Каждый биологический вид имеет свой набор хромосом; у человека их сорок шесть.

Совокупность всех структурных и количественных особенностей полного набора хромосом характерных для клеток конкретного данного вида живых организмов называется кариотипом.

Кариотип будущего организма формируется в процессе слияния 2-х половых клеток – яйцеклетки и сперматозоида. При этом объединяются хромосомные наборы.

Рис.. Для составления кариотипа делящиеся клетки распределяют на пластине, чтобы их хромосомы были отчетливо видны, и фотографируют (а). Затем гомологичные хромосомы на фотографии распределяют по парам и выстраивают по размеру так, чтобы значительно облегчить их исследование.

Ядро зрелой клетки содержит половину набора хромосом – 23 - одинарный набор хромосом называется гаплоидным, при оплодотворении в организм воссоздается специфический для данного вида кариотип. Полный набор хромосом (46) обычной соматической клетки диплоидный (2п)

Хромосомы человека, как и многих животных, можно распределить по парам. Сорок шесть человеческих хромосом образуют 23 пары (рис. 5.36). Расположив их на фотографии по порядку, получаем кариотип, то есть набор хромосом, с помощью которого можно диагностировать некоторые генетические заболевания.

Две внешне одинаковые хромосомы называются гомологичными (они не только похожи внешне, но и содержат гены, отвечающие за одни и те же признаки) .

Если располагать их по порядку, начиная с самых длинных, то мы подойдем к самой короткой паре, от которой зависит различие между мужчинами и женщинами.

У женщин ровно 23 пары хромосом, но у мужчин две последние хромосомы остаются непарными, причем одна из них чрезвычайно короткая.

Эта короткая хромосома называется Y -хромосома, а более длинная - Х-хромосома.

У женщин 23-я пара содержит две Х-хромосомы.

Понятно, что хромосомы X и Y определяют пол человека (половые). Остальные 22 пары гомологичных хромосом называются аутосомами .

Очевидно, что у каждого человека по две одинаковые хромосомы, потому что у всех два родителя.

Развитие человеческого организма начинается с оплодотворения сперматозоидом яйцеклетки; в каждой гамете содержится по 23 хромосомы, по одной каждого типа, а в образующейся зиготе содержится уже по две хромосомы каждого типа.

Все аутосомы разделены на 7 групп: А (1,2,3), В (4,5) , С(6-12), D(13-15), E(16-18), F(19-20), G (21-22).

Наследственная информация организма строго упорядочена по отдельным хромосомам. Криотип – паспорт вида. Кариотип человека представлен 24 хромосомами, 22 аутотосомы, х и у хромосомы.

Анализ кариотипа позволяет выявить нарушения, которые могут приводить к аномалиям развития, наследственным болезням или гибели плода и эмбриона на ранних стадиях развития. Т.е. для нормального развития необходим набор генов полного хромосомного набора.

Митоз, его сущность. Патология митоза

Поведение хромосом в процессе митоза обеспечивает строго равное распределение наследственного материала между дочерними и материнскими клетками

Митоз – непрерывный процесс, имеющий 4 стадии:

    Профаза – нити хроматина начинают закручиваться, спирализуются. Хромосомы укорачиваются и утолщаются, становятся доступными для микроскоприрования. Ядрышко исчезает, ядерная оболочка распадается. Центрисома делится на 2 центриоли, которые перемещаются к разным полюсам клетки. Из белка тубулина образуются микротрубочки – нити ахроматинового веретена. Хромосомы концентрируются в центре.

    Метафаза – хромосомы мах спирализованы и расположены в плоскости экватора клетки – удобно рассматривать в световой микроскоп. Нити веретена деления от разных полюсов прикрепляются к центромерам всех хромосом.

    Анафаза – хар-ся разделением хромосом в области центромеры на 2 хроматиды. Нити веретена деления сокращаются и растаскивают хроматиды каждой хромосомы к разным полюсам клетки. Самая короткая фаза митоза.

    Телофаза – деспирализация хромосом, превращение их опять в тонкие нити хроматина, невидимые в световой микроскоп. Вокруг каждой группы дочерних клеток обр-ся ядерная оболочка, появляются ядрышки. Нити веретена деления распадаются

Деление цитоплазмы в клетках животных предваряется появлением перетяжки ЦПМ.

Митоз заканчивается образованием 2-х клеток количественно и качественно идентичных материнской клетке.

Удвоение хромосом и в интерфазе митоза, распределение равномерное хроматид между дочерними и клетками обеспечивает поддержание постоянства ген.информации в ряду поколений клеток, служит основой роста и развития организма.

Патология митоза

Различные факторы внешней среды могут нарушать процесс митоза и приводить к появлению аномальных клеток.

Выделяют 3 типа нарушений:

    Изменение структуры хромосом

А) появление разрывов хромосом, наличие мелких хромосомных фрагментов. Возникает под действием радиации, хим.средств, вирусов, а также в раковых клетках (мутации).

Б) хромосомы могут отстать от других в анафазе и не попасть в свою клетку. Это приведет к изменению кол-ва хромосом в дочерних клетках – анеуплоидии.

    Повреждение веретена деления – нарушается ф-ция распределения хромосом между дочерними клетками – возможно появление клеток, содержащих значительный избыток хромосом (например 92). Подобное действие характерно для противоопухолевых препаратов – так тормозится рост клеток опухолей.

    Нарушение цитотомии – т.е. отсутствие деления цитоплазмы клетки в периоде телофазы. Так образуются двуядерные клетки

Патология митоза может приводить к появлению мозаицизма – в одном организхме можно обнаружить клоны клеток с разным набором хромосом (например – часть клеток содержит 46 хромосом, а другие – 47).

