Биологический эффект низкоинтенсивного лазер­ного излучения (гелий-неоновый и инфракрасный свет) обеспечивает широкий спектр фотохимических и фото- физических изменений, обуславливающих интенсифи­кацию структурно-метаболических процессов, не свя­занных с нарушением целостности зон облучения3.

Воздействие когерентного излучения с длиной волны 0.63 мкм на биоткань вызывает различные реакции орга­низма, а именно:

1) увеличение концентрации щелочной фосфатазы в сыворотке крови;

2) повышение содержания иммуноглобулинов О, Т- лимфоцитов, а также фагоцитарной активности лей-

3) снижение фактора, ингибирующего миграцию макрофагов;

4) усиление микроциркуляции и фибринолитичес- кой активности крови;

5) увеличение митотического индекса и потенциала действия нерва;

6) нормализация повышенной сосудистой сопротив­ляемости.

Основными моментами в сложном механизме дейст­вия лазерного излучения на биологические структуры являются восприятие световых лучей фоторецепторами, трансформация их молекулярной композиции и изме­нение их физико-химического состояния. В дальнейшем происходит активизация биохимических реакций с инициацией в ферментах активных и аллостерических центров и ростом их количества. Подтверждением этому служит большое число публикаций о росте фермента­тивной активности после лазерной терапии4.

Действие когерентного света на биоткань осущес­твляется посредством специфических энзимов - фоторе­цепторов. Схематически первичный ответ биологичес­ких систем на лазерное воздействие выглядит следую­щим образом: возбужденная светом хромофорная группа фоторецепторов передает энергию электронного возбуж­дения связанному с ней белку, а если последний закреп­лен на мембране, то и мембране в целом. В результате указанных процессов тепло, возникающее при безизлу- чательных переходах может вызвать локальный нагрев фоторецепторов, способствующий его переориентации. При этом фоторецептор проходит ряд промежуточных релаксационных состояний, обеспечивающих как дина­мические, так и статические конформационные преоб­разования белка и, соответственно, мембраны, с кото-

рой фоторецептор связан, что, в свою очередь, приво­дит к изменению мембранного потенциала и чувстви­тельности мембраны к действию биологически актив­ных веществ.

Широкий спектр биохимических и физиологичес­ких реакций, наблюдаемых в организме в ответ на воз­действие низкоинтенсивного лазера (рис. 9.1) свидетель­ствует о перспективности его использования в различ­ных областях медицины. Анализ результатов собствен­ных наблюдений показал, что применение инфракрас­ного когерентного света в раннем послеоперационном периоде у больных генитальным эндометриозом (эндо­метриоз яичников и тела матки [миометрэктомия], рет- роцервикальный эндометриоз) способствует уменьше­нию болевого синдрома, улучшает кровообращение в артериях, питающих матку и яичники (по данным тран­свагинальной ультразвуковой допплерометрии) и, самое главное, предотвращает формирование спаечного про­цесса в малом тазу.

При повторной лапароскопии, про­веденной с целью уточнения клинической ситуации у части больных эндометриозом яичников, которым во время предшествующей операции был произведен саль- пингоовариолизис, а в послеоперационном периоде в качестве реабилитационного лечения внутривлагалищ- ное низкоинтенсивное лазерное воздействие, во всех наблюдениях не обнаружено каких-либо признаков спа­ечного процесса.

Мы придерживаемся точки зрения, согласно кото­рой низкоинтенсивный лазер является методом выбора при проведении реабилитационных мероприятий на втором (основном) этапе физического лечения больных генитальным эндометриозом. Вместе с тем, не следует принижать достоинства и других высокоэффективных методик - импульсного электростатического поля низкой частоты, токов надтональной частоты (ультратоноте- рапия), переменного и постоянного магнитного поля.

Исследованиями В.М. Стругацкого и соавт.10 уста­новлено, что применение импульсного электростатичес­кого поля низкой частоты у гинекологических больных приводит к уменьшению локальной болезненности в малом тазу по ходу сосудов и нервных стволов, а также коррекции гормонально-зависимых нарушений. Несмот­ря на то, что основные клинические эффекты импуль­сного электростатического поля - дефиброзирующий и анальгезирующий - выражены несколько слабее, чем при лечении традиционными физическими факторами с аналогичным по направленности действием, данный метод обладает существенным преимуществом, а имен­но - способностью регулировать эстроген-прогестероно- вое соотношение. Благодаря этой способности, импуль­сное электростатическое поле низкой частоты может быть использовано для терапии больных с гиперэстро- генией и/или сопутствующими гормонально-зависимы­ми образованиями внутренних половых органов, т.е., когда применение тегоюобразующих или теплопередаю­щих факторов исключено или ограничено.

