В результате изучения студент должен знать:

Область применения зубчатых передач;
- классификацию зубчатых передач.

4.1.1 Роль и значение зубчатых передач в машиностроении

Зубчатые передачи являются наиболее распространёнными типами механических передач. Они находят широкое применение во всех отраслях машиностроения, в частности в металлорежущих станках, автомобилях, тракторах, сельхозмашинах и т.д., в приборостроении, часовой промышленности и др. Их применяют для передачи мощностей от долей до десятков тысяч киловатт при окружных скоростях до 150 м/с и передаточных числах до нескольких сотен и даже тысяч, с диаметром колёс от долей миллиметра до 6 м и более.

Зубчатая передача относиться к передачам зацеплением с непосредственным контактом пары зубчатых колёс. Меньшее из колёс передачи принято называть шестерней, а большее - колесом. Зубчатая передача предназначена в основном для передачи вращательного движения.

4.1.2 Достоинства зубчатых передач

1) высокая нагрузочная способность;
2) малые габариты;
3) большая надёжность и долговечность (40000 ч);
4) постоянство передаточного числа;
5) высокий КПД (до 0,97…0,98 в одной ступени);
6) простота в эксплуатации.

4.1.3 Недостатки зубчатых передач

1) повышенные требования к точности изготовления и монтажа;
2) шум при больших скоростях;
3) высокая жёсткость, не позволяющая компенсировать динамические нагрузки.

4.1.4. Классификация зубчатых передач

1. По взаимному расположению геометрических осей валов различают передачи:<>br - с параллельными осями - цилиндрические (рис.2.3.1.а-г);
- с пересекающимися осями - конические (рис.2.3.1.д; е);
- со скрещивающимися осями - цилиндрические винтовые (рис.2.3.1.ж);
- конические гипоидные и червячные (рис. 2.3.1.з);
- реечная передача (рис. 2.3.1.и).

Рисунок 2.3.1 Виды зубчатых передач

2. В зависимости от взаимного расположения зубчатых колёс:
- с внешним зацеплением (колёса передач вращаются в противоположных направлениях);
- с внутренним зацеплением (направление вращения колёс совпадают).

3. По расположению зубьев на поверхности колёс различают передачи:
- прямозубые; косозубые; шевронные; с круговым зубом.

4. По форме профиля зуба различают передачи:
- эвольвентные;
- с зацеплением М. Л. Новикова;
- циклоидальные.

5. По окружной скорости различают передачи:
- тихоходные ();
- среднескоростные

  • 7. Основные геометрические параметры эвольвентных зубчатых колес.
  • 8. Кинематические и силовые соотношения прямозубых эвольвентных зубчатых колес.
  • 9. Виды напряжений, по которым проводится проектировочный и проверочный расчет зубчатых колес.
  • 10. Общие сведения о косозубых цилиндрических зубчатых передачах.
  • 11. Понятие об эквивалентном колесе и его параметры.
  • 12. Силы, действующие в косозубой цилиндрической передаче.
  • 13. Общие сведения о конических зубчатых передачах.
  • 14. Ортогональные прямозубые конические зубчатые передачи.
  • 15. Основные сведения о передаче Новикова.
  • 16. Планетарные передачи.
  • 17. Кинематика планетарных передач. Инематика.
  • 18. Условия подбора чисел зубьев планетарных передач.
  • 19. Основные сведения о волновых передачах.
  • 20. Червячные передачи: общие сведения, достоинства и недостатки.
  • 12.2. Достоинства и недостатки червячных передач
  • 21. Кинематические и силовые соотношения архимедовых червячных передач.
  • 22. Критерии работоспособности и особенности расчета червячных передач.
  • 23. Выбор материалов червяков и червячных колес.
  • 24. Охлаждение и смазка червячных редукторов.
  • 25. Общие сведения о фрикционных передачах и вариаторах. Общие сведения
  • Классификация
  • Достоинства и недостатки
  • 26. Основные сведения о передаче «винт-гайка» скольжения.
  • 27. Шарико-винтовые передачи (швп).
  • 28. Основные факторы, определяющие качество фрикционных передач.
  • 29. Ременные передачи: общие сведения, классификация, виды ремней.
  • 14.2. Классификация передач
  • 14.3. Достоинства и недостатки ременных передач трением
  • 30. Силы в ремнях ременных передачах.
  • 31. Напряжения в ремнях ременных передачах.
  • 32. Основные сведения о цепных передачах.
  • 13.2. Достоинства и недостатки цепных передач
  • 13.3 Типы цепей
  • 33. Кинематика и динамика цепной передачи.
  • 34. Критерии работоспособности и расчет цепной передачи.
  • 36. Ориентировочный расчет валов и осей.
  • 37. Проверочный расчет валов и осей.
  • 38. Подшипники скольжения.
  • 39. Режимы трения подшипников скольжения.
  • 40. Расчет подшипников скольжения при полужидкостном трении.
  • 41. Расчет подшипников скольжения при жидкостном трении.
  • 42. Назначение и классификация подшипников качения.
  • 43. Статическая грузоподъемность. Проверка подшипников качения по статической грузоподъемности. Проверка и подбор подшипников по статической грузоподъемности.
  • 44. Динамическая грузоподъемность. Проверка подшипников качения по динамической грузоподъемности.
  • 45. Назначение и классификация муфт.
  • 46. Классификация соединений.
  • 47. Основные сведения о резьбовых соединениях.
  • 48. Классификация резьб.
  • 49. Виды нагружений болтовых соединений.
  • 1. Для соединений стальных и чугунных деталей, без упругих прокладок = 0,2 – 0,3.
  • 2.Для соединений стальных и чугунных деталей с упругими прокладками (асбест, поронит, резина и др.) = 0,4 – 0,5.
  • 3. В уточненных расчетах определяют значения д и б, а затем.
  • 50. Основные понятия о заклепочном соединении.
  • 51. Область применения, преимущества и недостатки сварных соединений.
  • 52. Шпоночные и шлицевые соединения.
  • 4. Основные виды механических передач.

    Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Может осуществляться с изменением значения и направления скорости движения, с преобразованием вида движения. Необходимость применения таких устройств обусловлена нецелесообразностью, а иногда и невозможностью непосредственного соединения рабочего органа машины с валом двигателя. Механизмы вращательного движения позволяют осуществить непрерывное и равномерное движение с наименьшими потерями энергии на преодоление трения и наименьшими инерционными нагрузками.

    Механические передачи вращательного движения делятся:

    По способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные);

    По соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие (мультипликаторы);

    По взаимному расположению осей ведущего и ведомого валов на передачи с параллельными , пресекающимися и перекрещивающимися осями валов.

    Зубчатые передачи

    Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

    Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называют шестерней , с большим числом зубьев – колесом .

    Планетарные передачи

    Планетарными называются передачи, содержащие зубчатые колеса с перемещающимися осями. Передача состоит из центрального колеса с наружными зубьями, центрального колеса с внутренними зубьями , водила и сателлитов. Сателлиты вращаются вокруг своих осей и вместе с осью вокруг центрального колеса, т.е. совершают движение, подобное движению планет.

    Червячные передачи

    Червячная передача применяется для передачи вращения от одного вала к другому, когда оси валов перекрещиваются. Угол перекрещивания в большинстве случаев равен 90º. Наиболее распространенная червячная передача состоит из так называемого архимедова червяка , т.е. винта, имеющего трапецеидальную резьбу с углом профиля в осевом сечении, равным двойному углу зацепления (2α = 40), и червячного колеса .

    Волновые механические передачи

    Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма.

    Волновые зубчатые передачи являются разновидностью планетарных передач, у которых одно из колес гибкое.

    Фрикционные передачи

    Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами .

    Ременные передачи

    Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.

    В зависимости от формы поперечного сечения ремня различают: плоскоременную, клиноременную и круглоременную

    Цепные передачи

    Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью и зубчатой цепью Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.

    Передача винт-гайка

    Передача винт-гайка служит для преобразования вращательного движения в поступательное. Широкое применение таких передач определяется тем, что при простой и компактной конструкции удается осуществить медленные и точные перемещения.

    В авиастроении передача винт-гайка используется в механизмах управления самолетом: для перемещения взлетно-посадочных закрылков, для управления триммерами, поворотными стабилизаторами и др.

    К преимуществам передачи относятся простота и компактность конструкции, большой выигрыш в силе, точность перемещений.

    Недостатком передачи является большая потеря на трение и связанный с этим малый КПД.

    Кулачковые механизмы

    Кулачковые механизмы (рис. 2.26) по широте применения уступают только зубчатым передачам. Их используют в станках и прессах, двигателях внутреннего сгорания, машинах текстильной, пищевой и полиграфической промышленности. В этих машинах они выполняют функции подвода и отвода инструмента, подачи и зажима материала в станках, выталкивания, поворота, перемещения изделий и др.

    Виды механических передач и передаточных миханизмов

    Вращательное движение в машинах передается при помощи фрикционной, зубчатой, ременной, цепной и червячной передач. Будем условно называть пару, осуществляющую вращательное движение, колесами. Колесо, от которого передается вращение, принято называть ведущим, а колесо, получающее движение - ведомым.

    Всякое вращательное движение можно измерить оборотами в минуту. Зная число оборотов в минуту ведущего колеса, мы можем определить число оборотов ведомого колеса. Число оборотов ведомого колеса зависит от соотношения диаметров соединенных колес. Если диаметры обоих колес будут одинаковы, то и колеса будут крутиться с одинаковой скоростью. Если диаметр ведомого колеса будет больше ведущего, то ведомое колесо станет крутиться медленнее, и наоборот, если его диаметр будет меньше, оно будет делать больше оборотов. Число оборотов ведомого колеса во столько раз меньше числа оборотов ведущего, во сколько раз его диаметр больше диаметра ведущего колеса.