Мозаицизм формируется на ранних стадиях дробления зародышевых клеток.

Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводят к самопроизвольным абортам на ранних стадиях беременности.

Однако достаточно большое число плодов (~2.5%) с аномальными кариотипами донашивается до окончания беременности.

Мейоз

Вид деления, при котором количество хромосом уменьшается наполовину с диплоидного до гаплоидного, состоящий из 2-х последовательных делений ядра.

называется мейоз. При каждом оплодотворении изначальное количество хромосом восстанавливается.

Половое размножение, таким образом, можно представить себе как следующий большой цикл событий:

В половых железах (гонадах) взрослого организма - семенниках и яичниках - некоторые клетки размножаются посредством мейоза, образуя соответственно сперматозоиды и яйцеклетки, то есть гаплоидные клетки. Эти гаметы содержат по одному набору из 23 хромосом. При оплодотворении образуется зигота с двойным набором хромосом; а при митотическом делении из нее вырастает взрослый организм, и цикл начинается сначала.

Механизм деления - образование центриоли, веретена и т. п. - при мейозе тот же самый, что и при митозе, только хромосомы ведут себя при этом несколько иначе.

Мейоз

Рис. 5.4. Процесс мейоза общих чертах) в клетке с двумя парами хромосом; одна из парных хромосом обозначена жирной линией, другая пунктирной.

Профаза I: хромосомы становятся видимыми и образуют пары.

Метафаза I: парные хромосомы выстраиваются напротив друг друга в середине клетки.

Анафаза I: каждая из парных гомологичных хромосом полностью отходит к одному из полюсов клетки. Обратите внимание: хроматиды не расходятся и по-прежнему соединены центромерами.

Телофаза I: начальное деление завершается.

Профаза II: хромосомы снова становятся видимыми, как и при митотическом делении.

Метафаза II: хромосомы снова выстраиваются посреди клетки.

Анафаза II: на этот раз хроматиды отделяются друг от друга и расходятся к противоположным полюсам.

Телофаза II: деление заканчивается образованием четырех гаплоидных клеток

Биологическое значение мейоза:

    Половое размножение – этот процесс обеспечивает постоянство числа хромосом в ряду поколений размножающихся половым путем организмов.

    Генетическая изменчивость – создает возможность для новых генных комбинаций. Это ведет к изменениям в генотипе и фенотипе потомства.

Патология мейоза : под влиянием внешних повреждающих факторов: простое, последовательное и двойное нерасхождение.

Простое нерасхождение:

При патологии мейоза 1 все зрелые гаметы будут иметь пат.набор хромосом

Мейоз 2 – кол-во хромосом только в части гамет изменяется.

Последовательное нерасхождение – затрагивает оба деления 1 и 2, нормальные гаметы не образуются.

Двойное нерасхождение – крайне редко – мейоз поврежден у обоих родителей.

Можно выделить также и первичное, вторичное и третичное нерасхождение хромосом.

Процесс мейоза может нарушаться под влиянием различных внешних неблагоприятных факторов.

Сбалансированные изменения хромосом в кариотипе человека не нарушают состояние здоровья у человека.

Хромосомы (от греч. Хромаmoc - окрашенный, сома - тельце ) - структуры ядра, которые являются материальными носителями наследственной информации. Эти органеллы ядра образуются в результате уплотнения и спирализации хроматина и становятся заметными при делении клетки. На стадии метафазы хромосомы выстраиваются на экваторе клетки, образуя метафазную пластинку. Состоят хромосомы с ДНК, РНК, ядерных белков и ферментов, необходимых для их удвоение или синтеза иРНК.

Количество хромосом в клетках организмов разных видов различна и не зависит от высоты организации, а также не всегда указывает на филогенетическую родство.

Количество хромосом у некоторых видов

Строение . В строении метафазной хромосомы выделяют хроматиды, первичную перетяжку, плечи, вторичную перетяжку, спутники, ядрышковые организаторы, теломеры и др. Каждая такая хромосома состоит из двух продольных частей - хроматид. Первичная перетяжка (центромера) - наиболее спирализована часть хромосомы, разделяет ее на два плеча. На ней располагаются специальные белки (кинетохора), к которым при распределении генетического материала прикрепляются нити веретена деления. Некоторые хромосомы имеют вторичные перетяжки, часто отделяют участки хромосом, названные спутниками. Такие хромосомы в ядрах клеток могут приближаться друг к другу и образовывать ядрышковые организаторы, содержащие гены рРНК. Концы плеч получили название теломеров. Это генетически неактивные спирализовани участки, препятствующие соединению хромосом между собой или с их фрагментами.

Разновидности . Хромосомы отличаются размерами, формой, расположением перетяжек, степенью спирализации и тому подобное. По размеру и форме хромосомы можно сгруппировать парами, и эти парные хромосомы называют го-

1- центромерных участок хромосомы; 2 - теломерные участок; 3 - дочерние хроматиды; 4 - гетеро- хроматин; 5-эухроматин; 6 - малое плечо, 7 - большое плечо.

