Распространение электромагнитных волн в различных средах подчиняется законам отражения и преломления. Из этих законов при определенных условиях следует один интересный эффект, который в физике получил название полного внутреннего отражения света. Подробнее рассмотрим, что этот эффект собой представляет.

Отражение и преломление

Перед тем как переходить непосредственно к рассмотрению внутреннего полного отражения света, необходимо дать пояснение процессам отражения и преломления.

Под отражением понимают изменение направления движения светового луча в той же среде, когда он встречает какую-либо поверхность раздела. Например, если направить от лазерной указки на зеркало, то можно наблюдать описанный эффект.

Преломление - это, так же как и отражение, изменение направления движения света, но уже не в первой, а во второй среде. Результатом этого явления будет искажение очертаний предметов и их пространственного расположения. Бытовым примером преломления является излом карандаша или ручки, если он/она помещается в стакан с водой.

Преломление и отражение связаны друг с другом. Они практически всегда присутствуют вместе: часть энергии луча отражается, а другая часть преломляется.

Оба явления - это результат применение принципа Ферма. Он утверждает, что свет движется по такой траектории между двумя точками, которая займет у него наименьшее время.

Поскольку отражение - это эффект, происходящий в одной среде, а преломление - в двух средах, то для последнего важно, чтобы обе среды были прозрачными для электромагнитных волн.

Понятие о показателе преломления

Показатель преломления является важной величиной для математического описания рассматриваемых явлений. Показатель преломления конкретной среды определяется так:

Где c и v - скорости света в вакууме и веществе соответственно. Величина v всегда меньше, чем c, поэтому показатель n будет больше единицы. Безразмерный коэффициент n показывает, как сильно свет в веществе (среде) будет отставать от света в вакууме. Различие этих скоростей ведет к возникновению явления преломления.

Скорость света в веществе коррелирует с плотностью последнего. Чем плотнее среда, тем тяжелее свету в ней двигаться. Например, для воздуха n = 1,00029, то есть почти как для вакуума, для воды же n = 1,333.

Отражения, преломление и их законы

Ярким примером результата полного отражения являются блестящие поверхности алмаза. Показатель преломления для алмаза равен 2,43, поэтому многие лучи света, попав в драгоценный камень, испытывают многократное полное отражение, прежде чем выйти из него.

Задача на определение критического угла θc для алмаза

Рассмотрим простую задачу, где покажем, как использовать приведенные формулы. Необходимо рассчитать, на сколько изменится критический угол полного отражения, если алмаз из воздуха поместить в воду.

Посмотрев в таблице значения для показателей преломления указанных сред, выпишем их:

  • для воздуха: n 1 = 1,00029;
  • для воды: n 2 = 1,333;
  • для алмаза: n 3 = 2,43.

Критический угол для пары алмаз-воздух составляет:

θ c1 = arcsin(n 1 /n 3) = arcsin(1,00029/2,43) ≈ 24,31 o .

Как видно, критический угол для этой пары сред достаточно маленький, то есть только те лучи могут выйти из алмаза в воздух, которые будут находиться к нормали ближе, чем 24,31 o .

Для случая алмаза в воде получаем:

θ c2 = arcsin(n 2 /n 3) = arcsin(1,333/2,43) ≈ 33,27 o .

Увеличение критического угла составило:

Δθ c = θ c2 - θ c1 ≈ 33,27 o - 24,31 o = 8,96 o .

Это незначительное увеличение критического угла для полного отражения света в алмазе приводит к тому, что он в воде блестит практически так же, как на воздухе.

Мы указывали в § 81, что при падении света на границу раздела двух сред световая энергия делится на две части: одна часть отражается, другая часть проникает через границу раздела во вторую среду. На примере перехода света из воздуха в стекло, т. е. из среды, оптически менее плотной, в среду, оптически более плотную, мы видели, что доля отраженной энергии зависит от угла падения. В этом случае доля отраженной энергии сильно возрастает по мере увеличения угла падения; однако даже при очень больших углах падения, близких к , когда световой луч почти скользит вдоль поверхности раздела, все же часть световой энергии переходит во вторую среду (см. §81, табл. 4 и 5).

Новое интересное явление возникает, если свет, распространяющийся в какой-либо среде, падает на границу раздела этой среды со средой, оптически менее плотной, т, е. имеющей меньший абсолютный показатель преломления. Здесь также доля отраженной энергии возрастает с увеличением угла падения, однако возрастание идет по иному закону: начиная с некоторого угла падения, вся световая энергия отражается от границы раздела. Это явление носит название полного внутреннего отражения.

