Строение и физиологические особенности рыб

Огловление

Форма тела и способы движения

Кожные покровы рыб

Пищеварительная система

Дыхательная система и газообмен (New)

Кровеносная система

Нервная система и органы чувств

Железы внутренней секреции

Ядоносность и ядовитость рыб

Форма тела рыб и способы движения рыб

Форма тела должна обеспечивать рыбе возможность передвигаться в воде (среде, значительно более плотной, чем воздух) с наименьшей затратой энергии и со скоростью, соответствующей ее жизненным потребностям. Форма тела, отвечающая этим требованиям, выработалась у рыб в результате эволюции: гладкое, без выступов тело, покрытое слизью, облегчает движение; шеи нет; заостренная голова с прижатыми жаберными крышками и сжатыми челюстями рассекает воду; система плавников определяет движение в нужном направлении. В соответствии с образом жизни выделено до 12 различных типов формы тела

Рис. 1 - сарган; 2 - скумбрия; 3 - лещ; 4 - рыба-луна; 5 - камбала; 6 - угорь; 7 - рыба-игла; 8 - сельдяной король; 9 - скат; 10 - рыба-еж; 11 - кузовок; 12 - макрурус.

Стреловидная - кости рыла вытянуты и заострены, тело рыбы по всей длине имеет одинаковую высоту, спинной плавник отнесен к хвостовому и располагается над анальным, чем создается имитация оперения стрелы. Эта форма типична для рыб, не перемещающихся на большие расстояния, держащихся в засаде и развивающих высокие скорости движения на короткий промежуток времени за счет толчка плавников при броске на добычу или уходе от хищника. Это щуки (Esox), сарганы (Belone) и др. Торпедовидная (ее часто называют веретеновидной) - характеризуется заостренной головой, закругленным, имеющим в поперечном разрезе форму овала телом, утонченным хвостовым стеблем, нередко с дополнительными плавничками. Она свойственна хорошим пловцам, способным к продолжительным перемещениям - тунцам, лососям, скумбриям, акулам и др. Эти рыбы способны в течение длительного времени плыть, если так можно выразиться, с крейсерской скоростью 18 км в час. Лососи способны совершать двух-трех метровые прыжки при преодолении препятствий во время нерестовых миграций. Максимальная скорость, которую может развить рыба, равна 100-130 км в час. Этот рекорд принадлежит рыбе-паруснику. Симметрично сжатое с боков тело - сильно сжато с боков, высокое при относительно небольшой длине и высокое. Это рыбы коралловых рифов - щетинкозубы (Chaetodon), зарослей донной растительности - скалярии (Pterophyllum). Такая форма тела помогает им легко маневрировать среди препятствий. Симметрично сжатую с боков форму тела имеют и некоторые пелагические рыбы, которым необходимо быстро менять положение в пространстве для дезориентации хищников. Такую же форму тела имеют рыба-луна (Mola mola L.) и лещ (Abramis brama L.). Несимметрично сжатое с боков тело - глаза смещены на одну сторону, что создает асимметрию тела. Она свойственна придонным малоподвижным рыбам отряда Камбалообразные, помогая им хорошо маскироваться на дне. В движении этих рыб большую роль играют волнообразные изгибания длинных спинного и анального плавников. Уплощенное в дорзовентральном направлении тело - сильно сжато в спинно-брюшном направлении, как правило, хорошо развиты грудные плавники. Такую форму тела имеют малоподвижные донные рыбы - большинство скатов (Batomorpha), морской черт (Lophius piscatorius L.). Уплощенное тело маскирует рыб в условиях дна, а расположенные сверху глаза помогают видеть добычу. Угревидная форма - тело рыб удлиненное, закругленное, имеющее вид овала на поперечном разрезе. Спинной и анальный плавники длинные, брюшных плавников нет, а хвостовой плавник небольшой. Она характерна для таких донных и придонных рыб, как угреобразные (Anguilliformes), передвигающихся, латерально изгибая тело. Лентовидная - тело рыб удлиненное, но в отличие от угревидной формы сильно сжато с боков, что обеспечивает большую удельную поверхность и позволяет рыбам обитать в толще воды. Характер движения у них такой же, как и у рыб угревидной формы. Такая форма тела характерна для рыбы-сабли (Trichiuridae), сельдяного короля (Regalecus). Макруровидная - тело рыбы высокое в передней части, суженное с задней, особенно в хвостовом отделе. Голова крупная, массивная, глаза большие. Свойственна глубоководным малоподвижным рыбам- макрурусообразным (Macrurus), химерообразным (Chimaeriformes). Астеролепидная (или кузовковидная) - тело заключено в костный панцирь, что обеспечивает защиту от хищников. Эта форма тела характерна для придонных обитателей, многие из которых встречаются в коралловых рифах, например для кузовков (Ostracion). Шаровидная форма свойственна некоторым видам из отряда Иглобрюхообразные (Tetraodontiformes) - рыбе-шару (Sphaeroides), рыбе-ежу (Diodon) и др. Эти рыбы плохие пловцы и передвигаются с помощью ундулирующих (волнообразных) движений плавников на небольшие расстояния. При опасности рыбы раздувают воздушные мешки кишечника, наполняя их водой или воздухом; при этом расправляются имеющиеся на теле шипы и колючки, защищающие их от хищников. Игловидная форма тела характерна для морских игл (Syngnathus). Их удлиненное, скрытое в костном панцире тело имитирует листья зостеры, в зарослях которой они обитают. Рыбы лишены боковой подвижности и перемещаются с помощью ундулирующего (волнообразного) действия спинного плавника. Нередко встречаются рыбы, форма тела которых напоминает одновременно различные типы форм. Для ликвидации демаскирующей тени на брюхе рыбы, возникающей при освещении сверху, мелкие пелагические рыбы, например сельдевые (Clupeidae), чехонь (Pelecus cultratus (L.)], имеют заостренное, сжатое с боков брюшко с острым килем. У крупных подвижных пелагических хищников-скумбрий (Scomber), рыбы-меча (Xiphias gladius L.), тунцов (Thunnus)- киль обычно не развивается. Их способ защиты состоит в быстроте движения, а не в маскировке. У придонных рыб форма поперечного сечения приближается к равнобедренной трапеции, обращенной большим основанием вниз, что исключает появление тени на боках при освещении сверху. Поэтому большинство придонных рыб имеют широкое уплощенное тело.