Ультратонотерапия - метод электротерапии, при котором на тело пациента воздействуют переменным током надтональной частоты (22 кГц) высокого напря­жения (3-5 кВ). Токи ультратональной частоты оказыва­ют на биоткань мягкое действие, не вызывая неприят­ных ощущений. Под влиянием ультратонотерапии на­блюдается улучшение локального крово- и лимфообра­щения, активизация обменных процессов, купирование болевого синдрома. Данный метод представляет один из

высокоэффективных средств, предупреждающих реок­клюзию маточных труб.

Механизм действия магнитного поля на биоткань связывают со стимуляцией физико-химических процес­сов в биологических жидкостях, биоколлоидах, элемен­тах крови. Предполагается, что анизотропные макромо­лекулы под влияниям магнитного поля изменяют свою ориентацию и, тем самым, приобретают способность проникать сквозь мембраны, воздействуя, таким обра­зом, на биологические процессы. К действию магнитного поля чувствительны такие биологические процессы, как свободнорадикальные реакции окисления липидов, реакции с переносом электронов в цитохромной систе­ме, окисление негеминового железа, а также реакции, протекающие с участием ионов метала переходной груп­пы. Магнитное поле вызывает ускорение кровотока, уменьшает потребность тканей и клеток в кислороде, оказывает сосудорасширяющее и гипотензивное дейст­вие, влияет на функцию свертывающей системы крови. Наряду с влиянием магнитных полей на физико-хими­ческие процессы, механизм их лечебного действия ос­нован на индуцировании в тканях вихревых токов, вы­деляющих очень слабое тепло; последнее, в свою оче­редь, активизирует кровообращение, процессы обмена и усиливает регенерацию, а также обеспечивает седатив­ный и болеутоляющий эффекты5,11.

Следует отметить, что в комплексе реабилитацион­ной терапии больных эндометриозом рекомендуется ис­пользовать радоновые воды в виде общих ванн, влага­лищных орошений, микроклизм. Радонотерапия оказы­вает благоприятное воздействие на организм больных с различными аллергическими реакциями, хроническим

колитом и невралгией тазовых нервов.

СПИСОК ЛИТЕРАТУРЫ

1. Арсланян КН., Стругацкий В.М., Адамян Л.В., Волобуев А.И. Ранняя восстановительная физиотерапия после микрохирурги­ческих операций на маточных трубах. Акушерство и гинеколо­гия, 1993, 2, 45-48

2. Железное Б.И., Стрижаков А.Н. Генитальный эндометриоз. «Медицина», Москва, 1985

3. Илларионов В.Е. Основы лазерной терапии. «Респект», Моск­ва, 1992

4. Козлов В.И., Буйлин В.А., Самойлов Н.1., Марков И.И. Основы лазерной физио- и рефлексотерапии. «Здоров"я», Киев-Самара, 1993

5. Оржешковский В.В., Волков Е. С, Тавриков НА. и др. Клини­ческая физиотерапия. «Здоров "я», Киев, 1984

6. Савельева Г.М., Бабинская Л.Н., Бреусенко В.1. и др. Проф­илактика спаечного процесса после хирургического вмешатель­ства у гинекологических больных в репродуктивном периоде. Аку­шерство и гинекология, 1995, 2, 36-39

Москвин Сергей Владимирович - доктор биологических наук, кандидат технических наук, ведущий научный сотрудник ФГБУ «Государственный научный центр лазерной медицины им. О.К. Скобелкина ФМБА России», г. Москва, автор более 550 научных публикаций, в том числе более 50 монографий, и 35 авторских свидетельств и патентов; эл. почта: [email protected], сайт: www.lazmik.ru

Подробнее с описанием первичного механизма биологического, или, как сейчас принято говорить, биомодулирующего действия (БД) НИЛИ, а также с доказательством предложенной нами модели можно ознакомиться в первых двух томах серии книг «Эффективная лазерная терапия» [Москвин С.В., 2014, 2016], которые лучше всего скачать в свободном доступе на сайте http://lazmik.ru .

