Если не собираешься делать из хода тайну, можно копать «берлинским» способом: роется траншея, в ней строятся стены и крыша будущего хода, после все засыпается. Но соседи придут посмотреть, каждый захочет такой же, только побольше, в итоге кто-то случайно выкопает ад. Лучше копай незаметно, по «парижскому» методу: роется вертикальный колодец, а из него ведут штольню вбок.

Где копать

Песчаные почвы - идеальный вариант. В свое время они позволили нарыть ходов под Берлинской стеной, в том числе знаменитый «Туннель 29» длиной 140 метров. Глину тяжело копать, к тому же выше шанс наткнуться на межпластовые воды. Полезно заранее пробурить скважины по всей траектории хода и выяснить, с чем будешь иметь дело.

Как укрепить

Если роешь штольню, не укрепляя стены и потолок, положи сверху плиту с датами жизни. Когда тебя завалит, родные смогут ограничиться фуршетом. Но лучше укрепляй ход каждые полметра крепью - рамой из просмоленных досок. Когда он будет готов, надо основательно обшить досками стены и потолок или даже забетонировать их, как делают палестинцы в тайных туннелях из сектора Газа в Израиль.

Как обустроить

Чтобы в туннеле было сухо, его надо делать под уклон. Желательно устроить и принудительную вентиляцию: вентилятор у входа и трубы с отверстиями по всей длине сооружения. Одной из проблем «туннеля жизни» в Сараеве, по которому люди выбирались из осажденного города, было отсутствие вентиляции. В итоге пришлось добывать кислородные маски.

Как не засыпаться

Копать подземный ход можно только в своей земле. Иначе в случае обнаружения его засыплют, а оплачивать мероприятие будешь ты. Перед началом процесса выясни, нет ли на пути кабелей, нефтепроводов и ракетных шахт. В этом поможет глубинный сканер. А под землей не повредят газоанализаторы на углекислый газ и метан, иначе туннель будет другой - с полетом к яркому свету и чувством благодати.

Как маскировать

Недавно пойманный колумбийский наркобарон Гусман выводил свои подземные ходы в канализацию, и это ему до поры помогало. Врезаться в общие коммуникации - незаконно, но можно применить сам принцип и замаскировать выход под привычную часть пейзажа - дощатый туалет, пляжную раздевалку или корпоратив с Нагиевым.

В конце декабря в Киеве откроется 50-я юбилейная станция метро «Выставочный Центр». Участок пути и сама станция построены в рекордно короткие сроки - менее чем за один год.

Сегодня посмотрим, как строят метро, прогуляемся по тоннелям, а также увидим легендарный Зил-130 на железнодорожных колесах.

Тоннель метро перед станцией «Выставочный Центр», Киев, Украина. Это вестибюль этой новой станции:

Здесь скоро будут рельсы:

Как происходит прокладка самого тоннеля. В тоннеле работает роторная машина, ее длина 120 метров, а основная часть - передняя головка, диаметром 9 метров. Машина “роет” тоннель, а весь отработанный грунт вывозится на поверхность.

Механизированный комплекс-щит должен находится на глубине равной или превышающей размер самого щита. Т.е., если диаметр щита 6 метров, то над ним должно быть как минимум 6 метров.

Головка комплекса «Herrenknecht»:



Вид с обратной стороны. Слева по окружности можно увидеть домкраты, которые упираются в последнее установленное кольцо и толкают щит вперед по мере разработки грунта:

А так выглядит хвост ручного комплекса:

Тоннель состоит из колец, каждое из которых состоит из семи элементов. Круглое кольцо - это самая оптимальная конструкция для строительства тоннеля, значительно превосходящая квадратную форму. Квадратные тоннели строятся там, где тоннель строится открытым способом сверху.

Метро строят круглосуточно, на этой линии работают 2 500 человек.

Элементы колец:

Легендарный Зил-130 , который я видел раньше на картинках. Грузовик на железнодорожных колесах смотрится ярко! Таких машины 3, они используются для перевозки бетона:

Сам бетон загружается с поверхности через специальные скважины:

Наверное один из самых тривиальных вопросов дилетанта метростроевцу: «А встречали ли вы во время прокладки тоннеля что-то необычное и интересное?»

Ничего необычного здесь нет, все, что встречается на пути - это проблемы и препятствия. Случались столкновения с железобетонными блоками, и тогда происходила поломка машины. А ведь метро строят и под жилыми домами.

50-ю юбилейную станцию «Выставочный центр» построили всего за один год, что является невероятным показателем, учитывая сложность данного участка. Чтобы успеть в срок было внедрено два нововведения – камера съезда поездов (участок пути, где поезда разворачивается в тоннеле) была спроектирована и построена перед (!), а не после станции.