    Зависимость числа оборотов от диаметров колес.

    В технике при конструировании машин часто приходится определять диаметры колес и число их оборотов. Эти расчеты можно делать на основе простых арифметических пропорций. Например, если мы условно обозначим диаметр ведущего колеса через Д 1 , диаметр ведомого через Д 2 , число оборотов ведущего колеса через n 1 , число оборотов ведомого колеса через n 2 , то все эти величины выражаются простым соотношением:

    Д 2 /Д 1 = n 1 /n 2

    Если нам известны три величины, то, подставив их в формулу, мы легко найдем четвертую, неизвестную величину.

    В технике часто приходится употреблять выражения: "передаточное число " и "передаточное отношение ". Передаточным числом называют отношение числа оборотов ведущего колеса (вала) к числу оборотов ведомого, а передаточным отношением - отношение между числами оборотов колес независимо от того, какое из них ведущее. Математически передаточное число пишется так:

    n 1 /n 2 = i или Д 2 /Д 1 = i

    где i - передаточное число. Передаточное число - величина отвлеченная и размерности не имеет. Передаточное число может быть любым - как целым, так и дробным.

    Фрикционная передача

    При фрикционной передаче вращение от одного колеса к другому передается при помощи силы трения. Оба колеса прижимаются друг к другу с некоторой силой и вследствие возникающего между ними трения вращают одно другое. Недостаток фрикционной передачи: большая сила, давящая на колеса, вызывающая дополнительное трение, а следовательно, требующая и дополнительную силу для вращения. Кроме того, колеса при вращении, как бы они ни были прижаты друг к другу дают проскальзывание. Поэтому там, где требуется точное соотношение чисел оборотов колес, фрикционная передача себя не оправдывает.

    Достоинства фрикционной передачи:
    Простота изготовления тел качения;
    Равномерность вращения и бесшумность работы;
    Возможность бесступенчатого регулирования частоты вращения и включения/выключения передачи на ходу;
    За счет возможностей проскальзывания передача обладает предохранительными свойствами.

    Недостатки фрикционной передачи:
    Проскальзывание, ведущее к непостоянству передаточного числа и потери энергии;
    Необходимость обеспечения прижима.

    Применение фрикционной передачи:
    В машиностроении чаще всего применяют бесступенчатые фрикционные передачи для бесступенчатого регулирования скорости.


    Фрикционные передачи:
    а - лобовая передача, б - угловая передача, в - цилиндрическая передача.

    В самодельных устройствах фрикционная передача может быть широко использована. Особенно приемлемы передачи цилиндрическая и лобовая. Колеса для передач можно делать деревянные. Для лучшего сцепления, рабочие поверхности колес следует "обшить" слоем мягкой резины толщиной в 2-3 мм. Резину можно или прибить мелкими гвоздиками, или приклеить клеем.

    Зубчатая передача

    В зубчатых передачах вращение от одного колеса к другому передается при помощи зубьев. Зубчатые колеса вращаются намного легче фрикционных. Объясняется это тем, что здесь нажима колеса на колесо совсем не требуется. Для правильного зацепления и легкой работы колес профиль зубца делают по определенной кривой, называемой эвольвентой.


    v передавать вращательное движение;

    v изменять число об/мин;

    v увеличивать или уменьшать силу вращения;

    v менять направление вращения.

    В зависимости от формы колес и их взаимного расположения различают следующие виды зубчатых передач : цилиндрическая, коническая, червячная, реечная, планетарная.

    Цилиндрическая передача состоит из двух или нескольких цилиндрических колес установленных на параллельных валах.

    Рис. 215 Цилиндрическая передача

    Коническая передача состоит из двух конических колес, находящихся на двух валах, оси которых пересекаются. Угол пересечения может быть любой, но обычно он равен 90º.

    Рис. 216 Коническая передача

    Червячная передача (зубчато-винтовая передача) - механическая передача, осуществляющаяся зацеплением червяка и сопряжённого с ним червячного колеса. Червячная передача применяется для перекрещивающихся, но не пересекающихся валов. Червячная передача состоит из винта (червяка) и зубчатого колеса.


    Рис. 217 Червячная передача

    Червячная передача обладает рядом уникальных свойств. Во-первых, она может быть использована только в качестве ведущего зубчатого колеса, и никак не может быть ведомой шестерней. Это очень удобно для механизмов, которые нужны для поднятия и удержания груза без нагрузки на двигатель. Существует много возможных применений этого свойства червячной передачи, например, во многих видах подъемных кранов и погрузчиков, железнодорожных барьеров, разводных мостах, лебедках. Очень широко червячная передача LEGO используется в конструкции захвата для робота-манипулятора.

    Во-вторых, характерной особенностью червячной передачи является то, что она имеет большое передаточное отношение. Поэтому червячные передачи используются как понижающее всякий раз, когда есть очень высокий крутящий момент.

    Вывод: червячная передача имеет ряд преимуществ:

    v Занимает мало места.

    v Имеет свойство самоторможения.

    v Во много раз снижает число об/мин.

    v Увеличивает силу привода.

    v Изменяет направление вращательного движения на 90°.

    Реечная передача – механическая передача, преобразующая вращательное движение зубчатого колеса в поступательное движение рейки и наоборот. Рейку можно рассматривать как вытянутую в прямую линию окружность большого зубчатого колеса.


    Следует отметить, что существует в наборах LEGO коронная шестерня и шестерни с внутренним зацеплением.

    Коронная шестерня - это особый тип шестерен, их зубья находятся на боковой поверхности. Такая шестерня работает, как правило, в паре с прямозубой шестерней.

    Рис. 220 Соединения короной шестерни и цилиндрических колес с 8 и 24 зубьями

    Шестерни с внутренним зацеплением имеют зубья, нарезанные с внутренней стороны . При их использовании происходит одностороннее вращение ведущей и ведомой шестерен. В данной зубчатой передаче меньше затрат на трение, а значит выше коэффициент полезного действия*. Применяются зубчатые колеса с внутренним зацеплением в ограниченных по габаритам механизмах, в планетарных передачах, в приводе робота манипулятора.

    Рис. 221 Шестерня с внутренним зацеплением

    Особенность шестерни с внутренним зацеплением LEGO - наличие зубьев на внешней стороне , поэтому ее можно использовать в передачах как цилиндрическое колесо с 56 зубьями.

    Рис. 222 Способы соединения колеса с внутренним зацеплением с цилиндрической шестерней, колесом с короной и «червяком»

    Рис. 223 Способ соединения колеса с внутренним зацеплением с мотором

    Планетарная передача

    Планетарная передача (дифференциальная передача) - механическая система, состоящая из нескольких планетарных зубчатых колёс (шестерён), вращающихся вокруг центральной, солнечной, шестерни. Обычно планетарные шестерни фиксируются вместе с помощью водила. Планетарная передача может также включать дополнительную внешнюю кольцевую (коронную) шестерню, имеющую внутреннее зацепление с планетарными шестернями.

    Такая передача нашла широкое применение, например, она используется в кухонной технике или автоматической коробке передач автомобиля.

    Основными элементами планетарной передачи можно считать следующие:

    v Солнечная шестерня: находится в центре;

    v Водило: жёстко фиксирует друг относительно друга оси нескольких планетарных шестерён (сателлитов) одинакового размера, находящихся в зацеплении с солнечной шестерней;

    v Кольцевая шестерня: внешнее зубчатое колесо , имеющее внутреннее зацепление с планетарными шестернями.

    Рис. 224 Пример планетарной передачи: водило неподвижно, солнце ведущее, корона ведомая

    В планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй - ведомым. Третий элемент при этом неподвижен (таблица 8).

    Таблица 8. Элементы планетарной передачи

    Неподвижный

    Ведущий

    Ведомый

    Передача

    Корона

    Понижающая

    Повышающая

    Солнце

    Понижающая

    Повышающая

    Водило

    Реверс, понижающая

    Реверс, повышающая

    Реверс - изменение хода механизма на обратный, противоположный.

    Рис. 225 Пример конструкции планетарной передачи: корона неподвижна, водило ведущее, солнце ведомое

    Механические передачи с гибкими элементами

    Для передачи движения между сравнительно далеко расположенными друг от друга валами применяют механизмы, в которых усилие от ведущего звена к ведомому передается с помощью гибких звеньев. В качестве гибких звеньев применяются ремни, шнуры, цепи различных конструкций.

    Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношение со ступенчатым или плавным изменением его величины.

    Ременная передача

    Ременная передача состоит из двух шкивов, закрепленных на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счет сил трения, возникающих между шкивами и ремнем вследствие натяжения последнего. Ременная передача мало чувствительна к взаимному положению ведущего и ведомого валов. Их можно даже повернуть под прямым углом друг к другу или ремень надеть в виде перекрещенной петли, и тогда направление вращения ведомого вала измениться.

    Рис. 226 Ременная передача

    Цепная передача

    Рис. 227 Цепная передача

    Фрикционная передача

    Рис. 228 Фрикционная передача

    При фрикционной передаче вращение от одного колеса к другому передается при помощи силы трения. Оба колеса прижимаются друг к другу с некоторой силой и вследствие возникающего между ними трения одно вращает другое.

    Фрикционные передачи широко применяются в машинах. Недостаток фрикционной передачи: большая сила, давящая на колеса, вызывающая дополнительное трение в машине, а, следовательно, требующая и дополнительную силу для вращения.

    Кроме того, колеса при вращении, как бы они ни были прижаты друг к другу, дают проскальзывание. Поэтому там, где требуется точное соотношение чисел оборотов колес, фрикционная передача себя не оправдывает.

