателю, электромагнитная волна должна полностью отражаться в первую среду.

В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду - там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.

Законы преломления света.

Из всего сказанного заключаем:
1 . На границе раздела двух сред различной оптической плотности луч света при переходе из одной среды в другую меняет своё направление.
2. При переходе луча света в среду с большей оптической плотностью угол преломления меньше угла падения; при переходе луча света из оптически более плотной среды в среду менее плотную угол преломления больше угла падения.
Преломление света сопровождается отражением, причём с увеличением угла падения яркость отражённого пучка возрастает, а преломлённого ослабевает. Это можно увидеть проводя опыт, изображённом на рисунке. Следовательно, отражённый пучок уносит с собой тем больше световой энергии, чем больше угол падения.

Пусть MN -граница раздела двух про зрачных сред, например, воздуха и воды, АО -падающий луч, ОВ - преломленный луч, -угол падения, -угол преломления, -скорость распространения света в первой среде, - скорость распространения света во второй среде.