Рассмотрим снова, как и в §81, падение света на границу раздела стекла и воздуха. Пусть световой луч падает из стекла на границу раздела под различными углами паления (рис. 186). Если измерить долю отраженной световой энергии и долю световой энергии, прошедшей через границу раздела, то получаются величины, приведенные в табл. 7 (стекло, так же как и в табл. 4, имело показатель преломления ).

Рис. 186. Полное внутреннее отражение: толщина лучей соответствует доле отряженной или прошедшей через границу раздела световой энергии

Угол падения , начиная с которого вся световая энергия отражается от границы раздела, называется предельным углом полного внутреннего отражения. У стекла, для которого составлена табл. 7 (), предельный угол равен приблизительно .

Таблица 7. Доли отраженной энергии для различных углов падения при переходе света из стекла в воздух

Угол падения

Угол преломления

Доля отраженной энергии (в %)

Обратим внимание, что при падении света на границу раздела под предельным углом угол преломления равен , т. е. в формуле, выражающей для данного случая закон преломления,

при мы должны положить или . Отсюда находим

При углах падения, больших преломленного луча не существует. Формально это следует из того, что при углах падения, больших из закона преломления для получаются значения, большие единицы, что, очевидно, невозможно.

В табл. 8 приведены предельные углы полного внутреннего отражения для некоторых веществ, показатели преломления которых приведены в табл. 6. Нетрудно убедиться в справедливости соотношения (84.1).

Таблица 8. Предельный угол полного внутреннего отражения на границе с воздухом

Вещество

Сероуглерод

Стекло (тяжелый флинт)

Глицерин

Полное внутреннее отражение можно наблюдать на границе воздушных пузырьков в воде. Они блестят потому, что падающий на них солнечный свет полностью отражается, не проходя внутрь пузырьков. Это особенно заметно на тех воздушных пузырьках, которые всегда имеются на стеблях и листьях подводных растений и которые на солнце кажутся сделанными из серебра, т. е. из материала, очень хорошо отражающего свет.

Полное внутреннее отражение находит себе применение в устройстве стеклянных поворотных и оборачивающих призм, действие которых понятно из рис. 187. Предельный угол для призмы составляет в зависимости от показателя преломления данного сорта стекла; поэтому применение таких призм не встречает затруднений в отношении подбора углов входа и выхода световых лучей. Поворотные призмы с успехом выполняют функции зеркал и выгодны тем, что их отражающие свойства остаются неизменными, тогда как металлические зеркал;: тускнеют с течениием времени из-за окисления металла. Надо заметить, что оборачивающая призма проще по устройству эквивалентной ей поворотной системы зеркал. Поворотные призмы применяются, в частности, в перископах.

Рис. 187. Ход лучей в стеклянной поворотной призме (а), оборачивающей призме (б) и в изогнутой пластмассовой трубке – световоде (в)

Предельный угол полного отражения - угол падения света на границу раздела двух сред, соответствующий углу преломления 90 град.

Волоконная оптика раздел оптики, который изучает физические явления, возникающие и протекающие в оптических волокнах.

4. Распространение волн в оптически неоднородной среде. Объяснение искривлений лучей. Миражи. Астрономическая рефракция. Неоднородная среда для радиоволн.

Мираж оптическое явление в атмосфере: отражение света границей между резко различными по плотности слоями воздуха. Для наблюдателя такое отражение заключается в том, что вместе с отдалённым объектом (или участком неба) видно его мнимое изображение, смещённое относительно предмета. Миражи делят на нижние, видимые под объектом, верхние, - над объектом, и боковые.

Нижний мираж

Наблюдается при очень большом вертикальном градиенте температуры (падении её с высотой) над перегретой ровной поверхностью, часто пустыней или асфальтированной дорогой. Мнимое изображение неба создаёт при этом иллюзию воды на поверхности. Так, уходящая вдаль дорога в жаркий летний день кажется мокрой.

Верхний мираж

Наблюдается над холодной земной поверхностью при инверсионном распределении температуры (растёт с её высотой).

Фата-моргана

Сложные явления миража с резким искажением вида предметов носят название Фата-моргана.

Объёмный мираж

В горах очень редко, при стечении определённых условий, можно увидеть «искажённого себя» на довольно близком расстоянии. Объясняется это явление наличием в воздухе «стоячих» паров воды.