    Проект «Автоматический шлагбаум»:

    1. Сконструируйте модель автоматического шлагбаума.

    Технические условия:

    б) в конструкции используется червячная передача;

    в) автоматическое поднимание и опускание стрелы шлагбаума должно происходить при помощи ультразвукового датчика.

    4. В рамках робототехнического кружка изготовьте автоматический шлагбаум.

    6. В рабочей тетради составьте описание автоматического шлагбаума.

    Проект «Поворотная платформа»:

    1. Сконструируйте модель поворотной платформы.

    Технические условия:

    б) в конструкции используется шестерня с внутренним зацеплением;

    в) автоматический поворот платформы происходит с помощью датчика касания (датчика освещенности).

    4. В рамках робототехнического кружка изготовьте поворотную платформу.

    6. В рабочей тетради составьте описание поворотной платформы.

    Проект «Раздвижные автоматические двери»:

    1. Сконструируйте модель раздвижных автоматических дверей.

    Технические условия:

    а) в модель входит один сервомотор, микроконтроллер NXT;

    б) в конструкции используется реечная передача;

    в) автоматическое открывание дверей происходит при помощи ультразвукового датчика (датчика освещенности).

    2. В рабочей тетради выполните эскиз модели.

    3. Обсудите проект с учителем.

    4. В рамках робототехнического кружка изготовьте модель раздвижных автоматических дверей.

    5. С помощью языка программирования NXT-G напишите программу для управления моделью.

    6. В рабочей тетради составьте описание модели раздвижных автоматических дверей.

    Назначение зубчатой передачи передавать движение от одного вала к другому с изменением угловых скоростей и моментов по величине и направлению. Такая передача состоит из двух колес. Передача вращающего момента в зубчатой передаче осуществляется благодаря давлению зубьев, находящихся в зацеплении, одного колеса на зубья другого. Зубчатые передачи широко распространены в России и за рубежом благодаря их достоинствам по сравнению с другими механическими передачами.

    Преимущества: большая долговечность и высокая надежность; высокий КПД (до 0,98); постоянство передаточного отношения; возможность применения в широком диапазоне моментов, скоростей и передаточных отношений; малые габаритные размеры; простота эксплуатации.

    Недостатки: наличие шума; невозможность плавного изменения передаточного отношения; необходимость высокой точности изготовления и монтажа, что увеличивает их стоимость.

    По исходному контуру зубчатые передачи делят:

    • на эвольвентные – преимущественно распространены в промышленности;
    • с круговым профилем (зацепление М. Л. Новикова) – применяются для передач с большими нагрузками.

    У эвольвентного зацепления рабочая поверхность зуба имеет эвольвентный профиль. В дальнейшем будем рассматривать лишь передачи с эвольвентным зацеплением.

    К зубчатым передачам относятся цилиндрические, конические, планетарные, волновые и др.

    Цилиндрические зубчатые передачи

    Цилиндрической зубчатой передачей называется передача с параллельными осями. Они бывают с прямым зубом (рис. 4.13, а), косым зубом, (рис. 4.13, б), и шевронные, (рис. 4.13, в) (β – угол наклона зуба). Рекомендуется максимальные передаточные числа в одной ступени не превышать, так как в противном случае габаритные размеры механизмов увеличиваются но сравнению с двухступенчатой передачей с тем же передаточным числом.

    Преимущества передач с шевронным и косым зубом по сравнению с прямым: бо́льшая прочность зуба на изгиб (бо́ль-

    Рис. 4.13

    шая нагрузочная способность); большая плавность зацепления и малый шум, а также меньшие динамические нагрузки.

    Недостатки , наличие осевой силы у косозубых передач; большая сложность изготовления.

    Косозубые передачи применяют при окружных скоростяхм/с; шевронные передачи – преимущественно в тяжело нагруженных передачах.

    Кинематика и геометрия цилиндрические зубчатых колес. Передаточное отношение, где– угловая частота вращения i-го вала.

    Для наружного зацепления (см. рис. 4.4, а – вращение колес в разные стороны) i берется со знаком "–", для внутреннего (см. рис. 4.4, б – вращение в одну сторону) со знаком "+". Из кинематического условия – равенства скоростей в месте контакта зубьев колес, , получаем ,

    где– частота вращения i-ro колеса;– делительный диаметр зубчатого колеса.

    Принимая ( – количество зубьев г-го колеса) и учитывая соотношение (4.3), получаем

    (4.4)

    где– передаточное число (всегда величина положительная). Принято меньшее из зубчатых колес в паре называть шестерней и обозначать "ш" или "1", а большее – колесом ("к" или "2"),

    Различают понижающие передачи (рис. 4.14, а), которые понижают частоту вращения и используются в редукторах;

    Рис. 4.14

    повышающие передачи (рпс. 4.14, б ), которые повышают частоту вращения и используются в мультипликаторах.

    Зубчатые колеса в основном используются с эвольвснт- ным зацеплением, которое обеспечивает постоянное передаточное отношение, малые скорости скольжения в зацеплении и несложное изготовление. Так как в передаче преобладает трение качения, а трение скольжения мало, то она имеет высокий КПД. Это зацепление мало чувствительно к отклонению межосевого расстояния. В эвольвентном зацеплении рабочая поверхность зуба имеет форму эвольвенты. Эвольвентой называют кривую, которую описывает точкаобразующей прямой N–N, перекатывающаяся без скольжения по основной окружности диаметра. Образующая прямая всегда перпендикулярна к эвольвенте, а отрезок является ее радиусом кривизны (рис. 4.15).

    Перейдем к рассмотрению геометрии эвольвентных зубчатых колес.

    На рис. 4.16 показано косозубое колесо, для которого нормальный шаг определяют по формуле

    где– окружной делительный шаг – расстояние между одноименными профилями соседних зубов, измеряемое по дуге делительной окружности зубчатого колеса;– угол наклона зуба.

    Рис. 4.15

    Рис. 4.16

    Окружной модуль– это величина, враз меньшая окружного шага:

    Разделив формулу (4.5) на π, получаем

    где– нормальный модуль, уточняется по ГОСТу, что обеспечивает возможность использования стандартного инструмента, например модульных фрез.

    Модуль является основным параметром зубчатого зацепления.

    Длина делительной окружности зубчатого колеса определяется по формуле

    Разделив обе части равенства на π, получаем выражение для определения делительного диаметра

    что подтверждает соотношение, принятое в формуле (4.4).

    Нарезание зубчатых колес производится инструментальной рейкой. Окружность зубчатого колеса, на которой шаг р и угол зацепления соответственно равны шагу и углу профиля а инструментальной рейки, называют делительной (d ). На рейке делительной плоскостью называют плоскость, на которой толщина зубьев равна ширине впадины. Сопряженные пары зубчатых колес касаются друг друга в полюсе зацепления. Окружности, проходящие через полюс зацепления Р и перекатывающиеся одна по другой без скольжения, называются начальными (рис. 4.17, а, где, – диаметры начальных окружностей;– угол зацепления). Отрезок АВ линии зацепления, ограниченный окружностями вершин зубьев шестерни и колеса, называется активным участком линии зацепления Эта линия определяет начало входа пары зубьев в зацепление и выхода из него.

    Расстояние между начальной и делительной окружностями называют смещением исходного контура Отношение этого смещения к т называют коэффициентом

    Рис. 4.17

    смещениях (рис. 4.18). Приделительный и начальный диаметры равны,.Припроисходит подрезание зуба, что устраняется введением положительного смещениях Если призадать смещение,то суммарный коэффициент смещения будет равен

    В этом случае зубья колес имеют одинаковую высоту, но высота головки и ножки зуба, диаметры окружностей вер-

    Рис. 4.18

    шин и впадин различны. Толщина зубьев шестерни увеличивается, а колеса уменьшается. Если условиене вы

    полняется, то нужно вводить коэффициент уравнительного смещения .

    Основные геометрические характеристики косозубой цилиндрической передачи внешнего зацепления при х = О приведены на рис. 4.17, б:

    Делительный диаметр

    Участок зацепления зубчатых колес показанна рис. 4.19, где– ширина зубьев шестерни и колеса;– рабочая ширина зуба, на которой происходит их контакт:

    где– относительная ширина зуба (большее значение для больших нагрузок);

    (4.12)

    – межосевое расстояние ("+" – для внешнего зацепления, "-" – для внутреннего).

    Рис. 4.19

    Геометрические параметры эквивалентного колеса для косозубой передачи. Аналитическое определение напряжений изгиба в опасном сечении косых зубьев затруднено из-за их криволинейной формы и наклонного расположения контактных линий. Поэтому переходят от косозубых колес к эвольвентным с прямым зубом. Напряжения, как и для прямых зубьев, можно определить, рассматривая нормальное сечениекосых зубьев (рис. 4.20).

    В нормальном сеченииполучаем эллипс с полуосями а и b:

    Используя известное из геометрии выражение, определяем радиус окружности эллипса в точке контакта Р с сопрягаемым колесом:

    Делительный диаметр эквивалентного зубчатого колеса

    Принимаяполучаем формулу . Подставив в нее , определяем количество зубьев у эквивалентного колеса

    Расчеты косозубых колес на прочность производят для эквивалентных цилиндрических прямозубых колес с диаметром делительной окружностии числом зубьев .

    Изготовление зубчатых колес. Существует два метода нарезания зубьев: копирование и обкатка.

    Метод копирования заключается в прорезании впадин между зубьями модульными фрезами дисковыми (рис. 4.21а) или пальцевыми (рис. 4.21, б). После прорезания каждой

    Рис. 4.20

    Рис. 4.21

    впадины заготовку поворачивают на шаг зацепления. Профиль впадины представляет собой копию профиля режущих кромок фрезы. Для нарезания зубчатых колес с разным числом зубьев необходим разный инструмент. Метод копирования малопроизводительный и менее точный, чем при обкатке.