КОЖА, ЧЕШУЯ И ОРГАНЫ СВЕЧЕНИЯ

Рис. Форма чешуи рыб. а - плакоидная; б - ганоидная; в - циклоидная; г – ктеноидная

Плакоидная - наиболее древняя, сохранилась у хрящевых рыб (акулы, скаты). Состоит из пластинки, на которой возвышается шипик. Старые чешуйки сбрасываются, на их месте возникают новые. Ганоидная - преимущественно у ископаемых рыб. Чешуйки имеют ромбическую форму, тесно сочленяются одна с другой, так что тело оказывается заключенным в панцирь. Чешуйки со временем не меняются. Названием своим чешуя обязана ганоину (дентинообразному веществу), толстым слоем лежащему на костной пластинке. Среди современных рыб ее имеют панцирные щуки и многоперы. Кроме того, она имеется у осетровых в виде пластинок на верхней лопасти хвостового плавника (фулькры) и жучек, разбросанных по телу (модификация нескольких слившихся ганоидных чешуек). Постепенно видоизменяясь, чешуя теряла ганоин. У современных костистых рыб его уже нет, а чешуйки состоят из костных пластинок (костная чешуя). Эти чешуйки могут быть циклоидными - округлыми, с гладкими краями (карповые) и ктеноидными с зазубренным задним краем (окуневые). Обе формы родственны, но циклоидная как более примитивная встречатся у низкоорганизованных рыб. Бывают случаи, когда в пределах одного вида самцы имеют ктеноидную, а самки - циклоидную чешую (камбалы рода Liopsetta), или даже у одной особи встречаются чешуйки обеих форм. Размеры и толщина чешуи у рыб сильно различаются- от микроскопических чешуек обыкновенного угря до очень крупных, величиной с ладонь чешуи трехметрового усача-тора, живущего в индийских реках. Лишь немногие рыбы не имеют чешуи. У некоторых она слилась в сплошной неподвижный панцирь, как у кузовка, или образовала ряды тесно соединенных костных пластинок, как у морских коньков. Костные чешуйки, как и ганоидные, постоянны, не сменяются и лишь ежегодно увеличиваются в соответствии с ростом рыбы, и на них остаются отчетливые годичные и сезонные метки. Зимний слой имеет более частые и тонкие напластования, чем летний, поэтому он темнее летнего. По числу летних и зимних слоев на чешуе можно определить возраст некоторых рыб. Под чешуей у многих рыб имеются серебристые кристаллики гуанина. Отмытые от чешуи, они являются ценным веществом для получения искусственного жемчуга. Из чешуи рыб изготовляют клей. По бокам тела многих рыб можно наблюдать ряд выделяющихся чешуек с отверстиями, которые образуют боковую линию - один из важнейших органов чувств. Количество чешуи в боковой линии - В одноклеточных железах кожи образуются феромоны - летучие (пахучие) вещества, выделяемые в окружающую среду и воздействующие на рецепторы других рыб. Они специфичны для разных видов, даже близкородственных; в некоторых случаях определена их внутривидовая дифференцировка (возрастная, половая). У многих рыб, в том числе у карповых, образуется так называемое вещество страха (ихтиоптерин), которое выделяется в воду из тела пораненной особи и воспринимается ее сородичами как сигнал, извещающий об опасности. Кожа рыб быстро регенерирует. Через нее происходит, с одной стороны, частичное выделение конечных продуктов обмена веществ, а с другой - поглощение некоторых веществ из внешней среды (кислород, угольная кислота, вода, сера, фосфор, кальций и другие элементы, играющие большую роль в жизнедеятельности). Большую роль играет кожа и как рецепторная поверхность: в ней располагаются термо-, баро-, хемо- и другие рецепторы. В толще кориума образуются покровные кости черепа и пояса грудных плавников. Через мышечные волокна миомеров, соединенные с ее внутренней поверхностью, кожа участвует в работе туловищно-хвостовой мускулатуры.

Мышечная система и электрические органы

Мышечную систему рыб, как и других позвоночных, разделяют на мышечную систему тела (соматическую) и внутренних органов (висцеральную).

В первой выделяют мускулы туловища, головы и плавников. Внутренние органы имеют свою мускулатуру. Мышечная система взаимосвязана со скелетом (опора при сокращении) и нервной системой (к каждому мышечному волокну подходит нервное волокно, и каждая мышца иннервируется определенным нервом). Нервы, кровеносные и лимфатические сосуды располагаются в соединительнотканной прослойке мышц, которая в отличие от мышц млекопитающих невелика, У рыб, как и других позвоночных, сильнее всего развита туловищная мускулатура. Она обеспечивает плавание рыбы. У настоящих рыб она представлена двумя большими тяжами, расположенными вдоль тела от головы до хвоста (большая боковая мышца - m. lateralis magnus) (рис. 1). Продольной соединительнотканной прослойкой эта мышца делится на спинную (верхнюю) и брюшную (нижнюю) части.