В этой главе, а также в некоторых других разделах книги представлен и материал о вторичных процессах, происходящих при поглощении лазерного света живыми клетками и биотканями, знание которых крайне важно для клинического применения и понимания методологии ЛТ в приложении к проблеме боли и трофических нарушений.

Нами для изучения механизмов БД НИЛИ был выбран системный подход к анализу данных, для чего из целого организма условно выделяется какая-то часть, объединённая типом анатомического строения или типом функционирования, но каждая часть рассматривается исключительно в плане взаимодействия как единая система. Ключевым моментом такого подхода является определение системообразующего фактора [Анохин П.К., 1973]. Была проанализирована научная литература, в первую очередь, касающаяся изучения механизмов БД, практики использования НИЛИ в клинической медицине, а также современных представлений о биохимии и физиологии как живой клетки, так и на уровне организации регулирования гомеостаза человека в целом. На основе полученных данных сделаны некоторые принципиально важные выводы, которые были подтверждены в ходе многочисленных экспериментальных и клинических исследований [Москвин С.В., 2008, 2008(1), 2014].

Показано, что в результате поглощения энергии НИЛИ происходит её трансформация в биологические реакции на всех уровнях организации живого организма, регулирование которых, в свою очередь, реализуется очень многими путями - в этом кроется причина необычайной многогранности эффектов, проявляющихся в результате такого воздействия. В данном случае мы имеем дело лишь с внешним запуском процессов саморегуляции и самовосстановления нарушенного гомеостаза. Поэтому нет ничего удивительного в универсальности лазерной терапии: это лишь результат устранения патологической фиксации организма за пределами границ нормальной физиологической регуляции. Фотобиологические процессы схематично можно представить в виде следующей последовательности: после поглощения фотонов акцепторами, спектр поглощения которых совпадает с длиной волны падающего света, запускаются биохимические или физиологические реакции, характерные (специфичные) именно для этих поглощающих элементов. Но для лазериндуцированных биоэффектов всё выглядит так, будто не существует специфических акцепторов и ответных реакций биологических систем (клетки, органа, организма), взаимодействие носит абсолютно неспецифичный характер. Подтверждением этого служит относительная неспецифичность зависимости «длина волны - эффект», ответная реакция живого организма в той или иной степени имеет место во всём исследованном спектральном диапазоне, от ультрафиолетовой (325 нм) до дальней ИК-области (10 600 нм) [Москвин С.В., 2014; Moskvin S.V., 2017].

Отсутствие специфического спектра действия можно объяснить только термодинамическим характером взаимодействия НИЛИ с живой клеткой, когда возникающий на поглощающих центрах температурный градиент вызывает триггерный запуск различных систем физиологического регулирования. В качестве первичного звена, как мы предполагаем, выступают внутриклеточные депо кальция, способные высвобождать Ca2+ под влиянием множества внешних факторов . Есть достаточно аргументов в подтверждение этой теории, однако из-за ограничения размеров книги приведём только один: все известные эффекты лазериндуцированной биомодуляции являются вторичными и Ca2+-зависимыми [Москвин С.В., 2003, 2008, 2008(1)]!

Переходя к энергетическим закономерностям, ещё более удивительным, чем спектральные, повторим некоторые базовые понятия и основы, аксиомы лазерной терапии. Самая известная из них - наличие оптимума зависимости «энергетическая плотность (ЭП) - эффект», которую иногда называют «бифазной» , т. е. нужный результат достигается только при оптимальной ЭП воздействия. Уменьшение или увеличение этого значения в весьма узком диапазоне приводит к снижению эффекта, его полному исчезновению или вообще к инверсной ответной реакции.

В этом принципиальное отличие БД НИЛИ от фотобиологических явлений, где зависимость от ЭП носит линейно нарастающий в широких пределах характер. Например, чем больше солнечного света, тем интенсивнее фотосинтез и увеличение растительной массы. Противоречит бифазный характер биологического действия НИЛИ законам фотобиологии? Вовсе нет! Это лишь частный случай проявления физиологического закона зависимости ответной реакции от силы действующего стимула. В фазе «оптимума» после достижения порогового уровня по мере нарастания силы стимула наблюдаются усиление ответной реакции клеток и тканей и постепенное достижение максимума реакции. Дальнейшее увеличение силы стимула ведёт уже к угнетению реакций клеток и организма, в тканях развивается торможение реакций или состояние парабиоза [Насонов Д.Н., 1962].