    При шлифовании фрезу заменяют шлифовальным кругом соответствующего профиля.

    Метод обкатки основан на воспроизведении зацепления зубчатой пары, одним из элементов которой является режущий инструмент – червячная фреза (рис. 4.22, а ), долбяк (рис. 4.22, б ) или реечная гребенка (рис. 4.22, в ). При нарезании зуборезной гребенкой заготовка вращается вокруг своей оси, а инструментальная рейка 1 совершает возвратно-поступательное движение параллельно оси заготовки 2 и поступательное движение параллельно касательной к ободу заготовки. Гребенками нарезают прямозубые и косозубые колеса с большим модулем зацепления. При нарезании червячной фрезой, имеющей в осевом сечении форму инструментальной рейки, заготовка и фреза вращаются вокруг своих осей, обеспечивая непрерывность процесса. Долбяк имеет форму шестерни с режущей кромкой. Он совершает возвратно-поступательное движение вдоль оси заготовки и вращается вместе с заготовкой. Для нарезания цилиндрических колес

    Рис. 4.22

    с внешним расположением зубьев используют фрезу и гребенку, для нарезания колес с внутренним и внешним расположением зубьев – долбяки.

    Материалы зубчатых колес. Если механическая обработка производится после термической, то твердость зубчатых колес должна быть НВ 350. Такой материал применяется в мелкомодульных передачах и в передачах с модулем т< 2. Для уменьшения размеров зубчатых колес (обычно при т> 2) необходимо упрочнить рабочую поверхность зуба, что увеличивает допускаемые контактные напряжения. Объемная закалка используется для среднеуглеродистых сталей (например, 40Х, 40ХН и др.) до твердости HRCa > 45÷55. Такая закалка делает сердцевину менее пластичной, что способствует поломке зубьев. У современных зубчатых колес сохраняют вязкую сердцевину, а упрочняют лишь рабочую поверхность зуба термическими (поверхностная закалка ТВЧ), химико-термическими методами (цементация и азотирование), методом физического воздействия высоких энергий (лазерная закалка, ионное азотирование) и др. При цементировании сталей 12ХНЗА, 18Х2НМА, 15ХФ твердость поверхности 56–62 HRC3; при азотировании сталей 38Х2Ю, 38Χ2ΜΙΟΛ – 50–55 HRC3; при ионном азотировании – 80–90 HRCэ; при лазерном упрочнении – 56–60 HRCэ; при поверхностном упрочнении рабочей поверхности зуба масса редуктора снижается в 1,5–2 раза и соответственно уменьшаются его габаритные размеры.

    Точность зубчатой передачи. В стандарте предусмотрены степени точности зубчатых передач 1–12 (от более точной к наименее точной). Наибольшее распространение имеют следующие точности: 6 – повышенная точность (до v = 20 м/с); 7 – нормальная точность (до v = 12 м/с); 8 – пониженная точность (до v = 6 м/с); 9 – грубая точность (до v = 3 м/с). Значения наибольших допустимых скоростей v приведены для прямозубых передач, а для косозубых их необходимо увеличить примерно в 1,5 раза. Степень точности назначается с учетом условий работы передачи и предъявляемых к ней требованиям.

    Степень точности характеризуется следующими основными показателями:

    • нормой кинематической точности колеса, устанавливающей величину полной погрешности угла поворота зубчатых колес за один оборот. Она является важным показателем для высокоточных делительных механизмов;
    • нормой плавности работы колеса, определяющей величину составляющих полной погрешности угла поворота зубчатого колеса, многократно повторяющихся за один оборот передачи. Она связана с неточностью изготовления по шагу π профилю и вызывает дополнительные динамические нагрузки в зацеплении;
    • нормой контакта, характеризующей полноту прилегания боковых поверхностей сопряженных зубьев. Она оценивается следом на рабочей поверхности зуба после контакта с вращающимся колесом, зубья которого смазаны краской (рис. 4.23).

    Степень точности должна соответствовать окружной скорости в зацеплении: чем она выше, тем выше должна быть точность передачи. В зависимости от степени точности и размеров на отдельные элементы зацепления и передачи установлены допуски.

    Боковой зазор между зубьями(рис. 4.24, где – допуск; – минимальный и максимальный боковые зазоры) должен обеспечивать свободное вращение колес и устранить заклинивание. Он определяется видом сопряжения колес от Л до Н. Наибольший зазор у А, а наименьший у Н. Для передач с модулем т> 1 установлены виды сопряжений А, В, С, D, E, Н. Обычно используется сопряжение В, а у реверсивных передач С. Для мелкомодульных передач < 1) виды сопряжений D, E, F, G, H. Чаще используют Е, а в реверсивных передачах F. Допускается применять раз-

    Рис. 4.23

    Рис. 4.24

    личные степени точности но отдельным показателям, например при т ≥ 1 7-6-7-В (7 – норма кинематической точности, 6 – норма плавности, 7 – норма контакта), а при одинаковой точности по всем показателям (7-7-7-В) записывают 7-В.

    Виды разрушений зуба. При работе цилиндрических зубчатых передач возможны различные повреждения зубьев колес: механическое и молекулярно-механическое изнашивание, а также поломка зубьев.

    Механическое изнашивание. Оно включает:

    • выкрашивание рабочих поверхностей (рис. 4.25, а). Это наиболее частая причина выхода из стоя зубчатых передач, работающих со смазкой. Разрушения носят усталостный характер. Трещины развиваются до выкрашивания в основном на ножке зубьев в местах неровностей, оставшихся после окончательной обработки. В процессе работы от нагружения зуба число ямок растет и их размеры увеличиваются. Профиль зуба искажается, поверхность становится неровной, возрастают динамические нагрузки. Процесс выкрашивания усиливается, и рабочая поверхность на ножке зуба разрушается. Опасно прогрессивное выкрашивание – трещины от ямок могут распространяться и поражать всю поверхность ножек. Если смазочный материал отсутствует или его количество незначительно, выкрашивание наблюдается редко, так как образовавшиеся повреждения сглаживаются. Сопротивление выкрашиванию увеличивается с увеличением твердости поверхности зубьев, чистоты обработки и правильным подбором смазочного материала;
    • износ, зубьев (рис. 4.25, 6) – изнашивание рабочих поверхностей зубьев, которое возрастает с увеличением контактных напряжений и удельного скольжения. Износ искажает эвольвентный профиль, возрастают динамические

    Рис. 4.25

    нагрузки. Так как наибольшее скольжение происходит в начальных и конечных точках контакта зубьев, то наибольший износ наблюдается на ножках и головках зубьев. Износ сильно увеличивается из-за неровностей на рабочих поверхностях зуба, после обработки, а так же при загрязнении зубчатой передачи абразивными частицами (абразивный износ). Он наблюдается при работе у открытых механизмов. Если неровности меньше толщины масляной пленки, износ уменьшается, а при недостаточной смазке увеличивается. Его можно понизить уменьшением контактных напряжений σΗ, увеличением износостойкости поверхности зубьев (повысить твердость рабочих поверхностей зубьев, правильно выбрать смазочный материал).

    Молекулярно-механическое изнашивание. Такое изнашивание проявляется как заедание (рис. 4.25, в) при действии высоких давлений в зоне, где нет масляной пленки. Сопряженные поверхности зубьев сцепляются друг с другом настолько сильно, что частицы поверхности более мягкого зуба привариваются к поверхности зуба другого колеса. Образовавшиеся наросты на зубьях наносят на рабочие поверхности других зубьев борозды. Заедание особенно интенсивно в вакууме или когда рабочие поверхности зуба подвергаются высокому давлению. Заедание предупреждают повышением твердости и снижением шероховатости поверхностей, правильным подбором противозадирных масел.

    Для предотвращения выкрашивания рабочих поверхностей зубьев нужно проводить расчет передачи на контактную прочность.

    Поломка зубьев. Это наиболее опасный вид повреждения. Она носит усталостный характер и обычно отсутствует у зубчатых колес редукторов, когда их рабочие поверхности не упрочнены. Излом зубьев является следствием возникающих в них повторно-переменных напряжений от изгиба при перегрузках. Усталостные трещины образуются у основания зуба на той стороне, где от изгиба возникают наибольшие напряжения растяжения. Излом происходит в сечении у основания зуба.

    Поломку предупреждают расчетом на прочность по напряжениям изгиба.

    Силы в зацеплении цилиндрических передач. Приложенную к зубу косозубого колеса силу F можно разложить на три составляющие F t, F r, F a (рис. 4.26):

    где– окружная сила (Г – расчетный вращающий момент на колесе);– радиальная сила; осевая сила;– углы зацепления в торцевом и нормальном сечениях.

    У прямозубого колеса отсутствует осевая сила, т.е.

    Расчетные силы в зацеплении. При передаче нагрузки в зацеплении возникают, кроме статической, дополнительная динамическая составляющая силы, а также имеет место неравномерность распределения нагрузки по ширине зуба и распределение нагрузки между зубьями. Все изменения в нагрузке по сравнению с исходной учитывают коэффициенты нагрузкии

    Удельная, окружная и расчетная силы. В расчетах на контактную выносливость определяется по формуле

    (4.17)

    В расчетах на выносливость при изгибе

    Рис. 4.26

    – коэффициент нагрузки при изгибе;– коэффициент распределения нагрузки между зубьями;, – коэффициент, учитывающий неравномерность распределения нагрузки но ширине зуба;– коэффициент, учитывающий дополнительную динамическую нагрузку на зубья при изгибе.