Камера съезда:

Вентиляционные установки:

Заливка бетоном нижней части тоннеля, где затем происходит прокладка железнодорожного полотна:

Наземное или подземное метро?

Метро должно быть подземным. Оно не мешает имеющимся коммуникациям и транспортным развязкам, не создает шума для близлежащих домов. Саму станцию нужно закладывать на удобной глубине для пассажиров - 12 метров.

Наверное, многие замечали, что до и после станции метро уходит вниз. Зачем это сделано? Для экономии электроэнергии! После станции состав уходит вниз и происходит разгон, а подъезжая к станции поднимается наверх и происходит естественное торможение. Предельно допустимый уклон составляет 4 см в высоту на 1 метр пути.

Сигнал – один сильный и быстрый, а другой медленный и слабый, словно сердцебиения юноши и старика прошли в тысяче световых лет и были услышаны самым чувствительным «ухом» на Земле. «Ухо» – это сферический радиотелескоп с пятисотметровым радиусом (FAST), который является самым большим в мире. Площадь чаши его антенны сопоставима по размеру с площадью 30 футбольных полей. Располагается сооружение в одной из долин провинции Гуйчжоу на юго-западе Китая.

Китайский 500-метровый телескоп FAST

Пока шла отладка телескопа и пробный режим работы, после его запуска в эксплуатацию в 2016 году, FAST обнаружил десятки возможных импульсных источников радиоизлучения – пульсаров, шесть из которых были подтверждены при изучении телескопами других стран. Китайским учёным удалось зафиксировать звук от двух первых обнаруженных пульсаров. Звуки, которые удалось получить, называют «сердцебиением» в глубинах Вселенной.

С помощью телескопа планируется изучить и обнаружить пульсары, нейтральный водород, межзвёздные молекулы, а также возможные признаки внеземной жизни. Поиск внеземной жизни – это еще одна из целей телескопа FAST, но пока что учёные не приступали к этой задаче.

Однако, один из пульсаров, который обнаружил FAST, на данный момент не расшифрован. Первый сигнал был получен в далёком 1967 году и был ошибочно принят за сигнал от инопланетян.

Что такое пульсар?

Пульсар – это вращающаяся нейтронная звезда, обладающая высокими магнитными свойствами, которая излучает два электромагнитных луча. Подобные лучи могут быть обнаружены только тогда, когда они направлены в сторону Земли, подобно тому, как свет маяка может видеть тот, на кого он строго направлен.

Пульсар еще называют нейтронными звездами. Нейтронная звезда – это коллапсирующее ядро огромной звезды. Из всех известных звёзд нейтронная звезда самая маленькая и плотная. Она настолько плотная, что одна чайная ложка её массы может весить столько же, сколько весит гора высотой 3000 метров.

Благодаря сверхсильной гравитации и электромагнитным полям пульсар рассматривают как естественную лабораторию с экстремальными физическими условиями. Пульсары могут помочь учёным в изучении гравитационных волн. FAST поможет повысить шансы на обнаружение низкочастотных гравитационных волн.

Пульсары имеют очень точный интервал импульса: от миллисекунд до нескольких секунд, поэтому они считаются самыми точными астрономическими часами во Вселенной. Учёные верят, что когда-нибудь пульсары можно будет использовать в качестве космических «маяков» для навигации во время межпланетных или межзвёздных путешествий.

Первые два пульсара были зарегистрированы телескопом FAST ночью 22 и ночью 25 августа. Но специалисты не помнят сценарий обнаружения в точных деталях, ведь FAST уже до этого обнаружил дюжину объектов похожих на пульсар, благодаря своей высокой чувствительности. «Честно говоря, мы можем регистрировать множество объектов похожих на пульсары хоть каждую ночь».

Когда полвека назад был найден первый пульсар, Китай утопал в суматохе и нищете. Как результат, «поднебесная» не приняла участие ни в одном из около 2700 открытий, сделанных в этой области.

Но сегодня Китай строит довольно состоятельное общество и имеет возможность исследовать загадочные небесные тела и пытаться найти ответы на такие вопросы как «Как была создана вселенная?», «Откуда мы взялись?», «Одиноки ли мы во вселенной?».

Чтобы занять лидерские позиции в мировой астрономии, китайским учёным нужны продвинутые инструменты для исследования. Запуск радиотелескопа FAST, самой огромной конструкции в истории китайского изучения космоса, обошёлся стране в $182 миллиона. На реализацию проекта ушло около 20 лет, а также были задействованы высококвалифицированные учёные и инженеры Китая.