Рис. 1 Мускулатура костистой рыбы (по Кузнецову, Чернову, 1972):

1 - миомеры, 2 - миосепты

Боковые мышцы разделены миосептами на миомеры, число которых соответствует количеству позвонков. Наиболее отчетливо миомеры видны у личинок рыб, пока их тела прозрачны. Мышцы правой и левой сторон, поочередно сокращаясь, сгибают хвостовой отдел тела и изменяют положение хвостового плавника, благодаря чему тело двигается вперед. Над большой боковой мышцей вдоль тела между плечевым поясом и хвостом у осетровых и костистых лежит прямая боковая поверхностная мышца (m. rectus lateralis, m. lateralis superficialis). У лососевых в ней откладывается много жира. По нижней стороне тела тянется прямая брюшная мышца (m. rectus abdominalis); у некоторых рыб, например угрей, ее нет. Между ней и прямой боковой поверхностной мышцей располагаются косые мышцы (m. obliguus). Группы мышц головы управляют движениями челюстного и жаберного аппаратов (висцеральная мускулатура), Плавники имеют свою мускулатуру. Наибольшее скопление мускулов определяет и расположение центра тяжести тела: у большинства рыб он находится в спинной части. Деятельность туловищных мышц регулируется спинным мозгом и мозжечком, а висцеральная мускулатура иннервируется периферической нервной системой, возбуждаемой непроизвольно.

Различают поперечнополосатые (действующие в значительной степени произвольно) и гладкие мышцы (которые действуют независимо от воли животного). К поперечно-полосатым относятся скелетные мышцы тела (туловищные) и мышцы сердца. Туловищные мышцы могут быстро и сильно сокращаться, однако скоро утомляются. Особенностью строения сердечных мышц является не параллельное расположение обособленных волокон, а разветвление их кончиков и переход из одного пучка в другой, что обусловливает непрерывную работу этого органа. Гладкие мышцы также состоят из волокон, но гораздо более коротких и не обнаруживающих поперечной исчерченности. Это мышцы внутренних органов и стенок кровеносных сосудов, имеющие периферическую (симпатическую) иннервацию. Поперечнополосатые волокна, а следовательно, и мышцы делят на красные и белые, различающиеся, как следует из названия, цветом. Цвет обусловлен наличием миоглобина - белка, легко связывающего кислород. Миоглобин обеспечивает дыхательное фосфорилирование, сопровождающееся выделением большого количества энергии. Красные и белые волокна различны по целому ряду морфофизиологических характеристик: цвету, форме, механическим и биохимическим свойствам (интенсивность дыхания, содержание гликогена и т. д.). Волокна красной мышцы (m. lateralis superficialis) - узкие, тонкие, интенсивно кровоснабжаемые, расположенные более поверхностно (у большинства видов под кожей, вдоль тела от головы до хвоста), содержат в саркоплазме больше миоглобина; в них обнаружены скопления жира и гликогена. Возбудимость их меньше, отдельные сокращения длятся дольше, но протекают медленней; окислительный, фосфорный и углеводный обмен интенсивнее, чем в белых. В мышце сердца (красной) мало гликогена и много ферментов аэробного обмена (окислительный обмен). Она характеризуется умеренной скоростью сокращений и утомляется медленнее, чем белые мышцы. В широких, более толстых, светлых белых волокнах m. lateralis magnus миоглобина мало, меньше в них гликогена и дыхательных ферментов. Углеводный обмен происходит преимущественно анаэробно, и количество выделяемой энергии меньше. Отдельные сокращения быстры. Мышцы быстрее сокращаются и утомляются, чем красные. Лежат они более глубоко. Красные мышцы постоянно деятельны. Они обеспечивают длительную и непрерывную работу органов, поддерживают постоянное движение грудных плавников, обеспечивают изгибы тела при плавании и поворотах, непрерывную работу сердца. При быстром движении, бросках активны белые мышцы, при медленном - красные. Поэтому наличие красных или белых волокон (мышц) зависит от подвижности рыб: "спринтеры" обладают почти исключительно белыми мышцами, у рыб, которым свойственны продолжительные миграции, кроме красных Боковых мышц имеются добавочные красные волокна в белых мышцах. Основную массу мышечной ткани у рыб составляют белые мышцы. Например, у жереха, плотвы, чехони на их долю приходится 96,3; 95,2 и 94,9% соответственно. Белые и красные мышцы различаются по химическому составу. В красных мышцах содержится больше жира, тогда как в белых мышцах больше влаги и белка. Толщина (диаметр) мышечного волокна изменяется в зависимости от вида рыб, их возраста, величины, образа жизни, а у прудовых рыб - от условий содержания. Например, у карпа, выращенного на естественной пище, диаметр мышечного волокна составляет (мкм): у мальков - 5 ... 19, сеголетков - 14 ... 41, двухлетков - 25 ... 50. Туловищная мускулатура образует основную долю мяса рыбы. Выход мяса в процентах общей массы тела (мясистость) неодинаков у разных видов, а у особей одного вида различается в зависимости от пола, условий содержания и др. Мясо рыб усваивается быстрее, чем мясо теплокровных животных. Оно чаще бесцветно (судак) или имеет оттенки (оранжевый - у лососевых, желтоватый у осетровых и др.) в зависимости от наличия различных жиров и каротиноидов. Основную массу белков мышц рыб составляют альбумины и глобулины (85%), всего же у разных рыб выделяют 4 ... 7 фракций белков. Химический состав мяса (вода, жиры, белки, минеральные вещества) различен не только у разных видов, но и в разных частях тела. У рыб одного вида количество и химический состав мяса зависят от условий питания и физиологического состояния рыбы. В нерестовый период, особенно у проходных рыб, расходуются резервные вещества, наблюдается истощение и, как следствие, уменьшается количество жира и ухудшается качество мяса. У кеты, например, во время подхода к нерестилищам относительная масса костей увеличивается в 1,5 раза, кожи - в 2,5 раза. Мышцы оводняются - содержание сухого вещества снижается более чем в два раза; из мышц практически исчезают жир и азотистые вещества - рыба теряет до 98,4% жира и 57% белка. Особенности окружающей среды (в первую очередь пищи и воды) могут сильно изменять пищевую ценность рыбы: в заболоченных, тинистых или загрязненных нефтепродуктами водоемах рыбы имеют мясо с неприятным запахом. Качество мяса зависит и от диаметра мышечного волокна, а также количества жира в мышцах. В значительной мере оно определяется соотношением массы мышечной и соединительной тканей, по которому можно судить о содержании в мышцах полноценных мышечных белков (по сравнению с неполноценными белками соединительнотканной прослойки). Это соотношение изменяется в зависимости от физиологического состояния рыбы и факторов внешней среды. В мышечных белках костистых рыб на белки приходится: саркоплазмы 20 ... 30%, миофибрилл - 60 ... 70, стромы - около 2%. Все многообразие движений тела обеспечивает работа мышечной системы. Она главным образом обеспечивает и выделение тепла и электричества в организме рыбы. Электрический ток образуется при проведении нервного импульса по нерву, при сокращении миофибрилл, раздражении светочувствительных клеток, механохеморецепторов и др. Электрические органы