    При работе привода динамические внешние нагрузки увеличивают силы и моменты. В расчетах на прочность необходимо использовать расчетную силу Fu расчетный момент Т:

    где – коэффициент динамичности внешней нагрузки; – номинальная сила и вращающий момент.

    Удельные окружные динамические нагрузки действующие на зубья колес, возникают при взаимодействии зубьев в зацеплении из-за неточности изготовления по шагу и их деформации. Эти силы определяют с учетом погрешности зацепления по шагу, зависящей от степени точности по нормам плавности и модуля передачи.

    Удельная окружная динамическая нагрузка для цилиндрических передач при расчете на контактную прочность

    (4.21)

    где – коэффициент, учитывающий твердость рабочих поверхностей и угол наклона зуба (табл. 4.6); – коэффициент, учитывающий погрешность зацепления по шагу

    Таблица 4.6

    Таблица 4.7

    Модуль 171, мм

    Степень точности по нормам плавности ГОСТ 1643–81

    (табл. 4.7);– окружная скорость в зацеплении, м/с;– межосевое расстояние, мм; и – передаточное число зубчатой пары;– предельное значение окружной динамической силы, Н/мм (см. табл. 4.7).

    В расчетах прочности зубьев на изгиб пдя цилиндрических передач

    (4.22)

    Величиныте же, что при проверочном расчете на контактную прочность (см. табл. 4.7), а значенияприведены в табл. 4.6.

    С увеличением степени точности по нормам плавности передачи дополнительные динамические нагрузки снижаются. То же происходит при переходе от прямых зубьев к косым. При повышении твердости зубьев нагрузки можно увеличивать. Отметим, что динамическая нагрузка с увеличением скорости растет, но до определенного предела.

    Коэффициенты внутренней динамической нагрузки на зубья. Для расчетов на контактную и изгибистую прочность эти коэффициенты определяются по формулам

    (4.23)

    где ;– окружная сила в зацеплении;– рабочая ширина зуба.

    Коэффициентыучитывают распределение на

    грузки между зубьями в расчетах на контактную и изгибистую прочность. Эти коэффициенты связаны с погрешностью изготовления. Для прямозубых передач; для косозубых передачзависят от точности зацепления и твердости рабочей поверхности зубьев: (табл. 4.8), так как у косозубых передач одновременно в зацеплении находится не менее двух пар зубьев. Без нагрузки у одной из пар появляется зазор, который устраняется при увеличении нагрузки за счет упругих деформаций.

    Коэффициентыучитывают неравномерность распределения нагрузки по ширине зубчатых венцов, связанной с деформацией валов, опор и с погрешностью их изготовления. Прогибы валов в местах расположения колес приводят к их перекосу и неравномерному распределению нагрузки по линии контакта. Концентрация нагрузки зависит от рас-

    Таблица 4.8

    Коэффициенты

    Степень точности

    К На, Xfa при НВ < 350

    К Иа, К Го при НВ > 350

    положения опор и твердости материала. Значения коэффициентов практически одинаковы при расчете на контактную и изгибную прочности:

    гдедля прямых зубьев,для косых зубьев;– коэффициент относительной твердости контактных поверхностей, учитывающий приработку зубьев:

    – коэффициент, учитывающий влияние прогиба вала, на который влияет расположение колес относительно опор: при симметричном расположении, при несимметричном>, при консольном .

    Наибольший перекос при нагружении возникает у валов с консольным расположением опор, а наименьший при симметричном.

    Контактные напряжения. Характер сопряжения некоторых деталей машин отличается тем, что передаваемая ими по малой поверхности нагрузка в зоне контакта вызывает высокие напряжения. Контактные напряжения характерны для зубчатых колес и подшипников качения. Контакт бывает точечным (шар на плоскости) и линейным (цилиндр на плоскости). При нагружении происходит деформация и зона контакта расширяется до области, ограниченной кругом, прямоугольником или трапецией, в которой возникают контактные напряжения. При больших контактных напряжениях, превышающих допускаемые, на контактной поверхности возможны повреждения поверхностей, которые появляются в виде вмятин, борозд, трещин. Такие повреждения могут возникнуть в зубчатых передачах и у подшипников, контактные напряжения которых изменяются во времени но прерывистому циклу. Переменные напряжения являются причиной усталостного разрушения рабочей поверхности зубьев: выкрашивания, износа, заедания. При больших контактных напряжениях статическое нагружение может вызвать пластическую деформацию и появление на поверхности вмятин.

    Решение контактной задачи. Решение контактной задачи было получено Г. Герцем. При ее решении использовались следующие допущения: материалы соприкасающихся тел однородны и изотропны, площадка контакта весьма мала, действующие силы направлены нормально к поверхности контакта, нагрузки создают в зоне контакта только упругие деформации и подчиняются закону Гука. В реальных конструкциях соблюдаются не все сформулированные условия, однако экспериментальные исследования подтвердили возможность использования формулы Герца для инженерных расчетов. Рассмотрим контактные напряженияпри сжатии двух цилиндров (рис. 4.27, а). На цилиндры действует удельная нарузка

    где F – нормальная сила; h – ширина цилиндров.

    В зоне контакта на участке шириной 4 наибольшее контактное напряжение определяется (при V ≠ v 2) по формуле

    (4.26)

    где– приведенный радиус кривизны для цилиндров с радиусамии– коэффициенты Пуассона для цилиндров;– модули упругости материалов цилиндров;;– удельная окружная сила (рис. 4.28).

    Рис. 4.27

    Рис. 4.28

    Приведенные модуль упругости и радиус

    (4.27)

    В формуле длязнак "+" ставится при контакте двух выпуклых поверхностей; знак "-" – для одной вогнутой, а другой выпуклой поверхности (рис. 4.27, б).

    Если коэффициенты Пуассона цилиндров равны, то формулу (5.26) можно записать гак:

    (4.28)

    Формулу (4.28) называют формулой Герца.

    Выражения (4.26) или (4.28) используются при выводе формул для контактных напряжений.

    Проверочный расчет цилиндрической прямозубой передачи на контактную прочность

    Расчетные контактные напряжения Для определения наибольших контактных напряжений в качестве исходной принимают формулу Герца (4.28). Подставив в выражения (4.27) значения,получим

    Подставивв формулу Герца, имеем

    (4.29)

    (знак "+" используется при внешнем зацеплении, а "-" – при внутреннем). Здесь Z, – коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацепления,

    (для прямых зубьев , при , а – углы зацепления в торцевой плоскости у косозубых и прямозубых передач соответственно), значениядля косозубых передач приведены в табл. 4.9; коэффициент, учитывающий механические свойства материалов сопряженных зубчатых колес. Для стальных зубьев МПа1/2.

    Таблица 4.9

    Коэффициент Z учитывает суммарную длину контактных линий: для прямых зубьев , а для косых, где – коэффициент торцевого перекрытия. Он равен отношению активного участка АВ линии зацепления к окружному шагу (см. рис. 4.17, я). Он определяется количеством зубьев колес, находящихся одновременно в контакте (прив зацеплении находится одна пара, а при то одна, то две). Коэффициентεα влияет на плавность работы передачи. Для прямозубых передач он должен быть больше единицы (), иначе работа передачи может нарушиться (движение не будет передаваться). Коэффициентможно приближенно определить по формуле

    (4.30)

    где– число зубьев колес.

    Здесь знак "+" используется для внешнего зацепления, а "-" – для внутреннего.

    Для расчета косозубых передач можно принять среднее значениеI.

    Предельные контактные напряжения. Кривая выносливости для предельных контактных напряжений в логарифмических координатах приведена на рис. 4.29, где – пре-

    Рис. 4.29

    дельные контактные напряжения за расчетную долговечность для числа циклов переменных нагружений. Кривая выносливости в пределах

    (участок Л/)), где – предел контактной выносливости при базовом числе циклов нагружений , а назначается из условия отсутствия пластического течения материала или хрупкого разрушения на рабочей поверхности зуба при, описывается формулой:

    (4.32)

    Отметим, что , а , что связано с отнулевым циклом нагружения па поверхности зуба и с локальным действием нагрузки. Значения предельных напряжений выбирают по табл. 4.10.

    Таблица 4.10

    Твердость материала шестерни делают больше, чем у колеса, на 10–50 НВ. Базовое число циклов изменений напряжений для стальных колес определяется по формуле

    Число циклов изменения контактных напряжений на поверхности зуба, где– время работы цикла; с – число контактов одной поверхности зуба за один оборот; п – частота вращения, об/мии;– число циклов нагружения.

    При работе зуба двумя сторонами профиля у реверсивных передач в расчет принимают времяработы во время цикла одной из сторон, где нагрузка больше, так как контактные напряжения действуют лишь вблизи поверхности зуба и нагрузка одной рабочей поверхности не влияет на другую (рис. 4.30, а , где– время нагружения одной стороной зуба за один цикл;– время цикла нагружения), а при вращении в одну сторону– полное время нагружения (рис. 4.30, б). Если задан ресурс, то

    При наличии реверса, а при одностороннем вращении

    После определения значенийих подставляют в неравенство (4.31). Если значение функции, то следует принять, если, то. Выбираем из двух значений для шестерни σ//Пт i и колесаминимальное .

    Допускаемые контактные напряжения определяют по формуле

    где– запас прочности при расчете зуба на

    контактную прочность. Для механизмов с высокой надежностью следует принимать бо́льшие значения

    Рис. 4.30

    Условие контактной прочности:

    Если условие прочности не выполняется и , то при малом отклонении (менее 10%) нагрузки на зуб можно снизить, увеличивая ширину колес: , где – первичное и уточненное значения ширины зубчатого венца. При большем отклонении нужно увеличить модуль и повторить расчеты.