мологичнимы, а хромосомы разных пар будут друг относительно друга негомологические. Расположение перетяжек также позволяет разделить хромосомы на группы. Если перетяжка расположена посередине, а плечи имеют одинаковые размеры, то хромосомы называют ривноплечовимы, если же размеры плеч существенно отличные - неривноплечовимы. Хромосомы могут находиться в двух состояниях: в спираль изованому (митоза хромосомы ) и деспирализованому (интерфазного хромосомы ). При сравнении хромосомных наборов мужских и женских особей одного вида наблюдается различие в одной паре хромосом. Эта пара получила название половых хромосом, или гетерохромосом. Остальные пары гомологичных хромосом, одинаковых у обоих полов, имеют общее название аутосомы. Для выяснения работы наследственного аппарата необходимо изучать хромосомы не только во время митоза, но и на стадии интерфазы. В некоторых насекомых и других организмов интерфазного хромосомы гораздо толще и их хорошо видно в световой микроскоп. Политеннихромосомы - хромосомы, которые представляют собой пучок многочисленных (более 1000) растянутых в длину хроматид. Образуются эти хромосомы в результате многократной репликации и нерасхождения дочерних хромосом. Во время эксперимента по специальной окраской в них было обнаружено чередование светлых (деконденсовани участка) и темных (конденсированные участки) полос. Количество, размеры и расположение этих полос являются специфическими для вида. Бывают политенные хромосомы у некоторых насекомых, в эндосперме семян, эмбриональных тканях растений и тому подобное. Изучают политенные хромосомы для: а) выяснение работы генов, которые нужны в данный момент клетке (светлые развернутые полосы ДНК - пуфы - доступны для транскрипции) б) построения генетических карт; в) выявление хромосомных перестроек; г) выявление видовой принадлежности организмов и др.

Организация . Хромосомы имеют несколько уровней организации.

1. Организация хромонем. Молекулы ДНК на этом уровне организации хромосом спирально оплетают извне особые ядерные частицы из молекул гистонов, которые называют нуклеосомами. Каждая нуклеосома содержит в себе 8 белковых молекул. Нити нуклеосом с ДНК попарно закручиваются, образуя хромонемы (ДНК + нуклеосомы = хромонемы).

2. Организация хроматид. Хромонемы спирализуеться с образованием компактных хроматид.

3. Организация хромосом. Хроматиды после самоудвоения и суперспирализации образуют двохроматидни хромосомы.

Биологическое значение хромосом определяется такими их функциями, как: а) сохранение наследственной информации; б) контроль обмена веществ путем регуляции образования необходимых ферментов в) обеспечение роста клеток путем управления синтезом структурных белков; г) обеспечение развития клеток путем контроля за процессами дифференцировки; д) обеспечение условий удвоение ДНК и деления клеток.

Понятие о кариотипе

Кариотип - совокупность признаков хромосомного набора (количество хромосом, форма, размеры ). Каждому виду организмов присущ определенный кариотип. Основными правилами, характеризующих кариотип, являются:

правило специфичности - особенности кариотипа особей того или иного вида зависят от количества, размеров и формы хромосом;

правило стабильности - каждый вид эукариотических организмов имеет определенную и постоянную количество хромосом (например, у дрозофилы - 8 хромосом, у человека - 46);

правило парности- в диплоидному наборе каждая хромосома имеет себе пару, подобную по размерам и форме;

правило индивидуальности - каждая пара гомологичных хромосом характеризуется своими особенностями;

правило преемственности (непрерывности ) - благодаря способности хромосом к авторепродукции во время деления клетки в следующих поколениях клеток одного вида сохраняется не только постоянное число хромосом, но и их индивидуальные особенности.

Хромосомный набор бывает диплоидным, гаплоидным, полиплоидный.

Гаплоидный набор - это половинный набор, в котором все хромосомы отличаются друг от друга по строению (его условно обозначают 1п).

Диплоидный набор - это парный набор, в котором каждая хромосома имеет парную хромосому, сходную по строению и размерам (его условно обозначают 2п).

Полиплоидный набор - это набор хромосом, кратный гаплоидному (его условно обозначают 3п, 4п, 5п и т.д.).

БИОЛОГИЯ + Американские ученые Элизабет Блэкберн, Кэрол Грейдер и Джек Шостак выяснили, каким чипом хромосомы сохраняют свою целостность при делении клетки. Они обнаружили, что причина этого - в кончиках хромосом, известных как теломеры (их фермент - теломераза ) . Эти ученые предположили, что раковые клетки используют фермент теломеразу для обеспечения своего неконтролируемого деления. Кроме того, постепенное сокращение размеров теломеров с возрастом считается одним из основных механизмов старения. Дефекты теломеров также с причинами нескольких наследственных болезней кожи и легких. За эти исследования эти ученые стали обладателями Нобелевской премии 2009 года в области медицины и физиологии.

Omnis cellula e cellula

латинская пословица

Понятие о кариотипе человека.

Число, размеры и форма хромосом являются специфическими признаками для каждого вида живых организмов. Так, в клетках рака-отшельника содержится по 254 хромосомы, а у комара – только 6. Соматические клетки человека содержат 46 хромосом.

Совокупность всех структурных и количественных особенностей полного набора хромосом, характерного для клеток конкретного вида живых организмов, называется кариотипом.

Кариотип будущего организма формируется в процессе слияния двух половых клеток (сперматозоида и яйцеклетки). При этом объединяются их хромосомные наборы. Ядро зрелой половой клетки содержит половинный набор хромосом (для человека – 23). Подобный одинарный набор хромосом, аналогичный таковому в половых клетках, называется гаплоидным и обозначается – n . При оплодотворении яйцеклетки сперматозоидом в новом организме воссоздаётся специфический для данного вида кариотип, включающий у человека 46 хромосом. Полный состав хромосом обычной соматической клетки является диплоидным (2 n ) .

В диплоидном наборе каждая хромосома имеет аналогичную по размеру и расположению центромеры другую парную хромосому. Такие хромосомы называются гомологичными . Гомологичные хромосомы не только похожи друг на друга, но и содержат гены, отвечающие за одни и те же признаки.

При анализе соматических клеток женского организма в норме можно четко выделить 23 пары гомологичных хромосом. В то же время в кариотипе мужчины обнаруживается одна пара хромосом, отличающихся друг от друга по размеру и форме. Одна из них – довольно большая субметацентрическая хромосома, которую обозначили Х, другая – маленькая акроцентрическая – Y. Было доказано, что эти хромосомы определяют пол организма и содержат большинство генов, отвечающих за формирование гениталий, поэтому они получили название половых хромосом.