Рефракция астрономическая - явление преломления световых лучей от небесных светил при прохождении через атмосферу/ Поскольку плотность планетных атмосфер всегда убывает с высотой, преломление света происходит таким образом, что своей выпуклостью искривленный луч во всех случаях обращен в сторону зенита. В связи с этим рефракция всегда «приподнимает» изображения небесных светил над их истинным положением

Рефракция вызывает на Земле ряд оптико-атмосферных эффектов: увеличение долготы дня вследствие того, что солнечный диск из-за рефракции поднимается над горизонтом на несколько минут раньше момента, в который Солнце должно было бы взойти на основании геометрических соображений; сплюснутость видимых дисков Луны и Солнца близ горизонта из-за того, что нижний край дисков поднимается рефракцией выше, чем верхний; мерцание звезд и др. Вследствие различия величины рефракции у световых лучей с разной длиной волны (синие и фиолетовые лучи отклоняются больше, чем красные) вблизи горизонта происходит кажущееся окрашивание небесных светил.

5. Понятие о линейно поляризованной волне. Поляризация естественного света. Неполяризованное излучение. Дихроичные поляризаторы. Поляризатор и анализатор света. Закон Малюса.

Поляриза́ция волн - явление нарушения симметрии распределения возмущений в поперечной волне (например, напряжённостей электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения. В продольной волне поляризация возникнуть не может, так как возмущения в этом типе волн всегда совпадают с направлением распространения.

линейная - колебания возмущения происходит в какой-то однойплоскости. В таком случае говорят о «плоско-поляризованной волне»;

круговая - конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой .

Поляризация света – процесс упорядочения колебаний вектора напряжённости электрического поля световой волны при прохождении света сквозь некоторые вещества (при преломлении) или при отражении светового потока.

Дихроичный поляризатор содержит пленку, содержащую по крайней мере одно дихроичное органическое вещество, молекулы или фрагменты молекул которого имеют плоское строение. По крайней мере часть пленки имеет кристаллическую структуру. Дихроичное вещество имеет по крайней мере по одному максимуму спектральной кривой поглощения в спектральных диапазонах 400 - 700 нм и/или 200 - 400 нм и 0,7 - 13 мкм. При изготовлении поляризатора наносят на подложку пленку, содержащую дихроичное органическое вещество, накладывают на нее ориентирующее воздействие и сушат. При этом условия нанесения пленки и вид, и величину ориентирующего воздействия выбирают так, что параметр порядка пленки, соответствующий по крайней мере одному максимуму на спектральной кривой поглощения в спектральном диапазоне 0,7 - 13 мкм, имеет величину не менее 0,8. Кристаллическая структура по крайней мере части пленки представляет собой трехмерную кристаллическую решетку, образованную молекулами дихроичного органического вещества. Обеспечивается расширение спектрального диапазона работы поляризатора при одновременном улучшении его поляризационных характеристик.

Закон Малюса - физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.

где I 0 - интенсивность падающего на поляризатор света, I - интенсивность света, выходящего из поляризатора, k a - коэффициент прозрачности поляризатора.

6. Явление Брюстера. Формулы Френеля для коэффициента отражения для волн, электрический вектор которых лежит в плоскости падения, и для волн, электрический вектор которых перпендикулярен к плоскости падения. Зависимость коэффициентов отражения от угла падения. Степень поляризации отраженных волн.

Закон Брюстера - закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называетсяуглом Брюстера. Закон Брюстера: , где n 21 - показатель преломления второй среды относительно первой, θ Br - угол падения (угол Брюстера). С амплитудами падающей (U пад) и отраженной (U отр) волн в линии КБВ связано соотношением:

K бв = (U пад - U отр) / (U пад + U отр)

Через коэффициент отражения по напряжению (K U) КБВ выражается следующим образом:

K бв = (1 - K U) / (1 + K U)При чисто активном характере нагрузки КБВ равен:

K бв = R / ρ при R < ρ или

K бв = ρ / R при R ≥ ρ

где R - активное сопротивление нагрузки, ρ - волновое сопротивление линии

7. Понятие об интерференции света. Сложение двух некогерентных и когерентных волн, линии поляризации которых совпадают. Зависимость интенсивности результирующей волны при сложении двух когерентных волн от разности их фаз. Понятие о геометрической и оптической разности хода волн. Общие условия для наблюдения максимумов и минимумов интерференции.

Интерференция света - нелинейное сложение интенсивностей двух или нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной. При интерференции света происходит перераспределение энергии в пространстве.