Сейчас мировые ученые приветствуют Китай в клубе изучения пульсаров. Китайские специалисты прогнозируют, что после того, как FAST будет работать на полную мощность в 2019 году, они смогут открывать более сотни пульсаров в год. Ожидается, что телескоп в два раза увеличит количество пульсаров, которые нам сейчас известны. Также планируется обнаружить от 50 до 80 пульсаров в M31 – самой близкой к Млечному пути галактике. Это единственный в мире телескоп способный реализовать данную задачу.

Этот год переломный для китайского космического сообщества: 15 июня, с целью обнаружения пульсаров и чёрных дыр, был запущен китайский телескоп для работы с жёстким рентгеновским излучением Hard X-ray, представляющий собой орбитальную станцию. С запуском телескопа FAST Китаю удалось оказаться в будущем: «Эра постоянного изучения пульсаров, благодаря китайскому телескопу, только началась и мы надеемся, что FAST станет важным инструментом для науки всего человечества», – примерно так говорит астрономическое сообщество.

Многолучевой приёмник будет установлен на телескоп, чтобы увеличить его функционал в несколько раз. Это означает, что можно будет собирать данные о пульсарах, проводить спектральный анализ и быстро сканировать вспышки радиоизлучения. Благодаря подобной технике учёные смогут обнаружить более 1000 пульсаров, более 100000 галактик и дюжину быстрых вспышек радиоизлучения.
«Мы будем полагаться на новейшее оборудование и продвинутые методы изучения для того, чтобы постоянно совершать новые открытия. Это рассвет новой эры. Для человека исследовать что-то новое такая же повседневная потребность как еда или сон. Изучение неизведанного вдохновит в человечестве креативность, заставит нас добиваться беспрецедентных достижений и воодушевит наше воображение на поиск новых путей, что, по сути, бесценно», – так отзываются китайские ученые.

В воскресенье, 25 сентября 2016 года, в присутствии сотен ученых-астрономов, энтузиастов и просто зрителей, в карстовой долине в провинции Гуйчжоу на юго-западе Китая состоялась официальная церемония запуска нового радиотелескопа Five-hundred-meter Aperture Spherical Telescope (FAST).

Радиотелескоп FAST

Этот радиотелескоп, который является самым большим радиотелескопом на сегодняшний день, будет использоваться для исследований процессов, позволяющих раскрыть загадки происхождения Вселенной, для поисков искусственных радиосигналов внеземного происхождения и для многого другого.

Первые работы в рамках проекта FAST начались в 2011 году, спустя 17 лет после того, как этот проект был представлен на рассмотрение китайскому правительству группой ученых-астрономов. Телескоп находится высоко в горах в провинции Гуйчжоу на юго-западе Китая, диаметр телескопа составляет 500 метров, а периметр конструкции равняется 1,6 километра. Сумма затрат на строительство этой огромной структуры, состоящей из 11-метровых 4450 сегментов-отражателей и равной по площади 30 футбольных полей, составила порядка $180 млн (1,2 миллиарда юаней).

Он превзойдет крупнейший на данный момент телескоп в Пуэрто-Рико, диаметр которого составляет 300 метров.

«Это будет чрезвычайно хороший телескоп для изучения некоторых сфер астрономии, особенно для изучения пульсаров и размещения галактик во вселенной. Новый телескоп позволит внести значительный вклад в понимание структуры и историю вселенной», — заявил по этому поводу профессор астрономии в Корнелльском университете (США) Дональд Кэмпбелл.

Строительство радиотелескопа было завершено еще в июле, к этому моменту его основные системы уже прошли через многоэтапную программу тестирования.

«Благодаря антенне больших размеров и большей гибкости системы в целом, телескоп FAST будет в состоянии покрыть в два раза большую область неба, чем аналогичный телескоп обсерватории Аресибо. При этом, чувствительность нового телескопа будет выше в три-пять раза в зависимости от диапазона принимаемых радиосигналов», — рассказывает Ли Ди, руководитель работ со стороны китайской Академии Наук.

По словам Листера Стэвели-Смита, астронома из Западно-Австралийского университета, высокая чувствительность и разрешающая способность телескопа FAST позволит всесторонне исследовать тысячи галактик, находящихся далеко за пределами Млечного Пути.

Центральное телевидение Китая ранее сообщало, что FAST будет соединен с одним из самых быстрых компьютеров в мире Sky Eye 1 для проведения астрономических расчетов с целью поиска жизни на других планетах и изучения темной материи. С помощью FAST астрономы намерены наблюдать за космическими объектами, удаленными от Земли на расстояние до 11 миллиардов световых лет.

Крупнейший в мире радиотелескоп FAST

Ранее власти Китая переселили 9 тысяч человек, живших в радиусе пяти километров от радиотелескопа.