Для эффективного воздействия НИЛИ необходимо обеспечить как оптимальную мощность, так и плотность мощности (ПМ), т. е. важно распределение световой энергии по площади клеток in vitro и площади и/или объёму биотканей в экспериментах на животных и клинике.

Крайне важна экспозиция (время воздействия) на одну зону, которая не должна превышать 300 с (5 мин), кроме некоторых вариантов методики внутривенного лазерного освечивания крови (до 20 мин).

Перемножением экспозиции на ПМ получается плотность мощности за единицу времени, или ЭП. Это производная величина, не играющая никакой роли, зато часто и ошибочно используемая в специальной литературе под названием «доза», что абсолютно недопустимо.

Для импульсных лазеров (импульсная мощность чаще всего в пределах 10-100 Вт, длительность светового импульса 100-150 нс) при увеличении частоты повторения импульсов пропорционально увеличивается средняя мощность, т. е. ЭП воздействия.

Интересно, что ЭП для импульсных лазеров (0,1 Дж/см2) оказывается в десятки раз меньше, чем для непрерывного НИЛИ (1-20 Дж/см2) для схожих экспериментальных моделей [Жаров В.П. и др., 1987; Nussbaum E.L. et al., 2002; Karu T. et al., 1994], что говорит о большей эффективности импульсного режима. Аналога подобной закономерности в фотобиологии нет.

Хотелось бы отметить ещё один интересный факт - нелинейную зависимость БД НИЛИ от времени экспозиции, что легко объясняется периодичностью волн повышенной концентрации Ca2+, распространяющихся в цитозоле после активации лазерным светом внутриклеточных депо кальция. Причём для совершенно разных типов клеток эти периоды полностью идентичны и составляют строго 100 и 300 с (табл. 1). Клинических исследований, подтверждающих эффективность методик ЛТ при использовании такой экспозиции, в сотни раз больше. Обращаем внимание и на то обстоятельство, что эффект наблюдается в очень широком диапазоне длин волн, следовательно, внутриклеточные депо кальция, локализованные в разных частях клетки, имеют различную структуру.

Таблица 1

Оптимальная экспозиция 100 или 300 с для достижения максимального эффекта in vitro

Тип клетки Результат Длина волны НИЛИ, нм Ссылка
E. coli, S. aureus Пролиферация 467 Подшибякин Д.В., 2010
Гипокамп Эпилептиформная активность 488 Walker J.B. et al., 2005
Фибробласты Пролиферация 633 Rigau J. et al., 1996
Фибробласты Повышение концентрации Ca2+ 633 Lubart R. et al., 1997(1); 2005
Кератиноциты Увеличение IL-1α и IL-8 производства и экспрессии мРНК 633 Yu H.S. et al., 1996
Макрофаги Пролиферация 633 Hemvani N. et al., 1998
Фибробласты, E. coli Пролиферация 660 Ribeiro M.S. et al., 2010
Нейтрофилы человека Повышение концентрации Cа2+ в цитозоле 812 Løvschall H. et al., 1994
Клетки буккального эпителия человека Пролиферация 812 Løvschall H., Arenholt-Bindslev D., 1994
E. coli Пролиферация 890 Жаров В.П. и др., 1987
Миобласты C2C12 Пролиферация, жизнеспособность 660, 780 Ferreira M.P.P. et al., 2009
HeLa Митотическая активность 633, 658, 785 Yang H.Q. et al., 2012
E. coli Пролиферация 633, 1064, 1286 Karu T. et al., 1994

Приведём для наглядности и демонстрации того, что активация работы митохондрии является вторичным процессом, лишь следствием повышения концентрации в цитозоле Ca2+, соответствующие графики только из одного исследования (рис. 1) .

Рис. 1. Изменение концентрации Ca2+ (1) в цитозоле и редокс-потенциала митохондрий ΔΨm (2) под действием лазерного излучения (длина волны 647 нм, 0,1 мВт/см2, экспозиция 15 с) на фибробласты крайней плоти человека (Alexandratou E. et al., 2002)

Важнейшим является факт повышения концентрации Ca2+ исключительно за счёт внутриклеточных депо (куда ионы кальция вновь закачиваются после окончания физиологического цикла через 5-6 мин), а не в результате поступления ионов извне, как полагают многие . Во-первых, не существует корреляции между уровнем АТФ в клетках и транспортом извне Ca2+ в клетку, активация работы митохондрий осуществляется только за счёт повышения концентрации Ca2+ из внутриклеточных депо . Во-вторых, удаление ионов кальция из сыворотки не задерживает увеличения концентрации Ca2+ в анафазу клеточного цикла , т. е. активация клеточной пролиферации под действием НИЛИ вообще никак не связана с внеклеточным кальцием, мембранами, специфически зависимыми насосами и пр. Эти процессы имеют значение только при воздействии на клетки, находящиеся в целостном организме, и являются вторичными.