Волны и возбуждающие их источники называются когерентными, если разность фаз волн не зависит от времени. Волны и возбуждающие их источники называются некогерентными, если разность фаз волн изменяется с течением времени. Формула для разности:

, где , ,

8. Лабораторные методы наблюдения интерференции света: опыт Юнга, бипризма Френеля, зеркала Френеля. Расчет положения максимумов и минимумов интерференции.

Опыт юнга - В опыте пучок света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Этот опыт демонстрируетинтерференцию света, что является доказательством волновой теории. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света. Ниже рассматривается влияние ширины прорезей на интерференцию.

Если исходить из того, что свет состоит из частиц (корпускулярная теория света ), то на проекционном экране можно было бы увидеть только две параллельных полосы света, прошедших через прорези ширмы. Между ними проекционный экран оставался бы практически неосвещенным.

Бипризма Френеля - в физике - двойная призма с очень малыми углами при вершинах.
Бипризма Френеля является оптическим устройством, позволяющим из одного источника света формировать две когерентные волны, которые дают возможность наблюдать на экране устойчивую интерференционную картину.
Бипризма Френкеля служит средством экспериментального доказательства волновой природы света.

Зеркала Френеля - оптическое устройство, предложенное в 1816 О. Ж. Френелем для наблюдения явления интерференциикогерентных световых пучков. Устройство состоит из двух плоских зеркал I и II, образующих двугранный угол, отличающийся от 180° всего на несколько угловых мин (см. рис. 1 в ст. Интерференция света). При освещении зеркал от источника S отражённые от зеркал пучки лучей можно рассматривать как исходящие из когерентных источников S1 и S2, являющихся мнимыми изображениями S. В пространстве, где пучки перекрываются, возникает интерференция. Если источник S линеен (щель) и параллелен ребру Ф. з., то при освещении монохроматическим светом интерференционная картина в виде параллельных щели равностоящих тёмных и светлых полос наблюдается на экране М, который может быть установлен в любом месте в области перекрытия пучков. По расстоянию между полосами можно определить длину волны света. Опыты, проведённые с Ф. з., явились одним из решающих доказательств волновой природы света.

9. Интерференция света в тонких пленках. Условия образования светлых и темных полос в отраженном и проходящем свете.

10. Полосы равного наклона и полосы равной толщины. Интерференционные кольца Ньютона. Радиусы темных и светлых колец.

11. Интерференция света в тонких пленках при нормальном падении света. Просветвление оптических приборов.

12. Оптические интерферометры Майкельсона и Жамена. Определение показателя преломления вещества с помощью двулучевых интерферометров.

13. Понятие о многолучевой интерференции света. Интерферометр Фабри-Перо. Сложение конечного числа волн одинаковых амплитуд, фазы которых образуют арифметическую прогрессию. Зависимость интенсивности результирующей волны от разности фаз интерферирующих волн. Условие образования главных максимумов и минимумов интерференции. Характер многолучевой интерференционной картины.

14. Понятие о дифракции волн. Волновой параметр и границы применимости законов геометрической оптики. Принцип Гюйгенса-Френеля.

15. Метод зон Френеля и доказательство прямолинейного распространения света.

16. Дифракция Френеля на круглом отверстии. Радиусы зон Френеля при сферическом и плоском волновом фронте.

17. Дифракция света на непрозрачном диске. Расчет площади зон Френеля.

18. Проблема увеличения амплитуды волны при прохождении через круглое отверстие. Амплитудные и фазовые зонные пластинки. Фокусирующие и зонные пластинки. Фокусирующая линза как предельный случай ступенчатой фазовой зонной пластинки. Зонирование линз.

Геометрическая и волновая оптика. Условия применения этих подходов (из соотношения длины волны и размера объекта). Когерентность волн. Понятие о пространственной и временной когерентности. Вынужденное излучение. Особенности лазерного излучения. Структура и принцип работы лазера.

В силу того, что свет представляет собой волновое явление, имеет место интерференция, в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет место дифракция. Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

Волновая о́птика - раздел оптики, который описывает распространение света с учётом его волновой природы. Явления волновой оптики - интерференция, дифракция, поляризацияи т. п.

Интерференция волн - взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве.

Дифра́кция во́лн - явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн.

Поляризация- процессы и состояния, связанные с разделением каких-либо объектов, преимущественно в пространстве.

В физике когерентностью называется скоррелированность (согласованность) нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени и при сложении колебаний получается колебание той же частоты.