Кариотип женщины в норме содержит две Х-хромосомы, и его можно записать – 46, ХХ.

Кариотип мужчины включает Х- и Y-хромосомы (46, ХY).

Все остальные 22 пары хромосом получили название аутосомы. Каждой паре аутосом в порядке убывания их размеров присвоен свой номер от 1 до 22. Самыми длинными являются хромосомы 1-й пары, а самыми короткими – 21-й.

В 1960 году в г. Денвере (США) была принята первая классификация хромосом человека, которая учитывала их размеры и расположение центромеры. Универсальная система регистрации результатов анализа хромосом унифицировала клиническую оценку кариотипа человека независимо от того, в какой цитогенетической лаборатории проводилось исследование. С 1995 года во всем мире применяется Международная система для цитогенетической номенклатуры человека или ISCN (1995), которая опирается на новейшие достижения молекулярно-генетической диагностики.

Все аутосомы разделены на 7 групп, которые обозначили латинскими буквами. В группу А входят 3 пары самых длинных хромосом (1, 2, 3-я); группа В объединяет 2 пары крупных субметацентрических хромосом (4 и

5-я). Самой многочисленной является группа С, включающая 7 пар средних субметацентрических аутосом (с 6-й по 12-ю). По морфологическим особенностям хромосому Х трудно отличить от этой группы. Средние акроцентрические хромосомы 13, 14 и 15-й пар входят в группу D. Три пары мелких субметацентрических хромосом составляют группу Е (16, 17 и 18-я). Самые маленькие метацентрические хромосомы (19 и 20) составляют группу F. 21 и 22-я пары коротких акроцентрических хромосом включены в группу G. Y-хромосома морфологически очень похожа на аутосомы этой группы.

Анализ кариограммы человека

1. Понятие о кариотипе и кариограмме.

Кариотип - это совокупность всех хромосом диплоидного набора клетки, который характеризуется количеством хромосом и особенностями строения каждой хромосомы. Для нормального кариотипа характерно следующее:


  • присутствует нормальное количество хромосом,

  • все хромосомы представлены парами гомологичных друг другу хромосом,

  • каждая хромосома имеет нормальное строение: характерное для нее расположение центромеры, соотношение и строение плеч, отсутствуют хромосомные мутации.
Кариограмма – это изображение всех хромосом диплоидного набора клетки, которые распределены по группам и расположены друг за другом в порядке уменьшения размеров с учетом индивидуальных особенностей каждой хромосомы.

Организмы разных видов различаются по кариотипу: по числу и/или индивидуальным особенностям тех или иных хромосом. Кариотип и хромосомы человека обладают многими признаками, общими для кариотипа и хромосом организмов других видов.


  1. Хромосомы состоят из хроматина – комплекса ДНК с многочисленными белками.

  2. Структурной единицей хроматина является нуклеосома – комплекс из четырех пар гистоновых белков, вокруг которого намотано около двух витков молекулы ДНК. В одной хромосоме находится только одна молекула ДНК, которая намотана на тысячи гистоновых комплексов.

  3. Разные участки хроматина различаются по степени конденсации, или упаковки в пространстве. Эухроматин слабо конденсирован и содержит активно функционирующие гены. Гетерохроматин сильно конденсирован и содержит нефункционирующие гены и участки ДНК, не содержащие гены. Участки гетерохроматина окрашиваются красителями сильнее, чем участки эухроматина и в микроскоп выглядят более темными.

  4. При делении клетки хроматин, конденсируясь, приобретает вид плотных палочковидных структур, особенно хорошо видимых в метафазу митоза.

  5. Диплоидный набор хромосом представляет собой набор пар гомологичных друг другу хромосом. Хромосомы каждой пары гомологичны друг другу и негомологичны всем остальным хромосомам. Кариотип человека включает в себя 46 хромосом: 22 пары аутосом и две половые хромосомы: две Х-хромосомы у женщин, Х- и Y-хромосомы у мужчин.

  6. Негомологичные хромосомы различаются по длине и форме, имеют приблизительно одинаковую толщину.

  7. Все хромосомы имеют два плеча и расположенный между ними истонченный участок – центромеру, или первичную перетяжку. В области первичной перетяжки расположен кинетохор – плоская структура, белки которой, взаимодействуя с микротрубочками веретена деления, обеспечивают перемещения хромосом во время деления клетки.

  8. Некоторые хромосомы имеют вторичную перетяжку, в области которой расположены гены рибосомных РНК, происходит синтез рРНК и образуется ядрышко ядра. У человека вторичную перетяжку имеют хромосомы 13, 14, 15, 21 и 22.

  9. В кариотипе находятся хромосомы трех типов, различающиеся по расположению центромеры и,соответственно, соотношению плеч.

  10. Концы каждой хромосомы – это теломеры. У человека ДНК теломерного участка представляет собой многократно повторяющуюся нуклеотидную последовательность 5" ТТАГГГ 3" в одной из нуклеотидных цепей ДНК.

  11. После каждого акта репликации и деления клетки происходит укорочение теломерных участков хромосом.

  12. В диплоидном наборе женских особей находится две Х-хромосомы, а в диплоидном наборе мужских особей – одна Х-хромосома и одна Y-хромосома. Х- и Y-хромосомы различаются по длине, форме и наборам генов. У человека ген SRY Y-хромосомы обусловливает развитие мужского пола.

  13. Во время профазы и метафазы митоза каждая хромосома состоит из двух одинаковых хроматид – одинаковых копий материнской хромосомы, образовавшихся после репликации ДНК.

^ 2. Получение кариограммы.