Продемонстрированные выше закономерности легко объясняются, если механизмы БД НИЛИ расположить в такой последовательности: в результате освечивания НИЛИ внутри клетки возникает термодинамическое нарушение («температурный градиент»), вследствие чего происходит активация внутриклеточного депо, высвобождение ими ионов кальция (Са2+) с кратковременным (до 300 с) повышением их концентрации с последующим развитием каскада ответных реакций на всех уровнях, от клеток до организма в целом: активация работы митохондрий, метаболических процессов и пролиферации, нормализация иммунной и сосудистой систем, включение в процесс ВНС и ЦНС, обезболивающее действие и др. (рис. 2) [Москвин С.В., 2003, 2008, 2014, 2016].

Рис. 2. Последовательность развития биологических эффектов после воздействия НИЛИ (механизмы биологического и терапевтического действия)

Такой подход позволяет объяснить нелинейный характер зависимостей «ЭП -эффект» и «экспозиция - эффект» особенностями работы внутриклеточных депо кальция, а отсутствие спектра действия - неспецифичностью их включения. Повторимся, что сказанное выше относится к «лазер-», а не «фото-» (биомодуляции), т. е. только для монохроматичного света и при отсутствии специфического влияния (например, бактерицидное действие).

Самое главное в знании и правильном понимании механизмов БД НИЛИ - это возможность разрабатывать и оптимизировать методики лазерной терапии, понимать принципы и условия эффективного применения метода.

Зависимость эффекта от частоты модуляции, монохроматичности, поляризации и т. д. вынуждает рассматривать эти закономерности также не совсем с позиций классической фотобиологии. Здесь, на наш взгляд, для характеристики сторонников «акцепторного», статического подхода к изучению механизмов БД НИЛИ уместно привести слова американского писателя Г. Гаррисона: «Факты они раскладывали по полочкам. Тогда как анализировали сложнейшую замкнутую систему с такими элементами, как положительная и отрицательная обратная связь, или переменная коммутация. Да и находится вся система в динамическом состоянии в силу непрерывной гомеостатической коррекции. Неудивительно, что у них ничего не выходило». Вот и фотобиологи с аналогичным подходом к исследованиям ничего не поняли в механизмах БД НИЛИ.

Так как же развиваются индуцированные лазерным светом биологические процессы? Можно ли проследить всю цепочку, начиная от поглощения фотонов до выздоровления пациента, полно и достоверно объяснить имеющиеся научные факты и на их основе разрабатывать максимально эффективные методики лечения? На наш взгляд, есть все основания для утвердительного ответа на эти вопросы, разумеется, в рамках ограниченных общих знаний в области биологии и физиологии.

Механизмы биологического (терапевтического) действия низкоинтенсивного лазерного света на любой живой организм необходимо рассматривать только с позиции общности природы как воздействующей световой энергии, так и организации живой материи. На рис. 2 представлена основная последовательность реакций, начиная от первичного акта поглощения фотона и заканчивая реакцией различных систем организма. Данная схема может быть лишь дополнена деталями патогенеза конкретного заболевания.

С чего всё начинается? Исходя из того факта, что низкоинтенсивный лазерный свет вызывает соответствующие эффекты in vitro у одиночной клетки, можно предположить, что начальным пусковым моментом при воздействии на биоткани является поглощение НИЛИ именно внутриклеточными компонентами. Постараемся разобраться, какими именно.

Представленные выше факты и полученные T. Karu с соавт. (1994) данные убедительно доказывают, что подобные закономерности могут быть результатом только термодинамических процессов, происходящих при поглощении лазерного света какими-либо, т. е. любыми, внутриклеточными компонентами. Теоретические оценки показывают, что при воздействии НИЛИ возможен локальный «нагрев» акцепторов на десятки градусов. Хотя процесс длится очень короткий промежуток времени - менее 10-12 с, этого вполне достаточно для весьма значительных термодинамических изменений как в группе хромофоров непосредственно, так и в окружающих областях, что приводит к существенным изменениям свойств молекул и является пусковым моментом индуцированной лазерным излучением реакции. Подчеркнём ещё раз, что в качестве акцептора может выступать любой внутриклеточный компонент, поглощающий на данной длине волны, в том числе и вода, обладающая сплошным спектром поглощения, т. е. начальным пусковым моментом БД НИЛИ является вовсе не фотобиологическая реакция как таковая, а возникновение локального температурного градиента, и мы имеем дело с термодинамическим, а не фотобиологическим эффектом (в классическом понимании этого термина), как полагали раньше. Это принципиально важный момент.