Если разность фаз двух колебаний изменяется очень медленно, то говорят, что колебания остаются когерентными в течение некоторого времени . Это время называют временем когерентности.

Пространственная когерентность - когерентность колебаний, которые совершаются в один и тот же момент времени в разных точках плоскости, перпендикулярной направлению распространения волны.

Вы́нужденное излуче́ние - генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т. д.) из возбуждённого в стабильное состояние (меньший энергетический уровень) под воздействием индуцирующего фотона, энергия которого была равна разности энергий уровней. Созданный фотон имеет ту же энергию, импульс, фазу и поляризацию, что и индуцирующий фотон (который при этом не поглощается).


Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим предельно больших пиковых мощностей. В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника.

Физической основой работы лазера служит явление вынужденного (индуцированного) излучения . Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентенфотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу

Все лазеры состоят из трёх основных частей:

активной (рабочей) среды;

системы накачки (источник энергии);

оптического резонатора (может отсутствовать, если лазер работает в режиме усилителя).

Каждая из них обеспечивает для работы лазера выполнение своих определённых функций.

Геометрическая оптика. Явление полного внутреннего отражения. Предельный угол полного отражения. Ход лучей. Волоконная оптика.

Геометри́ческая о́птика - раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Полное внутреннее отражение - внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.

Предельный угол полного внутреннего отражения

Угол падения, при котором преломленный луч начинает скользить по границе раздела двух сред без перехода в оптически более плотную среду

Ход лучей в зеркалах, призмах и линзах

Световые лучи от точечного источника распространяются по всем направлениям. В оптических системах, загибаясь назад и отражаясь от границ раздела между средами, часть лучей может опять пересечься в некоторой точке. Точку называют изображением точки. При отбивании луч от зеркал выполняется закон: "отраженный луч всегда лежит в той сами плоскости, что и падающий луч и нормаль к поверхности отбивания, которая проходит сквозь точку падении, а угол падения, отчисленный от этой нормали, равняется углу отбивания".

Волоконная оптика - под этим термином понимают

раздел оптики, который изучает физические явления, возникающие и протекающие в оптических волокнах, либо

продукцию отраслей точного машиностроения, имеющую в своём составе компоненты на основе оптических волокон.

К волоконно-оптическим приборам относятся лазеры, усилители, мультиплексоры, демультиплексоры и ряд других. К волоконно-оптическим компонентам относятся изоляторы, зеркала, соединители, разветвители и др. Основой волоконно-оптического прибора является его оптическая схема - набор волоконно-оптических компонентов, соединённых в определённой последовательности. Оптические схемы могут быть замкнутые или разомкнутые, с обратной связью или без неё.

При некотором угле падения света ${\alpha }_{pad}={\alpha }_{pred}$, который называют предельным углом , угол преломления равен $\frac{\pi }{2},\ $при этом преломленный луч скользит по поверхности раздела сред, следовательно, преломленный луч отсутствует. Тогда из закона преломления можно записать, что:

Рисунок 1.

В случае полного отражения уравнение:

не имеет решения в области действительных значений угла преломления (${\alpha }_{pr}$). В таком случае $cos{(\alpha }_{pr})$ чисто мнимая величина. Если обратиться к Формулам Френеля, то их удобно представить в виде:

где угол падения обозначен $\alpha $ (для краткости написания), $n$ -- показатель преломления среды, где свет распространяется.

Из формул Френеля видно, что модули $\left|E_{otr\bot }\right|=\left|E_{otr\bot }\right|$, $\left|E_{otr//}\right|=\left|E_{otr//}\right|$, что означает, что отражение является «полным».

Замечание 1

Надо отметить, что неоднородная волна во второй среде не исчезает. Так, если $\alpha ={\alpha }_0={arcsin \left(n\right),\ то\ }$ $E_{pr\bot }=2E_{pr\bot }.$ Нарушения закона сохранения энергии в данном случае нет. Так как формулы Френеля справедливы для монохроматического поля, то есть к установившемуся процессу. В таком случае закон сохранения энергии требует, чтобы среднее за период изменение энергии во второй среде было равно нулю. Волна и соответствующая доля энергии проникает через грани цу раздела во вторую среду на небольшую глубину порядка длины волны и движется в ней параллельно границе раздела с фазовой скоростью, которая меньше фазовой скорости волны во второй среде. Он возвращается в первую среду в точке, которая смещена относительно точки входа.