Для изучения кариотипа обычно используют лейкоциты периферической крови, клетки красного костного мозга и некоторые другие клетки. При необходимости изучают клетки оболочек зародыша и плода, так как они имеют такой же кариотип и генотип, как клетки еще неродившегося организма, поскольку тоже являются потомками зиготы.

Клетки помешают в питательную среду и побуждают их к делению с помощью специальных стимуляторов деления. Одним из стимуляторов деления является вещество растительного происхождения фитогемагглютинин (ФГА). Фитогемагглютинин является углеводом обыкновенной фасоли Phaseolus vulgaris, способный агглютинировать эритроциты . Фитогемагглютинин является сильным митогеном – веществом, стимулирующим деление клеток путем митоза.

Под влиянием ФГА клетки начинает делиться путем митоза. Затем в культуральную среду с делящимися клетками добавляют колхицин. Это алкалоид растительного происхождения, обычно получаемый из безвременника (зимовника) осеннего (Colchicum autumnale ) или других представителей семейства лилейные. Колхицин препятствует образованию микротрубочек из белка тубулина. В делящейся клетке микротрубочки входят в состав веретена деления и в норме сначала обеспечивают передвижение всех хромосом в область экватора веретена деления, а затем участвуют в расхождении хроматид каждой хромосомы в разные стороны, к разным полюсам веретена деления клетки. Поэтому в присутствии колхицина деление всех клеток останавливается на одной и той же стадии митоза: в конце профазы, непосредственно перед метафазой. В зарубежной научной литературе эта стадия называется прометафазой. В эту стадию все хромосомы полностью конденсированы и хорошо видны в световой микроскоп в виде палочковидных структур, расположенных в одной плоскости. Совокупность всех таких хромосом одной клетки называется метафазной пластинкой (рис.1).

Для удобства изучения живые клетки помещают в гипотонический раствор поваренной соли. В таком растворе вода заходит в клетку, клетка увеличивается в размере, и хромосомы более свободно распределяются в цитоплазме - на большем, чем прежде, расстоянии друг от друга.

Затем хромосомы окрашивают, фотографируют и изучают их изображение под микроскопом. Окраску проводят простыми, диффенциальными или флюоресцентными красителями, которые помогают идентифицировать хромосомы.

Рис.1. Метафазная пластинка человека.

1 – большая метацентрическая хромосома

2 – маленькая акроцентрическая хромосома

3 – большая субметацентрическая хромосома

4 – маленькая метацентрическая хромосома

5 – средняя акроцентрическая хромосома.

Как видно из рис.1, хромосомы различаются по размеру и форме. Все они имеют Х- или Y-образную форму, что обусловлено тем, что дочерние хроматиды – копии материнской хромосомы - остаются соединенными в области первичной перетяжки.

В метафазной пластинке каждая хромосома состоит из двух одинаковых хроматид. Для каждой хромосомы диплоидного набора имеется лишь одна, парная ей хромосома. Парные хромосомы называются гомологичными друг другу хромосомами. Гомологичные хромосомы имеют одинаковые внешние признаки: длину; форму (расположение первичной перетяжки и соответствие плеч, наличие или отсутствие вторичной перетяжки) и одинаковую степень конденсации хроматина в тех или иных участках: участки с сильно конденсированным хроматином выглядят темными, а участки со слабо конденсированным хроматином - более светлыми. По этим же признакам негомологичные друг другу хромосомы отличаются друг от друга. Различают следующие типы хромосом человека (рис.2):


  • Метацентрические , равноплечие хромосомы: первичная перетяжка (центромера) расположена в центре (посередине) хромосомы, плечи хромосомы одинаковые.

  • Субметацентрические , почти равноплечие хромосомы: центромера находится недалеко от середины хромосомы, плечи хромосомы незначительно отличаются по длине.

  • Акроцентрические , очень неравноплечие хромосомы: центромера находится очень далеко от центра (середины) хромосомы, плечи хромосомы существенно различаются по длине.



Рис.2. Типы хромосом человека.

Поскольку каждая пара гомологичных друг другу хромосом имеет характерные для них признаки, то это позволяет идентифицировать конкретные хромосомы. Идентифицировав хромосомы, строят кариограмму: располагают хромосомы в порядке уменьшения размера, раскладывая их по группам в зависимости от размера и формы. При построении кариограммы половые хромосомы располагают отдельно от аутосом, хотя Х-хромосома относится к хромосомам группы С, а Y-хромосома – к хромосомам группы G.

Кариограмму строят при изучении кариотипа конкретного человека. Обобщенная, идеализированная кариограмма, в которой представлены особенности кариотипа вида, называется идиограммой . Идентифицируя хромосомы и строя кариограмму конкретного человека, врач-генетик всегда имеет перед собой образец - идиограмму вида Человек разумный.

На рис. 3 представлена кариограмма мужчины с нормальным кариотипом. В прямоугольной рамке показаны половые хромосомы женщины с нормальным кариотипом.


Рис. 3. Нормальная кариограмма человека.

В первых семи рядах кариограммы представлены аутосомы групп A – G. Они одинаковы в кариотипах мужского и женского организмов. В последнем ряду представлены половые хромосомы. В мужском кариотипе это Х-хромосома группы С и Y-хромосома группы G. В женском кариотипе это две Х-хромосомы. Таким образом, кариограммы мужского и женского организмов легко отличить друг от друга: кариограмма женского организма содержит две одинаковые метацентрические хромосомы среднего размера – Х-хромосомы, а кариограмма мужского организма содержит две разные по размеру и форме хромосомы: одну метацентрическую хромосому среднего размера – Х-хромосому и одну акроцентрическую хромосому небольшого размера – Y-хромосому.