    Проектировочный расчет цилиндрической зубчатой передачи по контактным напряжениям

    Из формул для проверочного расчета по контактным напряжениям (4.29), (4.34), выразив удельную окружную силу через вращающий момент, получаем выражение для приближенного значения межосевого расстояния:

    (4.35)

    где – расчетный вращающий момент на шестерне, Н ∙ мм. В формуле знак "+" – для внешнего зацепления, знак "-" – для внутреннего.

    Если оба колеса стальные, МПа, тогда

    (4.36)

    При проведении проектировочного расчета неизвестна скорость, и поэтому в первом приближении задают . Вдальнейшем при проведении проверочного расчета если будет отличаться более чем на 20%, то необходимо повторно определитьс уточненным значением , входящим в

    После определения межосевого расстояния определяют приближенно модуль зацепления зубьев по формуле

    и уточняют его до значения т по ГОСТ 9563–80 (табл. 4.11). Затем определяют все геометрические характеристики зубчатых венцов для шестерни и колеса по формулам (4.9)-(4.12).

    Таблица 4.11

    Модули зубьев, мм

    Модули зубьев, мм

    Модули зубьев, мм

    Обычно ширину зубчатого венца у цилиндрической шестерни делают несколько больше, чем у колеса (для увеличения изгибной прочности зубьев).

    Возможен и другой вариант расчета, когда вместо межосевого расстояния из формулы (4.36) определяют делительный диаметр шестерни

    Определив|, находят модуль, уточняют его до значения т но ГОСТ 9563–80 и определяют все геометрические параметры зубчатых колес.

    Проверочный расчет на прочность при изгибе

    Расчетные изгибные напряжения. Рассмотрим цилиндрическую передачу с прямым зубом. Расчет проводим для предупреждения поломки зубьев. Максимальные напряжения возникают в заделке (у основания зуба), когда сила находится у окружности вершин и передается одной парой зубьев. Зуб будем рассматривать как консольную балку. Самая опасная точка – А, так как усталостные трещины и разрушения начинаются с растянутой сторон ы зубьев. На зуб действует в вершине сила F, которую разложим на две составляющие (рис. 4.31):

    В расчетах используем не поминальные, а расчетные силы, которые определяют, вводя коэффициент ■; соответственно получаем нормальные напряжения изгиба в основании зуба от изгибающего момента и напряжения сжатия от силы :

    где – момент сопротивления при изгибе; – площадь сечения у основания зуба.

    В опасной точкенапряжения от изгиба будут равны

    где – теоретический коэффициент концентрации напряжений у основания зуба.

    После заменынаи введения для косозубых передач коэффициентовиформула дляпримет вид

    где – удельная окружная сила; – коэффициент, учитывающий перекрытие зубьев; – коэффициент,учитывающий наклон зуба (получен экспериментально); – коэффициент формы зуба:

    Для внешнего зацепления;

    Для внутреннего зацепления. (4.39)

    При расчете косозубых передач по формуле (4.38) коэффициенты . У прямозубых передач

    Рис. 4.31

    Допускаемые напряжения изгиба зубьев. Вначале определим предел ограниченной выносливости зубьев на изгиб для отнулевого цикла. Предельные напряжения изгиба при одностороннем приложении нагрузки (цикл с коэффициентом асимметрии) для стальных зубчатых колес определяют из неравенства

    где– максимальные предельные напряжения изгиба, не вызывающие остаточных деформаций или хрупкого разрушения. Такие напряжения соответствуют числу циклов нагружений:

    ( приипри); – предел выносливости изгибных напряжений зуба при базовом числе циклов нагруженийи, он зависит от твер

    дости материала и вида термообработки (табл. 4.12).

    Для зубчатых колес из стали

    (4.41)

    где– коэффициент долговечности; /" = 9 для колес цемен

    тированных и азотированных с нешлифованной переходной поверхностью у основания зуба; в других случаях т = 6;

    Таблица 4.12

    – число циклов нагружений при изгибе. При заданном число циклов (см. рис.4.30, а) или (см. рис. 4.30, б); при заданном ресурсечисло циклов

    Допускаемое напряжение в опасном сечении АВ определяется по формуле

    где– коэффициент, учитывающий влияние шероховатости поверхности у корня зуба (при нешлифованных зубьях;при шлифованных зубьях);– коэффициент, учитывающий влияние двухстороннего приложения нагрузки (при одностороннем вращениии при реверсе для цементированных и азотированных сталей 0,75; в других случаях);– коэффициент запаса прочности при изгибе ().

    Для получения вероятности безотказной работы передачинужно принимать

    Проверочное условие прочности на изгиб

    Проверка проводится отдельно для шестерни 1 и колеса 2.

    Порядок расчета цилиндрической зубчатой передачи

    Исходные данные. Кинематическая схема, передаточное числои число зубьев; номинальный вращающий момент на ведущем валу; коэффициент динамичности ; частота вращения ведущего вала; график нагружения (циклограмма); гарантийная наработка(ресурс) в часах или в числе циклов нагружения; условия эксплуатации (интервал температур, наличие вибраций, внешние нагрузки и т.д.).

    Проектировочный расчет. Расчет выполняют в следующей последовательности:

    Проверочный расчет. При проведении расчета:

    Конструкция цилиндрических зубчатых колес. Зубчатые колеса изготавливают из круглого проката (прутка) и заготовок, получаемых ковкой, штамповкой и литьем. Шестерня изготовляется заодно с валом (вал – шестерня), если ее диаметр близок к диаметру вала. Зубья нарезают на выступающем венце (рис. 4.32). При диаметре венца, большем или равном диаметру вала, зубья углубляются в тело вала частично или полностью. Цилиндрические зубчатые колеса, насаживаемые на вал, можно выполнять со ступицей и в виде сплошного диска, где заготовка выполнена штамповкой или точением (рис. 4.33). Для соединения колес с валом используется шпоночное или шлицевое (зубчатое) соединение. При большом диаметре колесав диске делают 4–6 отверстий диаметром, что снижает его массу. Кроме размеров зубчатого венца, определяемых расчетным путем, можно использовать следующие рекомендации по выбору размеров других элементов цилиндрического зубчато-

    Рис. 4.32

    Рис. 4.33

    го колеса (см. рис. 4.33):

    Конструкции цилиндрических зубчатых редукторов см. на рис. 4.8 и 4.9.

    1. Зубчатые передачи

    1.1 Конструкции

    2. Износ и ремонт зубчатых передач

    2.1 Замена и ремонт зубчатых колес

    2.2 Методы с коростного ремонта зубчатых передач

    Список использованной литературы


    1. ЗУБЧАТЫЕ ПЕРЕДАЧИ

    1.1 Конструкции

    Зубчатые передачи применяются почти во всех механизмах,которыми оснащены металлургические цехи (краны и подъемники, рольганги, лебедки перекидных устройств, приводы станови т.п.)

    Основными деталями зубчатых передач являются зубчатые колеса (шестерни). Они служат для передачи вращения от одного вала к другому, когда валы находятся не на одной оси.

    В зависимости от взаимного расположения валов применяют передачи: цилиндрическую, коническую и винтовую.

    Цилиндрическая зубчатая передача служит для передачи вращения с одного на другой параллельно расположенный вал (рис.1, а).

    Коническая зубчатая передача служит для передачи вращения с вала на вал, расположенные с пересечением осей (рис.1,6).

    Винтовая зубчатая передача применяется для передачи вращения с вала на вал, расположенные с перекрещивающимися, но не пересекающимися осями (рис. 1, в).


    Рис. 1. Зубчатые передачи:а - цилиндрическая: б - коническая:в - винтовяя: г-шевронная шестерня.

    Зубчатое колесо и рейка служат для преобразования вращательного движения в поступательно-возвратное

    Зубья цилиндрических колес могут быть прямыми (рис. 1, а и б), косыми и шевронными (елочными) - рис. 1, г.

    Шевронная шестерня состоит как бы из двух шестерен с косыми зубьями, соединенными вместе.

    При работе зубчатых колес с прямыми зубьями в зацеплении одновременно находятся один или два зуба, вследствие чего работа передачи сопровождается некоторыми толчками.

    Более плавная работа зубчатой передачи достигается применением косых или шевронных зубьев, так как при этом количество зубьев, участвующих в зацеплении, увеличивается.

    Зубчатые колеса изготовляют из стальных поковок, стального литья и проката или из чугунных отливок. Для ответственных передач (например, грузоподъемных машин) применение чугунных зубчатых колес не допускается.

    Классификация зубчатых колес. В зависимости от назначения передачи, типа зуба и скорости вращения зубчатые колеса подразделяются на четыре класса точности передач по допускам на изготовление и сборку (табл. 119).


    Таблица 1 Классификация зубчатых колес

    Класс Допускаемая
    точно- Тип передач Тип окружная ско- Примечание
    сти зуба рость, м/сек
    4 Цилиндрическая Прямой До 2 Применим, где точность
    Косой » 3 и плавность не имеют
    значения, а также в
    Коническая Прямой » 1 ручных и ненагружен-
    ных передачах
    3 Цилиндрическая Прямой » 6
    Косой » 8
    Коническая Прямой » 2
    Косой » 5
    2 Цилиндрическая " Прямой » 10
    Косой » 18
    Коническая Прямой » 5
    Косой » 10
    1 Цилиндрическая Прямой Выше 8 1 При требованиях боль-
    Косой » 15 1 шой плавности переда-
    Коническая Прямой » 5 ли, а также в отсчет-
    Косой » 10 ных механизмах

    Зубчатые передачи делают открытыми, полуоткрытыми и закрытыми.

    Открытыми называют передачи, которые не имеют кожуха (резервуара) для масляной ванны; смазываются такие передачи периодически консистентной смазкой. Обычно эти передачи тихоходные и применяются преимущественно в простых машинах и механизмах.