При этом надо понимать, что под «температурным градиентом» не подразумевается изменение температуры в общепринятом, «бытовом» смысле, речь идёт о термодинамическом процессе и терминологии из соответствующего раздела физики - термодинамики, характеризующей изменение состояния колебательных уровней макромолекул и описывающей исключительно энергетические процессы [Москвин С.В., 2014, 2016]. Такую «температуру» нельзя измерить градусником.

Однако именно «отсутствие прямых экспериментальных доказательств локального внутриклеточного повышения температуры» является основным аргументом в критике нашей теории [Улащик В.С., 2016]. Замечание же В.С. Улащика (2016) относительно того, что результатом этого процесса не может быть только высвобождение ионов кальция, следует признать справедливым. Действительно есть, хоть и весьма ограниченный, перечень выявленных закономерностей, которые трудно объяснить только Ca2+-зависимыми процессами, это ещё предстоит изучить.

Тем не менее выводы из нашей теории уже позволили качественно повысить эффективность методик лазерной терапии, их стабильность и воспроизводимость, чего уже вполне достаточно для её признания (хотя не отвергает необходимости дальнейшего развития). И совершенно нельзя согласиться с мнением глубокоуважаемого специалиста [Улащик В.С., 2016], что имеют право на существование «теории» только при наличии неких «экспериментальных данных», зачастую весьма сомнительных и неверно интерпретированных, выводы из которых для клинической практики губительны. Например, следствием всех таких гипотез является невозможность использования для лазерной терапии НИЛИ с длиной волны в диапазоне 890-904 нм. И что прикажете делать десяткам тысяч специалистов, когда они больше 30 лет с успехом используют именно такой лазерный свет, считают его самым эффективным и получают прекрасные результаты лечения? Отказаться от реальности в угоду амбициям единиц?

Нет никаких разумных аргументов против термодинамического характера взаимодействия НИЛИ на клеточном уровне, иначе просто невозможно объяснить невероятно широкий и почти непрерывный спектр действия (от 235 до 10 600 нм), поэтому в части первичного процесса будем и далее придерживаться нашей концепции.

При незначительных локальных термодинамических возмущениях, недостаточных для перевода молекулы в новое конформационное состояние, может, однако, сравнительно сильно измениться геометрия, конфигурация молекул. Структуру молекулы как бы «ведёт», чему способствует возможность поворотов вокруг одинарных связей главной цепи, не очень строгие требования, предъявляемые к линейности водородных связей, и т. д. Это свойство макромолекул решительным образом влияет на их функционирование. Для эффективного преобразования энергии достаточно возбуждать такие степени свободы системы, которые медленно обмениваются энергией с тепловыми степенями свободы [Гудвин Б., 1966].

Предположительно способность к направленным конформационным изменениям, т. е. к их движению под влиянием локальных градиентов, есть отличительная особенность белковых макромолекул, и требуемые релаксационные изменения вполне могут быть вызваны лазерным светом «низкой» или «терапевтической» интенсивности (мощности, энергии) [Москвин С.В., 2003(2)].

Функционирование большинства внутриклеточных компонентов тесно связано не только с характером их конформаций, но главное, с их конформационной подвижностью, зависящей от присутствия воды. Вследствие гидрофобных взаимодействий вода существует не только в виде объёмной фазы свободного растворителя (цитозоля), но также в виде связанной воды (цитогеля), состояние которой зависит от природы и мест локализации белковых групп, с которыми она взаимодействует. Время жизни слабосвязанных молекул воды в такой гидратной оболочке невелико (t ~ 10-12 ÷ 10-11 с), но около центра оно намного больше (t ~ 10-6 с). В целом около поверхности белка может удерживаться устойчиво несколько слоёв воды. Небольшие изменения в количестве и состоянии относительно небольшой фракции молекул воды, образующих гидратный слой макромолекулы, приводят к резким изменениям термодинамических и релаксационных параметров всего раствора в целом [Рубин А.Б., 1987].