Своеобразно измененными мышцами являются электрические органы. Эти органы развиваются из зачатков поперечно-полосатой мускулатуры и расположены по бокам тела рыб. Они состоят из множества мышечных пластинок (у электрического угря их около 6000), преобразованных в электрические пластинки (электроциты), переслаиваемые студенистой соединительной тканью. Нижняя часть пластинки заряжена отрицательно, верхняя - положительно. Разряды происходят под действием импульсов продолговатого мозга. Вследствие разрядов вода разлагается на водород и кислород, поэтому, например, в заморных водоемах тропиков около электрических рыб скапливаются мелкие обитатели - моллюски, рачки, привлеченные более благоприятными условиями дыхания. Электрические органы могут располагаться в разных частях тела: например, у ската морской лисицы - на хвосте, у электрического сома - на боках. Генерируя электрический ток и воспринимая силовые линии, искаженные встречающимися на пути предметами, рыбы ориентируются в потоке, обнаруживают препятствия или добычу с расстояния нескольких метров даже в мутной воде. В соответствии со способностью к генерации электрических полей рыб разделяют на три группы: 1. Сильно электрические виды - имеют большие электрические органы, генерирующие разряды от 20 до 600 и даже 1000 В. Основное назначение разрядов - нападение и оборона (электрический угорь, электрический скат, электрический сом). 2. Слабоэлектрические виды - имеют небольшие электрические органы, генерирующие разряды напряжением менее 17 В. Основное назначение разрядов - локация, сигнализация, ориентация (обитающие в мутных реках Африки многие мормириды, гимнотиды, некоторые скаты). 3. Неэлектрические виды - не имеют специализированных органов, но обладают электрической активностью. Генерируемые ими разряды распространяются на 10 ... 15 м в морской воде и до 2 м в пресной воде. Основное назначение генерируемого электричества - локация, ориентация, сигнализация (многие морские и пресноводные рыбы: например, ставрида, атерина, окунь и др.).

ФИЗИОЛОГИЯ И ЭКОЛОГИЯ РЫБ

Органы чувств представлены у рыб на голове глазами и отверстиями обонятельных капсул.

Почти все рыбы различают цвета , а некоторые виды могут рефлекторно изменять собственную окраску : световые раздражители преобразуются органами зрения в нервные импульсы, поступающие к пигментным клеткам кожи.

Рыбы хорошо распознают запахи и наличие вкусовых веществ в воде; у многих видов вкусовые почки расположены не только в ротовой полости и на губах, но и на различных усиках и кожных выростах вокруг рта.

На голове рыб находятся сейсмосенсорные каналы и электрочувствительные органы, позволяющие им ориентироваться в темноте или мутной воде по малейшим изменениям электрического поля. Они составляют систему органов чувств боковой линии . У многих видов боковая линия хорошо видна как одна или несколько цепочек чешуек с мелкими отверстиями.

У рыб нет внешних органов слуха (слуховых отверстий или ушных раковин), но хорошо развитое внутреннее ухо позволяет им слышать звуки.

Дыхание рыб осуществляется через богатые кровеносными сосудами жабры (жаберные лепестки), а у некоторых видов (вьюн) развились приспособления для дополнительного дыхания атмосферным воздухом при дефиците кислорода в воде (при заморах, высокой температуре и т. д.). Вьюны заглатывают воздух, который поступает затем в кровь через кровеносные сосуды и капилляры внутренних органов.

Движения рыб весьма разнообразны. Обычно рыбы передвигаются при помощи волнообразных изгибов тела.

Рыбы со змеевидной формой тела (минога , угорь , вьюн) передвигаются при помощи изгибов всего тела . Скорость их движения невелика (рисунок слева):


(изображены изменения положения тела через определенные интервалы времени)

Температура тела у рыб определяется температурой окружающей их воды.

По отношению к температуре воды рыбы делятся на холоднолюбивых (холодноводных) и теплолюбивых (тепловодных) . Некоторые виды прекрасно себя чувствуют подо льдами Арктики, а некоторые виды могут вмерзать в лед на несколько месяцев. Линь и карась переносят промерзание водоемов до дна. Ряд видов, спокойно переносящих замерзание поверхности водоема, не способны размножаться, если в летний период вода не прогреется до температуры 15-20° С (сом , толстолобик , карп).

Для большинства холодноводных видов (сиг , форель) температура воды больше 20° С неприемлема, так как содержание кислорода в теплой воде для этих рыб недостаточно. Известно, что растворимость газов, в том числе и кислорода, в воде резко уменьшается с повышением температуры. Одни виды легко переносят дефицит кислорода в воде в широком диапазоне температур (карась , линь), тогда как другие живут лишь в холодной и богатой кислородом воде горных речек (хариус , форель).

Окраска рыб может быть самой разнообразной. Почти во всех случаях окраска рыб играет либо маскирующую (от хищников), либо сигнализирующую (у стайных видов) роль. Окраска рыб изменяется в зависимости от сезона, условий обитания и физиологического состояния; наиболее ярко многие виды рыб окрашены в период размножения.