    Полуоткрытые передачи отличаются от открытых наличием резервуара для жидкой масляной ванны.

    Закрытыми называют передачи, которые вместе с подшипниками смонтированы в специальных корпусах.

    Смазка шестерен редуктора производится различными способами:

    1) при окружных скоростях шестерен выше 12--14 м/сек- струйным способом с подачей, струи в зону начала зацепления зубчатых колес;

    2) при окружных скоростях шестерен ниже 12 м/сек - методом окунания.

    При смазке методом окунания следует учитывать следующее:

    а) большее зубчатое колесо пары должно быть погружено в масло на двух-трехкратную высоту зуба;

    б) если у редуктора имеется несколько ступеней, то уровень масла определяетсяс учетом быстроходности передач.

    В последнем случае уровень б (рис. 2) допускается, когда зубчатое колесо 1 тихоходной ступени вращается с небольшой скоростью. В редукторах, имеющих средние и большие

    Рис. 2. Струйная смазка шестерен.

    Рис. 3. Схема смазки шестерен окунанием.

    скорости низко расположенных колес, последние погружают на двух-трехкратную высоту зуба большего колеса, а масло наливают до уровня а. смазки первой ступени ставят вспомогательное зубчатое колесо 3 с узким зубом, подающее смазку на рабочее колесо.

    Вязкость заливаемого в редуктор масла выбирают в зависимости от скорости и нагрузки -обычно от 4 до 12°Е при температуре определения вязкости 50° С. При этом учитывают также температурные условия, в которых работает агрегат; при повышении температуры применяют масло большей вязкости, при понижении - меньшей вязкости.

    Открытые передачи смазывают обычно консистентными смазками (солидол, консталин и т. д.).

    Набивку уплотнений, предусмотренных (чертежами) в подшипниках и по линии стыка корпуса редуктора, следует выполнять весьма тщательно во избежание утечки масла и попадания пыли в редуктор.


    2. Износ и ремонт зубчатых передач

    Зубчатые колеса выходят из строя по двум основным причинам: по износу зубьев и по поломкам их.

    Износ обычно является следствием: 1) неполного сцепления и 2) повышенного трения (постепенный износ).

    Износ в первом случае является, главным образом, результатом плохого монтажа и при правильной сборке (строгом соблюдении радиального зазора) обычно отсутствует. Однако изменение радиального зазора может быть также следствием выработки вкладышей подшипников, причем в результате выработки подшипников может быть как увеличение радиального зазора, так и его уменьшение (работа в распор).

    Если нагрузка на вкладыши передается в стороны, противоположные сцеплению в процессе работы по мере выработки вкладышей возможно увеличение радиального зазора.

    Если нагрузка на вкладыши передается в сторону оцепления (например, у зубчатых колес бегунков кранов, в процессе работы по мере выработки вкладыша (в данном примере вкладыша бегунка) возможно уменьшение радиального зазора.

    В обоих случаях после смены вкладышей радиальный зазор восстанавливается.

    Постепенный износ от повышенного трения зависит от ряда условий, в число которых входит твердость материала, из которого изготовлены шестерни, термообработка, правильность подбора смазки, недостаточная чистота масла и несвоевременность смены его, перегрузка передачи и т. п.

    Правильный монтаж и хороший надзор в процессе эксплуатации - основные условия продолжительной и бесперебойной работы оборудования.

    Поломки зубьев шестерен происходят по следующим причинам: перегрузка шестерен, односторонняя (с одного конца зуба) нагрузка, подрез зуба, незаметные трещины в материале заготовки и микротрещины, как результат плохо проведенной термообработки, слабая сопротивляемость металла толчкам (в частности, как следствие непроведения отжига отливок и поковок), повышенные удары, попадание между зубьями твердых предметов и т. д.

    Рис. 4. Ремонт зубьев припомощи ввертышей с последующейнаваркой

    Как правило, зубчатые колеса с изношенными и поломанными зубьями подлежат не ремонту, а замене, причем замену рекомендуется производить одновременно обоих колес, входящих в данное зацепление. Однако, когда в зацеплении большое колесо во много раз превышает размер малого, необходимо своевременно заменить малое колесо, которое изнашивается быстрее большого примерно в передаточное число раз. Своевременная замена малого колеса предохранит от износа большое колесо.

    Износ зубьев зубчатых колес не долженпревышать 10-20 % : толщины зуба, считая по дуге начальной окружности. В малоответственных передачах износ зубьев допускается до 30% толщины зуба, в передачах ответственных механизмов значительно ниже (например, для механизмов подъема груза износ не должен превышать 15%: толщины зуба,- а у зубчатых колес механизмов подъема кранов, транспортирующих жидкий и горячий металл - до 10%").

    Шестерни с цементированными зубьями следует заменять при износе слоя цементации свыше 80 %1 его толщины, а также при растрескивании, выкрашивании или отлущивании цементированного слоя.

    При поломке зубьев, но не более двух подряд в не особо ответственных передачах (например, механизмы передвижения кранов) допускается восстановление их, которое производится следующим способом: поломанные зубья вырубают до основания, по ширине зуба просверливают два-три отверстия и в них нарезают резьбу, изготовляют шпильки и туго ввертывают их в подготовленные отверстия, приваривают шпильки к шестерне и электросваркой наплавляют металл, придавая ему форму зуба, на зуборезном, фрезерном или строгальном станке или путем опиливания вручную придают наплавленному металлу форму зуба, после чего восстановленный профиль проверяют сцеплением с сопряженной деталью и по шаблону.

    ЗУБЧАТЫЕ ПЕРЕДАЧИ

    П л а н л е к ц и и

    1. Общие сведения.

    2. Классификация зубчатых передач.

    3. Геометрические параметры зубчатых колес.

    4. Точность преобразования параметров.

    5. Динамические соотношения в зубчатых зацеплениях.

    6. Конструкция колес. Материалы и допускаемые напряжения.

    1. Общие сведения

    Зубчатая передача – это механизм, который с помощью зубчатого зацепления передает или преобразует движение с изменением угловых скоростей и моментов. Зубчатая передача состоит из колес с зубьями, которые сцепляются между собой, образуя ряд последовательно работающих кулачковых механизмов.

    Зубчатые передачи применяют для преобразования и передачи вращательного движения между валами с параллельными, пересекающимися или перекрещивающимися осями, а также для преобразования вращательного движения в поступательное и наоборот.

    Достоинства зубчатых передач:

    1. Постоянство передаточного отношения i .

    2. Надежность и долговечность работы.

    3. Компактность.

    4. Большой диапазон передаваемых скоростей.

    5. Небольшое давление на валы.

    6. Высокий КПД.

    7. Простота обслуживания.

    Недостатки зубчатых передач:

    1. Необходимость высокой точности изготовления и монтажа.

    2. Шум при работе со значительными скоростями.

    3. Невозможность бесступенчатого регулирования передаточного отно-

    шения i .

    2. Классификация зубчатых передач

    Зубчатые передачи, применяемые в механических системах, разнообразны. Они используются как для понижения, так и для повышения угловой скорости.

    Классификация конструкций зубчатых преобразователей группирует передачи по трем признакам:

    1. По виду зацепления зубьев . В технических устройствах применяются передачи с внешним (рис. 5.1, а ), с внутренним (рис. 5.1, б ) и с реечным (рис. 5.1, в ) зацеплением.

    Передачи с внешним зацеплением применяются для преобразования вращательного движения с изменением направления движения. Передаточное отношение колеблется в пределах –0,1 i –10. Внутреннее зацепление применяется в том случае, если требуется преобразовывать вращательное движение с сохранением направления. По сравнению с внешним зацеплением передача имеет меньшие габаритные размеры, бóльший коэффициент перекрытия и повышенную прочность, но более cложна в изготовлении. Реечное зацепление применяется при преобразовании вращательного движения в поступательное и обратно.

    2 . По взаимному расположению осей валов различают передачи цилиндрическими колесами с параллельными осями валов (рис. 5.1, а), коническими колесами с пересекающимися осями (рис. 5.2), колесами со скрещивающимися осями (рис. 5.3). Передачи c коническими колесами обладают меньшим передаточным отношением (1/6 i 6), более сложны в изготовлении и эксплуатации, имеют дополнительные осевые нагрузки. Винтовые колеса работают с повышенным скольжением, быстрее изнашиваются, имеют малую нагрузочную способность. Эти передачи могут обеспечивать различные передаточные отношения при одинаковых диаметрах колес.

    3 . По расположению зубьев относительно образующей обода колеса

    различают передачи прямозубые (рис. 5.4, а ), косозубые (рис. 5.4, б ), шевронные (рис. 5.5) и с круговыми зубьями.

    Косозубые передачи имеют боль-

    шую плавность зацепления, меньше

    технологически

    равноценны

    прямозубым, но в передаче возникают

    дополнительные

    нагрузки.

    Сдвоенная косозубая со

    встречными

    наклонами зубьев (шевронная) переда-

    ча имеет все преимущества косозубой

    и уравновешенные осевые силы. Но

    передача несколько сложнее в изготов-

    лении и монтаже. Криволинейные

    зубья чаще всего применяются в кони-

    передачах

    повышения

    нагрузочной способности,

    плавности

    работы при высоких скоростях.

    3. Геометрические параметры зубчатых колес

    К основным геометрическим параметрам зубчатых колес (рис. 5.6) относятся: шаг зуба Р t , модуль m (m = P t /), число зубьев Z , диаметр d делительной окружности, высота h a делительной головки зуба, высота h f делительной ножки зуба, диаметры d a и d f окружностей вершин и впадин, ширина зубчатого венца b .

    df 1

    db 1

    dw 1 (d1 )

    da 1

    df 2

    dw 2 (d2 )

    da 2

    db 2

    Диаметр делительной окружности d = mZ . Делительной окружностью зуб колеса делится на делительную головку и делительную ножку, соотношение размеров которых определяется относительным положением заготовки колеса и инструмента в процессе нарезания зубьев.