Процедура составления кариограммы вручную трудоемка и требует определенной последовательности действий. Составление кариограммы является частью лабораторной работы, которую выполняют студенты первого курса медицинского университета.

В последние годы для идентификации хромосом и построения кариограммы используют компьютерные программы. При этом изображение метафазной пластинки поступает в компьютер через видеокамеру, соединенную с люминесцентным микроскопом.

^ 3. Лабораторная работа “Составление кариограммы человека”.

На лабораторной работе каждый студент получает конверт с набором из 45-47 изображений хромосом человека и лист бумаги с названиями групп хромосом. Задачей студента является правильное разложение хромосом по группам.


  1. Все хромосомы в зависимости от формы разделите на две большие группы:

    • акроцентрические хромосомы

    • метацентрические и субметацентрические хромосомы

  2. Обратите внимание на акроцентрические хромосомы. Все акроцентрические хромосомы в зависимости от размера разделите на две небольшие группы:

    • средние акроцентрические хромосомы.

    • маленькие акроцентрические хромосомы

  3. Маленькие акроцентрические хромосомы – это хромосомы группы G. В нормальном кариотипе их может быть 4-5 хромосом в зависимости от пола человека. В нормальном женском кариотипе это 2 пары аутосом, в нормальном мужском кариотипе – 2 пары аутосом и одна Y-хромосома. У людей с с. Дауна и с. лишней Y-хромосомы группа G может содержать 5-6 хромосом. К сожалению, обычное окрашивание хромосом не позволяет с уверенностью различить хромосому 21-й пары и Y-хромосому. По этой причине набор изображений 5-и хромосом группы G может принадлежать и женщине с с. Дауна, и мужчине с с. Клайнфельтера, а набор изображений 6-и хромосом группы G может принадлежать и мужчине с с.Дауна, и мужчине с дополнительной Y-хромосомой в кариотипе. Если у вас всего 2 пары хромосом этой группы, то положите их изображения на лист с названиями групп хромосом напротив названия группы G. Если у вас имеется еще две хромосомы этой группы, то одну из них положите рядом с хромосомами 21-й пары, а другую – на место половых хромосом, считая ее Y-хромосомой. Если у вас имеется 5 хромосом этой группы, то до окончания составления кариограммы вы можете считать ее хромосомой 21-й пары или Y-хромосомой. В зависимости от вашего предварительного выбора положите 5-ю хромосому этой группы в соответствующее место листа с названиями групп хромосом.

  4. Средние акроцентрические хромосомы – это хромосомы группы D. В нормальном кариотипе их 3 пары. При с. Патау в кариотипе человека обнаруживается 7 хромосом этой группы за счет дополнительной хромосомы 13-й пары. Положите изображения хромосом группы D на лист с названиями групп хромосом в соответствующее место.

  5. Вы разложили все акроцентрические хромосомы. Теперь обратите внимание на оставшиеся не разложенными метацентрические и субметацентрические хромосомы. Все эти хромосомы в зависимости от размера разделите на две небольшие группы:

    • крупные и средние хромосомы

    • короткие и маленькие хромосомы.

  6. Обратите внимание на короткие и маленькие хромосомы последней группы. Выберите из них 2 пары самых маленьких метацентрических хромосом. Это хромосомы группы F. Положите изображения хромосом этой группы на лист с названиями групп хромосом в соответствующее место. Оставшиеся хромосомы – это хромосомы группы Е. В нормальном кариотипе их 3 пары. При с. Эдвардса в кариотипе человека обнаруживается 7 хромосом этой группы за счет дополнительной хромосомы 18-й пары. Положите изображения хромосом этой группы на лист с названиями групп хромосом в соответствующее место.

  7. Обратите внимание на оставшиеся не разложенными крупные и средние хромосомы. Выберите из них 3 пары самых крупных хромосом. Это метацентрические хромосомы группы А. Положите их изображения на лист с названиями групп хромосом.

  8. Из оставшихся хромосом выберите 2 пары самых больших хромосом. Это метацентрические хромосомы группы В. Положите их изображения на лист с названиями групп хромосом в соответствующее место.

  9. Все оставшиеся хромосомы – это субметацентрические хромосомы группы С. 7 пар хромосом этой группы – это аутосомы. Положите их изображения на лист с названиями групп хромосом напротив названия группы С. Все остальные хромосомы этой группы – это Х-хромосомы. Количество Х-хромосом в кариотипе конкретного человека может быть 1-3. Положите изображения Х-хромосом на лист с названиями групп хромосом в соответствующее место.

  10. Внимательно изучите составленную вами кариограмму. Кариограмма не должна содержать одновременно две крупные аномалии, поскольку это не встречается в реальной жизни. Это может случиться в том случае, если вы неправильно идентифицировали Y-хромосому, приняв ее за хромосому 21-й пары. Например, кариограмма не может содержать одновременно трисомию про 21-й хромосоме и моносомию по Х-хромосоме, то есть, кариограмма не может принадлежать человеку, страдающему одновременно с. Дауна и с.Шерешевского-Тернера. Скорее всего, в вашем распоряжении нормальная кариограмма мужчины. Для исправления ошибки достаточно перенести одну из 3-х хромосом 21-й пары на место расположения половых хромосом, поместив ее рядом с Х-хромосомой. При составлении кариограммы конкретного человека такая ситуация не возникает, так как еще до начала составления кариограммы известен пол человека и предварительный диагноз.

^ 3. Анализ кариограммы человека.