Существует понятие брачная окраска (брачный наряд) рыб. В период размножения у некоторых видов (плотва , лещ) появляются на чешуе и коже головы "жемчужные" бугорки.

Миграции рыб

Миграции большинства рыб связаны со сменой водоемов, различающихся по солености воды.

По отношению к солености воды всех рыб можно разделить на три группы: морские (живут при солености, близкой к океанической), пресноводные (не переносят осолонения) и солоноватоводные , встречающиеся как в приустьевых участках моря, так и в низовьях рек. Последние виды близки к , нагуливающимся в солоноватоводных дельтах, губах и лиманах, а нерестящимся в реках и пойменных озерах.

Истинно пресноводные рыбы - это рыбы, которые обитают и размножаются только в пресной воде (пескарь).

Ряд видов, обычно живущих в морской или пресной воде, могут легко переходить в новых условиях к «нетипичной» для себя воде. Так, некоторые бычки и морские иглы распространились по рекам и водохранилищам наших южных рек.

Отдельную группу образуют проходные рыбы , большую часть жизни проводящие в море (нагуливающиеся и созревающие, т.е растущие в море), а на нерест приходящие в реки или, наоборот, т.е. совершающие нерестовые миграции из рек в моря.

К этим рыбам относятся многие ценнейшие в промысловом отношении осетровые и лососевые рыбы. Некоторые виды рыб (лосось) возвращаются в те водоемы, где они появились на свет (это явление носит название хоминг - инстинкт дома). Эти способности лососей активно используются при интродукции икры в новые для этих рыб реки. Механизмы, позволяющие проходным рыбам находить безошибочно свою родную речку или озеро, неизвестны.

Есть виды, большую часть жизни живущие в реках, а на нерест уходящие в море (т.е. наоборот ). Среди нашей фауны такие путешествия совершает речной угорь , живущий и созревающий в реках и озерах, а для продолжения рода уходящий в Атлантический океан.

У проходных рыб при переходе из одной среды в другую заметно меняются обмен веществ (чаще всего при созревании половых продуктов они прекращают питаться) и внешний вид (форма тела, окраска и т. д.). Часто эти изменения бывают необратимыми - многие виды после нереста погибают .

Горбуша, или розовый лосось (Oncorhynchus gorbuscha) в различных жизненных фазах
(самец и самка в сезон размножения и океаническая фаза)

Промежуточную экологическую группу образуют полупроходные рыбы - рыбы, размножающиеся в пресной воде, а для нагула выходящие в опресненные участки моря - прибрежную зону морей, заливы, эстуарии.

Размножение рыб

Нерест - важнейший этап в жизни рыб.

Многие рыбы не заботятся об икре и выметывают огромное количество икринок (у белуги до нескольких миллионов) в воду, где и происходит их оплодотворение. Огромное число икринок гибнет, и от каждой самки выживает одна, редко две особи. Здесь за сохранение вида отвечает астрономическая численность выметанной икры.

Некоторые виды рыб (бычки , колюшки) мечут до сотни икринок, но охраняют потомство, строят своеобразные гнезда , защищают икру и мальков. Есть даже виды, например тиляпия, которые вынашивают икру и личинок во рту . Число икринок у этих рыб невелико, но выживаемость существенно выше, что и обеспечивает виду сохранение.

Место нереста у большинства икромечущих рыб характерно для вида, в связи с чем существует их деление на экологические группы по характеру икрометания:

  • пелагофилы мечут икру в толще воды, чаще всего на течении, где и происходит ее развитие (во взвешенном состоянии);
  • литофилы откладывают икру на грунт;
  • фитофилы - на водную растительность.
  • есть немногочисленные виды, нашедшие крайне оригинальный субстрат для своей икры: так, горчаки откладывают икру в мантийную полость двустворчатых моллюсков.

Питание рыб

Характер питания рыб может сильно меняться с возрастом . Обычно молодь является планктофагом или бентофагом, а с возрастом переходит к хищничеству. Например, мальки

Оптимальные температуры развития можно определить, оценивая интенсивность обменных процессов на отдельных этапах (при строгом морфологическом контроле) по изменению потребления кислорода как показателя скорости метаболических реакций при разных температурах. Минимальное потребление кислорода за определенную стадию развития будет соответствовать оптимальной температуре.

Факторы, влияющие на процесс инкубации, и возможности их регулирования.

Из всех абиотических факторов наиболее сильным по своему воздействию на рыб является температура. Температура оказывает очень большое влияние на эмбриогенез рыб на всех этапах и стадиях развития эмбриона. Причем для каждого этапа развития эмбриона имеется оптимальная температура. Под оптимальными следует понимать такие температуры, при которых наблюдается наибольшая скорость метаболизма (обмена веществ) на отдельных этапах без нарушения морфогенеза. Температурные условия, при которых проходит эмбриональное развитие в естественных условиях и при существующих методах инкубации икры практически никогда не соответствуют максимальному проявлению ценных видовых признаков рыб, полезных (нужных) человеку.

Методы определения оптимальных температурных условий развития у эмбрионов рыб довольно сложные

Установлено, что в процессе развития оптимальная температура для весенне-нерестующих рыб повышается, для осенне-нерестующих понижается.

Величина зоны оптимальных температур по мере развития эмбриона расширяется и достигает наибольших размеров перед вылуплением.

Определение оптимальных температурных условий развития позволяет не только усовершенствовать методику инкубации (выдерживания предличинок, подращивания личинок и выращивания молоди), но и открывает возможности разработки приемов и методов направленного воздействия на процессы развития, получения эмбрионов с заданными морфофункциональными свойствами и заданных размеров.

Рассмотрим воздействие на инкубацию икры других абиотических факторов .