    При нулевом смещении исходного контура высота делительной головки и ножки зуба колеса соответствует таковым у исходного контура, т. е.

    ha = h a * m; hf = (h a * + c* ) m,

    где h a * – коэффициент высоты головки зуба; c * – коэффициент радиального

    Для колес с внешними зубьями диаметр окружности вершин

    da = d + 2 ha = (Z + 2 h a * ) m.

    Диаметр окружности впадин

    df = d – 2 hf = (Z – 2 h a * – 2 c* ) m.

    При m ≥ 1 мм h a * = 1, c * = 0,25, d a = (Z – 2,5)m .

    Для колес с внутренними зубьями диаметры окружностей вершин и впадин следующие:

    da = d – 2 ha = (Z – 2 h a * ) m;

    df = d + 2 hf = (Z + 2 h a * + 2 c* ) m.

    Для колес, нарезанных со смещением, диаметры вершин и впадин определяются с учетом величины коэффициента смещения по более сложным зависимостям.

    Если два колеса, нарезанные без смещения, ввести в зацепление, то их делительные окружности будут касаться, т. е. совпадут с начальными окружностями. Угол зацепления при этом будет равен углу профиля исходного контура, т. е. начальные ножки и головки совпадут с делительными ножками и головками. Межосевое расстояние будет равняться делительному межосевому расстоянию, определяемому через диаметры делительных окружностей:

    aw = a = (d1 + d2 )/2 = m(Z1 + Z2 )/2.

    Для колес, нарезанных со смещением, имеется различие для начальных и делительных диаметров, т. е.

    d w 1 ≠ d 1 ; d w 2 ≠ d 2 ; a w ≠ a ; αw = α.

    4. Точность преобразования параметров

    В процессе эксплуатации зубчатой передачи теоретически постоянное передаточное отношение претерпевает непрерывные изменения. Эти изменения вызываются неизбежными погрешностями изготовления размеров и формы зубьев. Проблема изготовления зубчатых зацеплений с малой чувствительностью к погрешностям решается в двух направлениях:

    а) применение специальных видов профилей (например, часовое зацепление);

    б) ограничение погрешностей изготовления.

    В отличие от таких простых деталей, как валы и втулки, зубчатые колеса являются сложными деталями, и погрешности выполнения их отдельных элементов не только сказываются на сопряжении двух отдельных зубьев, но и оказывают влияние на динамические и прочностные характеристики зубчатой передачи в целом, а также на точность передачи и преобразования вращательного движения.

    Погрешности зубчатых колес и передач в зависимости от их влияния на эксплуатационные показатели передачи можно разделить на четыре группы:

    1) погрешности, влияющие на кинематическую точность, т. е. точность передачи и преобразования вращательного движения;

    2) погрешности, влияющие на плавность работы зубчатой передачи;

    3) погрешности пятна контакта зубьев;

    4) погрешности, приводящие к изменению бокового зазора и влияющие на мертвый ход передачи.

    В каждой из этих групп могут быть выделены комплексные погрешности, наиболее полно характеризующие данную группу, и поэлементные, частично характеризующие эксплуатационные показатели передачи.

    Такое разделение погрешностей на группы положено в основу стандартов на допуски и отклонения зубчатых передач: ГОСТ 1643–81 и ГОСТ 9178–81.

    Для оценки кинематической точности передачи, плавности вращения, характеристики контакта зубьев и мертвого хода в рассматриваемых стандартах установлено 12 степеней точности изготовления зубчатых колес

    и передач. Степени точности в порядке убывания обозначаются числами 1–12. Степени точности 1 и 2 по ГОСТ 1643–81 для m > 1 мм и по ГОСТ 9178–81 для 0,1 < m < 1 являются перспективными, и для них в стандартах численные значения допусков нормируемых параметров не приводятся. Стандартом устанавливаются нормы кинематической точности, плавности, пятна контакта и бокового зазора, выраженные в допустимых погрешностях.

    Допускается использование зубчатых колес и передач, группы погрешностей которых могут принадлежать к различным степеням точности. Однако ряд погрешностей, принадлежащих к различным группам по своему влиянию на точность передачи, взаимосвязаны, поэтому устанавливаются ограничения на комбинирование норм точности. Так, нормы плавности могут быть не более чем на две степени точнее или на одну степень грубее норм кинематической точности, а нормы контакта зубьев можно назначать по любым степеням, более точным, чем нормы плавности. Комбинирование норм точности позволяет проектировщику создавать наиболее экономичные передачи, выбирая при этом такие степени точности на отдельные показа-

    тели, которые отвечают эксплуатационным требованиям, предъявляемым к данной передаче, не завышая затрат на изготовление передачи. Выбор степеней точности зависит от назначения, области применения колес и окружной скорости вращения зубьев.

    Рассмотрим более подробно погрешности зубчатых колес и передач, влияющие на их качество.

    5. Динамические соотношения в зубчатых зацеплениях

    Зубчатые передачи преобразуют не только параметры движения, но и параметры нагрузки. В процессе преобразования механической энергии часть мощности P тр , подводимой к входу преобразователя, расходуется на преодоление трения качения и скольжения в кинематических парах зубчатых колес. В результате мощность на выходе уменьшается. Для оценки потери

    мощности используется понятие коэффициента полезного действия (КПД), определяемого как отношение мощности на выходе преобразователя к мощности, подводимой к его входу, т. е.

    η = P вых /P вх .

    Если зубчатая передача преобразует вращательное движение, то соответственно мощности на входе и выходе можно определить как

    Обозначим ωвых /ωвх через i , а величину T вых /T вх через i м , которое назовем передаточным отношением моментов. Тогда выражение (5.3) примет вид

    η = i м .

    Величина η колеблется в пределах 0,94–0,96 и зависит от типа передачи и передаваемой нагрузки.

    Для зубчатой цилиндрической передачи КПД можно определить из зависимости

    η = 1 – cf π(1/Z 1 + 1/Z 2 ),

    где с – поправочный коэффициент, учитывающий уменьшение КПД с уменьшением передаваемой мощности;

    20Т вых 292mZ 2

    20Т вых 17,4mZ 2

    где Т вых – момент на выходе, H мм; f – коэффициент трения между зубьями. Для определения действительных усилий на зубья передачи рассмот-

    рим процесс преобразования нагрузки (рис. 5.7). Пусть движущий входной момент T 1 приложен к ведущему зубчатому колесу 1 с диаметром начальной окружности d w l , а момент сопротивления T 2 ведомого колеса 2 направлен в сторону, противоположную вращению колеса. В эвольвентном зубчатом зацеплении точка контакта находится всегда на линии, являющейся общей нормалью к соприкасаемым профилям. Следовательно, сила давления зуба F ведущего колеса на зуб ведомого будет направлена по нормали. Перенесем силу по линии действия в полюс зацепления P и разложим ее на две составляющие.

    Ft ’

    Ft ’

    Касательная составляющая F t называется

    окружной силой. Она

    совершает полезную работу, преодолевая момент сопротивления T и приводя в движение колеса. Ее величину можно вычислить по формуле

    F t = 2T /d w .

    Составляющая по вертикали называется радиальной силой и обозначается F r . Эта сила работы не совершает, она только создает дополнительную нагрузку на валы и опоры передачи.

    При определении величины обеих сил можно пренебречь силами трения между зубьями. В этом случае между полным усилием давления зубьев и его составляющими существуют следующие зависимости:

    F n = F t /(cos α cos);

    F r = F t tg α/ cos ,

    где α – угол зацепления.

    Зацепление цилиндрических прямозубых колес имеет ряд существенных динамических недостатков: ограниченные значения коэффициента перекрытия, значительный шум и удары при высоких скоростях. Для уменьшения габаритов передачи и уменьшения плавности работы часто прямозубое зацепление заменяют косозубым, боковые профили зубьев которого представляют собой эвольвентные винтовые поверхности.

    В косозубых передачах полное усилие F направлено перпендикулярно зубу. Разложим эту силу на две составляющие: F t – окружное усилие колеса и F a – осевая сила, направленная вдоль геометрической оси колеса;

    F a = F t tg β,

    где – угол наклона зуба.

    Таким образом, в косозубом зацеплении в отличие от прямозубого действуют три взаимно перпендикулярные силы F a , F r , F t , из которых только F t совершает полезную работу.

    6. Конструкция колес. Материалы и допускаемые напряжения

    Конструкция колес. При изучении принципов конструирования зубчатых передач основной целью является усвоение методики определения формы и основных параметров колес по условиям работоспособности и эксплуатации. Достижение указанной цели возможно при решении следующих задач:

    а) выбор оптимальных материалов колес и определение допускаемых механических характеристик;

    б) расчет размеров колес по условиям контактной и изгибной прочности;

    в) разработка конструкции зубчатых колес.

    Зубчатые передачи являются типовыми преобразователями, для которых разработано достаточно много обоснованных конструктивных оптимальных вариантов. Обобщающая схема конструкции зубчатого колеса может быть представлена как сочетание трех основных конструктивных элементов: зубчатого венца, ступицы и центрального диска (рис. 5.9). Форму и размеры зубчатого колеса определяют в зависимости от числа зубьев, модуля, диаметра вала, а также от материала и технологии изготовления колес.

    На рис. 5.8 показаны примеры конструкций зубчатых колес механизмов. Размеры колес рекомендуется брать в соответствии с указаниями ГОСТ 13733–77.