Для них были построены 600 домов в двух новых поселениях, которые находятся примерно в десяти километрах от их прежнего места жительства. На строительство нового жилья власти потратили около 269 миллионов долларов.

Подписывайтесь на Квибл в Viber и Telegram , чтобы быть в курсе самых интересных событий.

Радиотелескоп FAST — сферический радиотелескоп с пятиcотметровой апертурой, что есть дословным переводом с английского фразы: «Five hundred meter Aperture Spherical Telescope», сокращенно «FAST». Неофициальное китайское название телескопа, расположенного в провинции Гуйчжоу, Небесный глаз (天眼). Помимо перспективных научных исследований, данный научный проект должен продемонстрировать амбиции Китая в сфере освоения космоса.

Строительство данного телескопа было окончено в июле 2016-го года, и потребовало пяти лет и 180 млн. долларов. С момента окончания строительства обсерватория FAST получает почетное звание радиотелескопа с заполненной апертурой самого большого диаметра, а именно 500 метров. Тем самым FAST обошел другой гигантский радиотелескоп, который в течение 53-х лет оставался самым большим, с диаметром апертуры — 304,8 метров.

Говоря о наибольших радиотелескопах с незаполненной апертурой, то эту нишу по-прежнему занимает российский РАТАН-600 (576 м.).

Конструкция

Конструкция телескопа FAST во многом схожа с обсерваторией Аресибо. Его апертура состоит из 4 450 перфорированных алюминиевых пластин треугольной формы стороной в 11 метров. Эти пластины располагаются в виде геодезического купола на стальных подвешенных тросах, образующих сетку. Вся апертура находится в естественном природном углублении – карстовой воронке. Примечательно, что само углубление образовано в горах, на высоте около 1 км над уровнем моря, что также положительно влияет на качество наблюдений, проводимых FAST в будущем.

В отличие от статической апертуры обсерватории Аресибо, каждая панель радиотелескопа FAST способна изменить свое положение при помощи гидравлических приводов, которые приводят в движение сетку из тросов.

Над тарелкообразным рефлектором располагается подвижная кабина, которая перемещается с помощью кабельных роботов. Находящиеся же в центре «тарелки» приемные антенны также являются подвижными, так как установлены на подвижной платформе (Гью - Стюарта).

Характеристики

Согласно информации, полученной от китайских СМИ, телескоп FAST имеет вдвое большую чувствительность, нежели радиотелескоп Аресибо, а также более чем в пять раз высокую скорость исследование небосвода.

Частотный диапазон, который охватывает радиотелескоп составляет от 70 МГц – 3 ГГц. Радиотелескоп FAST может быть сфокусирован по направлению, которое вместе с зенитом образует угол не меньше 40°.

Хотя FAST называют сферическим радиотелескопом с 500-метровой апертурой, однозначно он не имеет сферической формы, а эффективный диаметр его отражателя (радиус кривизны) – 300 метров. И хотя Аресибо может использовать в полной мере свою 305-метровую апертуру, проводя наблюдения в зените, зачастую наблюдение объектов проводится под наклоном, где эффективная апертура составляет всего 221 метр. Т. к., отражатель радиотелескопа FAST намного глубже, нежели у Аресибо, это расширяет поле зрения для ведения наблюдений.

Все же несмотря на более высокие характеристики FAST, в некоторых видах исследований обсерватория Аресибо остается ведущий. К примеру, изучение земной ионосферы, изучение внутренних планет Солнечной системы, а также проведение точных измерений орбит астероидов в окрестностях Земли. Подобные исследования доступны обсерватории Аресибо по причине наличия передатчиков и другого специального оборудования, которого нет на радиотелескопе FAST. Помимо этого, последний расположен на 7.5° севернее обсерватории Аресибо. При таком более близком расположении обсерватории к экватору в ее поле обзора попадает несколько больше космических тел, нежели в поле зрения FAST.

Значение для науки и общественности

Научное сообщество намерено использовать радиотелескоп FAST для поиска , поимки радиоизлучения от , а также с целью обнаружение внеземных сигналов искусственного происхождения.

Первые пару лет данный телескоп доступен лишь китайским ученым и специалистам, после чего станет открыт для международного научного сообщества.

Несмотря на то, что ради предотвращения радиопомех в радиусе пяти километров власти отселили более 9 тыс. жителей с последующими выплатами компенсаций, недалеко от обсерватории были построены различные туристические, которые позволят заинтересованным лицам посещать экскурсии на самый большой радиотелескоп в мире. К примеру, обсерваторию Аресибо ежегодно посещает около 200 ученых и 90 тыс. туристов со всего мира.