Развитие эмбрионов рыб происходит при постоянном потреблении из внешней среды кислорода и выделения диоксида углерода. Постоянным продуктом экскреции эмбрионов является аммиак, возникающий в организме в процессе распада белков.

Кислород. Диапазоны концентраций кислорода, в пределах которых возможно развитие эмбрионов разных видов рыб, существенно различаются, причем концентрации кислорода, соответствующие верхним границам этих диапазонов, намного превышают те, которые встречаются в природе. Так, для судака минимальная и максимальная концентрация кислорода, при которых еще происходит развитие эмбрионов и выклев предличинок, составляют соответственно 2,0 и 42,2 мг/л.



Установлено, что с увеличением содержания кислорода в диапазоне от нижней летальной границы до величин значительно превышающих его естественное содержание, скорость развития эмбрионов закономерно возрастает.

В условиях недостатка или избытка концентраций кислорода у эмбрионов наблюдаются большие различия в характере морфофункциональных изменений. Так, при пониженных концентрациях кислорода наиболее типичные аномалии выражаются в деформации тела и непропорциональном развитии и даже отсутствии отдельных органов, появление кровоизлияний в области крупных сосудов, образование водянок на теле и желчном мешке. При повышенных концентрациях кислорода наиболее характерным морфологическим нарушением у эмбрионов является резкое ослабление или даже полное подавление эритроцитарного кроветворения. Так, у эмбрионов щуки развивавшихся при концентрации кислорода 42-45 мг/л, к концу эмбриогенеза эритроциты в кровяном русле исчезают полностью.

Наряду с отсутствием эритроцитов наблюдаются и другие существенные дефекты: прекращается мышечная моторика, утрачивается способность реагировать на внешние раздражения и освободиться от оболочек.

В целом эмбрионы, инкубируемые при различных концентрациях кислорода существенно различаются по степени их развития при вылуплении

Диоксид углерода (СО). Развитие эмбрионов возможно в очень широком диапазоне концентраций СО, причем величины концентраций, соответствующие верхним границам этих диапазонов, намного превышают те, с которыми эмбрионы сталкиваются в природных условиях. Но при избытке диоксида углерода в воде количество нормально развивающихся эмбрионов снижается. В опытах было доказано, что увеличение концентрации диоксида в воде с 6,5 до 203,0 мг/л вызывает снижение выживаемости эмбрионов кеты с 86% до 2%, а при концентрации диоксида углерода до 243 мг/л – все эмбрионы в процессе инкубации погибали.

Установлено также, что эмбрионы леща и других видов карповых (плотва, синец, густера) нормально развиваются при концентрации диоксида углерода в пределах 5,2-5,7 мг/л, но при увеличении его концентрации до 12,1-15,4 мг/л и уменьшении концентрации до 2,3-2,8 мг/л наблюдалась повышенная гибель этих рыб.

Таким образом, как снижение, так и увеличение концентрации диоксида углерода оказывает на развитие эмбрионов рыб отрицательное влияние, что дает основание считать диоксид углерода необходимым компонентом развития. Роль диоксида углерода в эмбриогенезе рыб многообразна. Увеличение его концентраций (в пределах нормы) в воде усиливает мышечную моторику и его наличие в среде необходимо для поддержания уровня двигательной активности эмбрионов, с его помощью происходит распад оксигемоглобина эмбриона и этим самым обеспечивается необходимое напряжение в тканях, он необходим для образования органических соединений тела.

Аммиак у костистых рыб является основным продуктом азотистой экскреции как в период эмбриогенеза, так и во взрослом состоянии. В воде аммиак существует в двух формах: в форме недиссоциированных (не разъединенных) молекул NH и в форме ионов аммония NH . Соотношение между количеством этих форм существенно зависит от температуры и РН. С увеличением температуры и РН количество резко NH возрастает. Токсическое действие на рыб оказывает преимущественно NH . Действие NH оказывает на эмбрионов рыб отрицательное влияние. Например, у эмбрионов форели и лосося аммиак вызывает нарушение их развития: вокруг желточного мешка появляется полость, заполненная голубоватой жидкостью, в головном отделе образуются кровоизлияния, снижается двигательная активность.

Ионы аммония в концентрации 3,0 мг/л вызывают замедление линейного роста и увеличение массы тела эмбрионов горбуши. Вместе с тем, нужно иметь ввиду, что аммиак у костистых рыб может вторично включиться в реакции обмена и образованием нетоксичных продуктов.

Водородный показатель РН воды, в которой развиваются эмбрионы, должен быть близким к нейтральному уровню – 6,5-7,5.

Требования к воде. Перед подачей воды в инкубационные аппараты её необходимо очищать и обезвреживать, используя отстойники, фильтры грубой и тонкой очистки, бактерицидные установки. На развитие эмбрионов могут отрицательно влиять используемая в инкубационных аппаратах латунная сетка, а также свежая древесина. Это влияние особенно проявляется, если не обеспечена достаточная проточность. Воздействие латунной сетки (точнее ионов меди и цинка) вызывает угнетение роста и развития, снижает жизнестойкость эмбрионов. Воздействие веществ экстрагируемых из древесины, приводит к возникновению водянки и аномалиям в развитии разных органов.

Проточность воды. Для нормального развития эмбрионов необходима проточность воды. Отсутствие проточности или её недостаточность оказывают на эмбрионов такое же действие, как недостаток кислорода и избыток диоксида углерода. Если у поверхности эмбрионов не происходит смены воды, то диффузия кислорода и диоксида углерода через оболочку не обеспечивает необходимой интенсивности газообмена и эмбрионы испытывают недостаток кислорода. Несмотря на нормальное насыщение им воды в инкубационном аппарате. Эффективность водообмена в большей степени зависит от циркуляции воды вокруг каждой икринки, чем от общего количества поступающей воды и скорости её в инкубационном аппарате. Эффективный водообмен во время инкубации икры в неподвижном состоянии (икра лососевых), создается при циркуляции воды перпендикулярно плоскости рамок с икрой – снизу вверх с интенсивностью в пределах 0,6-1,6 см/сек. Этому условию в полной мере отвечает инкубационный аппарат ИМ, имитирующий условия водообмена в естественных нерестовых гнездах.