При анализе кариограммы от студента требуется следующее:


  • уметь идентифицировать пол человека

  • уметь идентифицировать нормальный кариотип человека

  • уметь идентифицировать наличие хромосомного заболевания, связанного с аномалией числа хромосом (с. Дауна, с. Клайнфельтера, с. Шерешевского-Тернера, с. Трисомии - Х, с. Патау, с. Эдвардса, с. лишней Y-хромосомы).
Анализируя кариограмму, обращают внимание на следующие ее признаки:

  • общее количество хромосом;

  • парность или непарность тех или иных хромосом;

  • количество и вид половых хромосом;

  • наличие тех или иных аномалий числа хромосом.
При анализе кариограммы человека следует придерживаться следующей последовательности действий.

    • Пронумеруйте пары гомологичных хромосом; нумеруйте их даже в том случае, если гомологичные хромосомы представлены не двумя, а одной или тремя хромосомами.

    • Найдите на кариограмме аутосомы и половые хромосомы. Половые хромосомы обычно располагают отдельно от аутосом. Нормальная кариограмма содержит 22 пары аутосом и 1 пару половых хромосом. Кариограмма больного человека может содержать 45- 46 аутосом и 1-3 половых хромосомы.

    • Определите пол человека по его кариограмме. Для этого внимательно изучите половые хромосомы.

    • Если все они одинаковые, среднего размера и метацентрические, значит все они – Х-хромосомы, а перед вами кариограмма женского организма.

    • Если среди половых хромосом есть небольшая акроцентрическая хромосома, значит это – Y-хромосома, а перед вами кариограмма мужского организма.

    • Посмотрите, все ли хромосомы представлены парами.

    • Если кариограмма содержит 23 пары хромосом, значит перед вами нормальная кариограмма человека.

    • Если в кариограмме те или иные хромосомы представлены 1 или 3 хромосомами, значит перед вами кариограмма с геномной мутацией – отсутствием или избытком хромосом. В этом случае кариограмма содержит 45 или 47 хромосом.

    • Определите порядковый номер пары хромосом, в которой обнаружена геномная мутация. Наиболее часто встречаются следующие аномалии:

    • аномалии числа аутосом:
- дополнительная хромосома 13-й пары при с. Патау

Дополнительная хромосома 18-й пары при с. Эдвардса

Дополнительная хромосома 21-й пары при с. Дауна


  • аномалии числа половых хромосом:
- дополнительная Х-хромосома в женской кариограмме при с. Трисомии-Х

Дополнительная Х-хромосома в мужской кариограмме при с. Клайнфельтера

Дополнительная Y-хромосома в мужском кариотипе при с. лишней Y-хромосомы

Нехватка Х-хпромосомы в женском кариотипе при с. Шерешевского-Тернера.


  • Анализ кариограммы завершается записью формулы кариотипа. Формула кариотипа включает в себя следующее:
а) запись общего числа хромосом,

б) запись сочетания половых хромосом,

В) сведения об аномалии числа хромосом (если имеется): указывают хромосому и вид аномалии. Например:

Формула кариотипа женщины, страдающей синдромом Дауна: 47, ХХ, 21+;

Формула кариотипа мужчины, страдающего синдромом Клайнфельтера: 47, ХХY,

Формула кариотипа женщины с синдромом Шерешевского-Тернера: 45, Х0.

^ 4. Пример анализа кариограммы человека.

Упражнение. Сделайте анализ кариограммы человека (рис.4).


Рис. 4. Кариограмма человека.

Кариограмма человека содержит 47 хромосом. Большинство хромосом расположено в порядке уменьшения их размеров. Это аутосомы. В нижнем ряду в стороне от них расположены три хромосомы. Это половые хромосомы. Все аутосомы представлены парами. Всего в кариограмме 22 пары аутосом. Половых хромосом – 3. Две из них – крупные и их первичная перетяжка – центромера – расположена почти посередине. Это Х-хромосомы. Рядом с ними находится небольшая хромосома с первичной перетяжкой, расположенной ближе к краю хромосомы. Это – Y-хромосома. Кариограмма принадлежит представителю мужского пола, так как имеется Y-хромосома. Кариограмма содержит аномалию: лишнюю Х-хромосому. Такая кариограмма характерна для особей мужского пола, страдающих синдромом Клайнфельтера: у больных отмечается евнухоидное телосложение, иногда увеличены молочные железы, слабое оволосение на лице, часто отмечается умственная отсталость, инфантилизм, они бесплодны. Формула кариотипа человека - 47, ХХY.

^ 5. Задание для самостоятельной работы.

Проведите анализ следующих кариограмм.

Кариограмма 1.


Кариограмма 2.

Кариограмма 3.

Кариограмма 4.


^ 6. Совершенствование в изучении кариограммы человека.

6.1. Дифференциальное окрашивание хромосом

Современные цитогенетические ме­тодики позволяют идентифицировать по морфологии все пары хромосом на препарате. Суть этих ме­тодик состоит в дифференциальном окрашивании хромосом по длине, что обеспечивается сравнитель­но простыми температурно-солевыми воздействиями на фиксированные хромосомы или использованием спе­цифических красителей. Дифференциальное окрашивание при­водит к появлению линейного рисунка по длине хромосомы.

Несмотря на большое разнообразие способов обработки хромосомных пре­паратов и красителей, выявляемый ли­нейный рисунок хромосомы всегда один и тот же. Он меняется только в зависимости от степени конденсиро­ванного состояния хромосомы. Сегмент, види­мый как одна полоса в метафазной хромосоме, в менее конденсированной прометафазной хромосоме, может предстать в виде нескольких мелких полос.
Дифференциальное окрашивание в зависимости от используемого метода может охватывать либо всю длину хро­мосомы, либо ее центромерный район.
Представление о рисунке диффе­ренциально окрашенных по всей дли­не хромосом можно получить, окраши­вая препараты по G-методу с исполь­зованием красителя Гимзы (рис. 5). В этом случае хромосомы выглядят состоя­щими из поперечно-исчерченных, по-разному окрашенных сегментов. Каж­дой паре хромосом присущ индивиду­альный рисунок исчерченности за счет неодинаковых размеров сегментов. В мелких хромосомах рисунок образует­ся единичными сегментами, в крупных хромосомах сегментов много. Общее для нормального хромосомного набо­ра число окрашенных и неокрашенных сегментов в метафазе составляет около 400. В прометафазных хромосомах оно увеличивается до 850 и более.