Проникновение волны во вторую среду можно наблюдать в эксперименте. Интенсивность световой волны во второй среде заметна только на расстояниях меньших длины волны. Около поверхности раздела, на которую падает волна света, которая испытывает полное отражение, на стороне второй среды можно видеть свечение тонкого слоя, если во второй среде есть флуоресцирующее вещество.

Полное отражение вызывает возникновение миражей, когда поверхность земли имеет высокую температуру. Так, полное отражение света, которое идет от облаков приводит к появлению впечатления, что на поверхности нагретого асфальта находятся лужи.

При обычном отражении отношения $\frac{E_{otr\bot }}{E_{pad\bot }}$ и $\frac{E_{otr//}}{E_{pad//}}$ всегда вещественны. При полном отражении они комплексны. Это значит, что в таком случае фаза волны терпит скачок, при этом он отличен от нуля или $\pi $. Если волна поляризована перпендикулярно плоскости падения, то можно записать:

где ${\delta }_{\bot }$ - искомый скачок фазы. Приравняем вещественные и мнимые части, имеем:

Из выражений (5) получаем:

Соответственно, для волны, которая поляризована в плоскости падения можно получить:

Скачки фаз ${\delta }_{//}$ и ${\delta }_{\bot }$ не одинаковы. Отраженная волна будет поляризована эллиптически.

Применение полного отражения

Допустим, что две одинаковые среды разделены тонким воздушным промежутком. На него падает световая волна под углом, который больше, чем предельный. Может сложиться так, что она проникнет в воздушный промежуток как неоднородная волна. Если толщина зазора мала, то данная волна достигнет второй границы вещества и при этом будет не очень ослабленной. Перейдя из воздушного промежутка в вещество, волна превратится снова в однородную. Такой опыт был проведен еще Ньютоном. Ученый прижимал к гипотенузной грани прямоугольной призмы другую призму, которая со шлифована сферически. При этом свет проходил во вторую призму не только там, где они соприкасаются, но и в небольшом кольце вокруг контакта, в месте, где толщина зазора сравнима с длинной волны. Если наблюдения проводились в белом свете, то край кольца имел красноватую окраску. Так и должно быть, так как глубина проникновения пропорциональна длине волны (для красных лучей она больше, чем для синих). Изменяя толщину промежутка, можно изменять интенсивность проходящего света. Это явление легло в основу светового телефона, который был запатентован фирмой Цейсс. В этом устройстве в качестве одной из сред выступает прозрачная мембрана, которая совершает колебания под действием звука, падающего на нее. Свет, который проходит сквозь воздушный промежуток, изменяет интенсивность в такт с изменениями силы звука. Попадая на фотоэлемент, он порождает переменный ток, который меняется в соответствии с изменениями силы звука. Полученный ток усиливается и используется далее.

Явления проникновения волн сквозь тонкие промежутки не специфичны для оптики. Это возможно для волны любой природы, если фазовая скорость в промежутке выше, чем фазовая скорость в окружающей среде. Важное значение данное явление имеет в ядерной и атомной физике.

Явление полного внутреннего отражения используют для изменения направления распространения света. С этой целью используют призмы.

Пример 1

Задание: Приведите пример явления полного отражения, которое часто встречается.

Решение:

Можно привести такой пример. Если шоссейная дорога сильно нагрета, то температура воздуха максимальна около поверхности асфальта и убывает при увеличении расстояния от дороги. Значит, показатель преломления воздуха минимален у поверхности и растет при увеличении расстояния. Как результат этого, лучи, имеющие небольшой угол относительно поверхности шоссе терпят полное отражение. Если сконцентрировать свое внимание, при движении в автомобиле, на подходящем участке поверхности шоссе, то можно увидеть довольно далеко едущую впереди машину в перевернутом виде.

Пример 2

Задание: Каков угол Брюстера для пучка света, который падает на поверхность кристалла, если предельный угол полного отражения для данного пучка на границе раздела воздух -- кристалл равен 400?

Решение:

\[{tg(\alpha }_b)=\frac{n}{n_v}=n\left(2.2\right).\]

Из выражения (2.1) имеем:

Подставим правую часть выражения (2.3) в формулу (2.2), выразим искомый угол:

\[{\alpha }_b=arctg\left(\frac{1}{{sin \left({\alpha }_{pred}\right)\ }}\right).\]

Проведем вычисления:

\[{\alpha }_b=arctg\left(\frac{1}{{sin \left(40{}^\circ \right)\ }}\right)\approx 57{}^\circ .\]

Ответ: ${\alpha }_b=57{}^\circ .$