Для инкубации эмбрионов белуги и севрюги оптимальным считается расход воды в пределах 100-500 и 50-250 мл на одного эмбриона в сутки соответственно. Перед вылуплением предличинок в инкубационных аппаратах увеличивают расход воды с целью обеспечения нормальных условий газообмена и удаления продуктов матаболизма.

Известно, что небольшая соленость (3-7) губительна для патогенных бактерий, грибков и оказывает благоприятное воздействие на развитие и рост рыб. В воде соленостью 6-7 не только снижается отход развивающихся нормальных эмбрионов и ускоряется рост молоди, но и развивается перезревшая икра, которая погибает в пресной воде. Отмечена также повышенная стойкость эмбрионов, развивающихся в солоноватой воде, к механическим воздействиям. Поэтому в последнее время большое значение приобретает вопрос о возможности выращивания проходных рыб в солоноватой воде с самого начала их развития.

Влияние света. При проведении инкубации необходимо учитывать приспособленность эмбрионов и предличинок различных видов рыб к освещению. Например, для эмбрионов лососевых свет губителен, поэтому инкубационные аппараты должны быть затемнены. Инкубация икры осетровых в полной темноте, наоборот, приводит к задержке развития. Воздействие прямого солнечного света вызывает угнетение роста и развития эмбрионов осетровых и снижение жизнеспособности предличинок. Это связано с тем, что икра осетровых в естественных условиях развивается в мутной воде и на значительной глубине, то есть при слабом освещении. Поэтому при искусственном воспроизводстве осетровых инкубационные аппараты следует защищать от прямого солнечного света, так как он может вызывать повреждение эмбрионов и появление уродов.

Уход за икрой во время инкубации.

Перед началом рыбоводного цикла все инкубационные аппараты необходимо отремонтировать и продезинфицировать раствором хлорной извести, промыть водой, стены и пол вымыть 10% известковым раствором (молоком). В профилактических целях против поражения икры сапролегнией её перед загрузкой в инкубационные аппараты необходимо обработать 0,5%-ным раствором формалина в течение 30-60 секунд.

Уход за икрой в период инкубации заключается в наблюдении за температурой, концентрацией кислорода, диоксида углерода, РН, проточностью, уровнем воды, световым режимом, состоянием эмбрионов; отборе мертвых эмбрионов (специальным пинцетом, грохотками, грушами, сифоном); профилактической обработке по мере необходимости. Мертвые икринки отличаются беловатым цветом. При заилении икры лососевых проводят душевание. Душевание и отбор мертвых эмбрионов нужно проводить в периоды пониженной чувствительности.

Продолжительность и особенности инкубации икры различных видов рыб. Вылупление предличинок в различных инкубационных аппаратах.

Продолжительность инкубации икры в значительной степени зависит от температуры воды. Обычно с постепенным повышением температуры воды в пределах оптимальных границ для эмбриогенеза того или иного вида развитие эмбриона плавно ускоряется, но при приближении к температурному максимуму, скорость развития возрастает все меньше. При температурах, близких к верхнему порогу, на ранних стадиях дробления оплодотворенной икры её эмбриогенез, несмотря на повышение температуры, замедляется, а при большем повышении наступает гибель икры.

При неблагоприятных условиях (недостаточная проточность, перегрузка инкубационных аппаратов и т. д.) развитие инкубируемой икры замедляется, вылупление начинается с опозданием и происходит дольше. Разница в продолжительности развития при одинаковой температуре воды и различной проточности и загрузке может достигать 1/3 периода инкубации.

Особенности инкубации икры различных видов рыб. (осетровых и лососевых).

Осетровые.: снабжение инкубационных аппаратовводой с насыщением кислородом 100%, концентрацией диоксида углерода не более 10 мг/л, РН – 6,5-7,5 ; защита от прямого солнечного света во избежание повреждения эмбрионов и появление уродов.

Для севрюги оптимальная температура от 14 до 25 С, при температуре 29 С наступает торможение развития эмбрионов, при 12 С – большая гибель и появляется много уродов.

Для белуги весеннего хода оптимальная температура инкубации 10-15 С (инкубация при температуре 6-8 С приводит к 100 % гибели, а при 17-19 С появляется много аномальных предличинок.)

Лососевидные. Оптимальный уровень кислорода при оптимальной температуре для лососевидных – 100% от насыщения, уровень диоксида не более 10 мг/л (для горбуши допустимо не более 15, кеты не более 20 мг/л), РН – 6,5-7,5; полное затемнение во время инкубации икры лососевых, защита от прямого солнечного света икры сиговых.

Для балтийского лосося, семги, ладожского лосося оптимальная температура 3-4 С. После вылупления оптимальная температура повышается до 5-6, а затем до 7-8 С.

Инкубация икры сиговых в основном происходит при температуре 0,1-3 С в течение 145-205 суток в зависимости от вида и термического режима.

Вылупление. Продолжительность вылупления величина непостоянная и зависит не только от температуры, газообмена, других условий инкубации, но и от специфических условий (скорости течения в инкубационном аппарате, толчков и др.), необходимых для осуществления выделения фермента вылупления эмбрионов из оболочек. Чем хуже условия, тем дольше продолжительность вылупления.

Обычно при нормальных экологических условиях вылупление жизнеспособных предличинок из одной партии икры завершается у осетровых в течение от нескольких часов до 1,5 суток, у лососевых – 3-5 суток. Момент, когда в инкубационном аппарате имеется уже несколько десятков предличинок, можно считать началом периода вылупления. Обычно после этого наступает массовое вылупление, а в конце вылупления в аппарате остается в оболочках мертвые и уродливые эмбрионы.