Рис. 5. Схематическое изображение хромосом человека при G -окрашивании в соответствии с международной классификацией

^ 6.2. Метод флюоресцентной гибридизации in situ.

Успехи молекулярной цитогенетики человека позволили разработать новые методы изучения хромосом. Одним из них является метод флюоресцентной гибридизации in situ (FISH). Это метод основан на комплементарном взаимодействии ДНК изучаемого объекта с небольшой искусственной последовательностью нуклеотидов ДНК, называемой ДНК-зондом. ДНК-зонд соединен с флюоресцирующим веществом. Комплементарное взаимодействие ДНК изучаемого объекта и ДНК-зонда называется гибридизацией ДНК . Если гибридизация происходит, то это событие фиксируется люминесцентным микроскопом и свидетельствует о наличии в исследуемом образце фрагмента ДНК, комплементарного ДНК-зонду. С помощью этого метода, имея набор разных ДНК-зондов, можно даже в неделящейся клетке выявить аномалию числа хромосом и наличие патологического гена, а также выявить мелкие хромосомные мутации, которые трудно обнаружить обычными способами. При этом разные хромосомы или их участки выглядят как разноцветные структуры (рис. 6, 7).

Рис. 6. Нормальная женская кариограмма человека, полученная при использовании методики спектрального кариотипирования.


Рис. 7. Кариограмма мужчины с переносом участка 1-й хромосомы на 3-ю и потерей участка 9-й хромосомы.

Генетические явления, характеризующие наследственность и биологическую изменчивость, биологи достаточно давно связывают с особыми ядерными образованиями - хромосомами , которые с полными основаниями рассматриваются в качестве структур, в которых размещаются гены. В истории генетики как науки на протяжении длительного времени при отсутствии реальных знаний о материальном носителе свойств наследственности и изменчивости и благодаря опережающему развитию микроскопической техники хромосомы были фактически единственным объектом для непосредственных наблюдений. Это привело к появлению цитогенетического метода генетического анализа, которому и сейчас принадлежит важное место, а также особого понятия - кариотип .

Кариотип - это диплоидный набор хромосом (2n), свойственный соматическим клеткам организмов данного вида, представляющий собой видоспецифический сложный признак и характеризующийся определенным числом, строением и генным составом хромосом.

Кариотипы организмов различных видов: I - скерда; II - дрозофила; III - человек

Если число хромосом в одинарном гаплоидном наборе хромосом половых клеток обозначить n, то формула кариотипа будет выглядеть как 2n. Значение n обычно различно у разных видов. Таким образом, гаплоидное количество хромосом в гаметах людей равно 23 (n = 23), а диплоидное, соответствующее кариотипу, - 46 (2n = 46).

Каждая хромосома представлена в кариотипе парой гомологов . Одна из гомологичных хромосом пары унаследована от отца, другая - от матери через половые клетки родителей, принявшие участие в оплодотворении. Генный состав пары гомологичных хромосом одинаков. Вместе с тем один и тот же ген в гомологах может быть представлен разными его альтернативными формами или аллелями (аллельными генами). Учитывая известные отношения между аллелями в виде доминантности и рецессивности , а также присутствие в гомологичных хромосомах одинаковых, либо доминантных, либо рецессивных аллелей или же разных аллелей (доминантного и рецессивного), возможны состояния:

  • доминантной гомозиготности,
  • рецессивной гомозиготности,
  • гетерозиготности.

В кариотипах строго гомологичными хромосомами (аутосомы ) представлены все пары, кроме одной (гетерохромосомы или половые хромосомы ). В клетках пара половых хромосом у особей одного пола (гомогаметный пол, у человека - женский) представлена двумя одинаковыми хромосомами (у человека - ХХ), тогда как у другого (гетерогаметный пол, у человека - мужской) двумя разными хромосомами (у человека - ХY). В первом случае генный состав пары половых хромосом совпадает. Поэтому в зависимости от совпадения или несовпадения в двух хромосомах Х аллелей соответствующих генов воспроизводятся известные состояния доминантной или рецессивной гомозиготности и гетерозиготности. Большинство генов разных половых хромосом особей гетерогаметного пола различны. В связи с этим возможно состояние гемизиготности , когда у особей гетерогаметного пола (у людей мужской - ХY), ген хромосомы Х, не имея гомолога в хромосоме У, присутствует в кариотипе в единственном экземпляре. Такой ген обязательно проявит себя в фенотипе, даже если он представлен рецессивным аллелем. Существуют виды, у которых самки и самцы различаются числом гетерохромосом, соответственно ХХ и ХО.

Правила кариотипа :

  • постояноство,
  • парности,
  • индивидуальности,
  • непрерывности.

Число хромосом в клетках определённого вида всегда неизменно. Число хромосом – видовой признак . Это особенность известна как правило постоянства числа хромосом . В соматических клетках представителей любого биологического вида число хромосом четное, по сколько хромосомы составляют пары. Парные хромосомы называются гомологичными. Они совпадают по величине, форме, другим деталям строения, порядку расположения наследственного материла. Это правило справедливо для всех аутосом и геторосом гомогаметного пола. Половые хромосомы гетерогаметного пола не совпадают по всем деталям строения и набор генов. Негомологичные хромосомы всегда имеют морфологические и функциональные отличия.