Растянутые сроки вылупления чаще всего свидетельствуют о неблагоприятных условиях среды и приводят к увеличению разнокачественности предличинок и повышению их смертности. Растянутость вылупления представляет большое неудобство для рыбовода, поэтому важно знать следующее.

Выклев зародыша из икры во многом зависит от выделения фермента вылупления в железе вылупления. Этот фермент появляется в железе после начала пульсации сердца, затем его количество быстро возрастает вплоть до последней стадии эмбриогенеза. На этой стадии фермент выделяется из железы в перивителиновую жидкость, ферментативная активность которой резко возрастает, а активность железы снижается. Прочность оболочек с появлением фермента в перивителиновой жидкости быстро падает. Двигаясь в ослабленных оболочках, эмбрион разрывает их, выходит в воду и становится предличинкой. Выделение фермента вылупления и мышечная активность, имеющая первостепенное значение для освобождения из оболочек, в большей степени зависит от внешних условий. Они стимулируются улучшением условий аэрации, движением воды, толчками. Для обеспечения дружного вылупления, например, у осетровых, необходимы: сильная проточность и энергичное перемешивание икринок в инкубационном аппарате.

Сроки вылупления предличинок зависят также от конструкции инкубационных аппаратов. Так, у осетровых наиболее благоприятные условия для дружного вылупления создаются в инкубаторе «осетр», в аппаратах Ющенко вылупление личинок значительно растягивается и еще менее благоприятные условия для вылупления – в лоточных инкубационных аппаратах Садова и Каханской.

ТЕМА. БИОЛОГИЧЕСКИЕ ОСНОВЫ ВЫДЕРЖИВАНИЯ ПРЕДЛИЧИНОК, ПОДРАЩИВАНИЯ ЛИЧИНОК И ВЫРАЩИВАНИЯ МОЛОДИ РЫБ.

Выбор рыбоводного оборудования в зависимости от эколого-физиологических свойств вида.

В современном технологическом процессе заводского воспроизводства рыб вслед за инкубацией икры начинается выдерживание предличинок, подращивание личинок и выращивание молоди. Такая технологическая схема предусматривает полный рыбоводный контроль в период становления организма рыбы, когда происходят важные биологические преобразования развивающегося организма. Для осетровых и лососевых, например, к таким преобразованиям относится – становление системы органов, рост и развитие, физиологическая подготовка к жизни в море.

Во всех случаях нарушения экологических условий и технологии разведения, связанные с отсутствием правильных представлений о тех или иных особенностях биологии разводимого объекта или механическом использовании рыбоводных приемов оборудования и режима, без понимания биологического смысла, влекут за собой повышенную гибель выращиваемых рыб в период раннего онтогенеза.

Одним из наиболее ответственных периодов всего биотехнического процесса искусственного воспроизводства рыб является выдерживание предличинок и подращивание личинок.

Освободившиеся из оболочек предличинок проходят в своем развитии этап пассивного состояния, который характеризуется малой подвижностью. При выдерживании предличинок учитывают приспособительные черты этого периода развития данного вида, создают условия, обеспечивающие наибольшую выживаемость до перехода на активное питание. С переходом на активное (экзогенное) питание начинается следующее звено рыбоводного процесса – подращивание личинок.

Особенности жизни проходных рыб (часть 1)

Миграции пелагических и донных рыб протекают в более или менее однородной среде моря. Рыбам приходится лишь несколько приспособляться к разностям давления, к различным температурам и незначительным изменениям солености воды, но не приходится попадать в совершенно новую среду, которая требовала бы полной перестройки всей физиологической стороны жизни. Совсем не то мы видим при миграциях проходных рыб, которые для размножения поднимаются из моря в реки и достигают верховьев последних. Они вынуждены приспособляться к такой среде, которая нормально для морских рыб смертельна. Опыты, поставленные Сёмнером (Sumner, 1906) над целым рядом морских рыб, показали, что перенесение их из морской воды в пресную вызывает их гибель, часто уже в очень короткий срок. Причиной гибели является изменение осмотического давления крови и полостной жидкости вследствие извлечения окружающей пресной водою солей из тела рыбы. В этом виновны прежде всего жабры: их тонкие оболочки не могут сопротивляться осмосу и пропускают соли.
В силу этого проходным рыбам, которые не менее двух раз в жизни меняют среду (в молодости переходят из пресной воды в морскую, в зрелом состоянии совершают обратный переход), приходится вырабатывать особую способность переносить сильное понижение концентрации солей во внешней среде и удерживать соли в своем теле; не пропуская их через перепонки. Опыты Грина (Green, 1905), определявшего содержание солей в крови чавычи (Ortcorhynchus ischawytscha Walb.) путем замораживания крови, показали, что у рыбы, взятой из моря, точка замерзания крови 0.762°, у рыбы, пробывшей некоторое время в солоноватоводном предустьевом пространстве, - 0.737°, а у рыбы с нерестилища в верховьях реки - 0.628°, что свидетельствует о понижении концентрации солей в крови рыбы всего на одну пятую. Чем достигается такая способность лишь незначительно понижать концентрацию солей в жидкостях тела, нам неизвестно, но проходные рыбы обладают этой способностью в высокой степени.
Кроме резкого понижения концентрации солей, проходным рыбам приходится приспособляться к противодействующему их движению быстрому и сильному течению рек, к совершенно иным условиям температуры воды, к иному содержанию в ней газов, к иной прозрачности; приходится вырабатывать целый ряд новых инстинктов, связанных с жизнью в реке, с преодолением различных препятствий в пути и с избежанием опасностей. Совершенно изумительным и непонятным для нас является направляющий инстинкт, благодаря которому проходные рыбы находят не только ту же реку, в которой они вывелись, но и тот же приток ее и даже будто бы то же самое нерестилище, как утверждают, по крайней мере, некоторые наблюдатели.