Объяснение механизмов БД НИЛИ с термодинамических позиций позволяет понять, почему эффект достигается при воздействии именно лазерным светом и наиболее важным является такое его свойство, как монохроматичность. Если ширина спектральной линии будет значительна (20-30 нм и более), т. е. соизмерима с полосой поглощения макромолекулы, то такой свет инициирует колебание всех энергетических уровней и произойдет лишь слабый, на сотые доли градусов, «нагрев» всей молекулы. Тогда как свет с минимальной шириной спектральной линии, характерный для НИЛИ (менее 3 нм), вызовет так необходимый для полноценного эффекта температурный градиент уже в десятки градусов. В этом случае вся световая энергия лазера выделится (условно говоря) на небольшом локальном участке макромолекулы, вызывая термодинамические изменения, увеличение числа колебательных уровней с большей энергией, достаточного для запуска дальнейшего физиологического отклика. Проводя условную аналогию, процесс можно представить так: при концентрации увеличительным стеклом солнечного света на точку можно поджечь бумагу, тогда как при освечивании рассеянным светом всей её площади происходит лишь слабый нагрев поверхности.

Следствием фотоиндуцированного «поведения» макромолекул является высвобождение ионов кальция из кальциевого депо в цитозоль и распространение волн повышенной концентрации Са2+ по клеткам и между ними. И это является главным, ключевым моментом первичного этапа развития лазер-индуцированного процесса. Вместе с актом поглощения фотона появление и распространение волн повышенной концентрации ионов кальция можно определить именно как первичный механизм БД НИЛИ.

Первым возможное участие ионов кальция в лазер-индуцированных эффектах предположил ещё Н.Ф. Гамалея (1972). Позднее было подтверждено, что внутриклеточная концентрация ионов кальция в цитозоле при воздействии НИЛИ увеличивается многократно [Смольянинова Н.К. и др., 1990; Толстых П.И. и др., 2002; Alexandratou E. et al., 2002]. Однако во всех исследованиях эти измененияотмечались лишь в совокупности с другими процессами, не выделялись каким-то особым образом, и только нами впервые было высказано предположение, что увеличение концентрации Са2+ в цитозоле является именно основным механизмом, запускающим в дальнейшем вторичные лазер-индуцированные процессы, а также замечено, что все физиологические изменения, происходящие вследствие этого на самых различных уровнях, кальций-зависимые [Москвин С.В., 2003].

Почему мы обращаем внимание именно на ионы кальция? Причин этому несколько.

  1. Кальций в наибольшей степени находится в специфически и неспецифически связанном состоянии как в клетках (99,9%), так и в крови (70%) [Марри Р. и др., 2009], т. е. принципиально существует возможность значительного увеличения концентрации свободных ионов кальция, и этот процесс обеспечивается не одним десятком механизмов. Более того, во всех живых клетках имеются специализированные внутриклеточные депо (сарко- или эндоплазматический ретикулум) для хранения в связанном состоянии только кальция. Внутриклеточная концентрация других ионов и ионных комплексов регулируется исключительно трансмембранными ионными потоками.
  2. Необычайная универсальность механизмов регулирования Са2+ многих физиологических процессов, в частности: нейромышечное возбуждение, свёртывание крови, процессы секреции, поддержание целостности и деформируемости мембран, трансмембранный транспорт, многочисленные ферментативные реакции, высвобождение гормонов и нейромедиаторов, внутриклеточное действие ряда гормонов и др. [Греннер Д., 1993(1)].
  3. Внутриклеточная концентрация Са2+ чрезвычайно мала - 0,1-10 мкм/л, поэтому высвобождение даже небольшого абсолютного количества этих ионов из связанного состояния приводит к существенному относительному повышению концентрации Са2+ в цитозоле [Смольянинова Н.К. и др., 1990; Alexandratou E. et al., 2002].
  4. О роли кальция в поддержании гомеостаза с каждым днём становится известно всё больше. Например, Са2+-индуцированное изменение митохондриального мембранного потенциала и повышение внутриклеточной pH приводят к увеличению продукции АТФ и в конечном итоге стимулируют пролиферацию [Кару Т.Й., 2000; Schaffer M. et al., 1997]. Стимуляция видимым светом приводит к повышению уровня внутриклеточного цАМФ практически синхронно с изменением концентрации внутриклеточного Са2+в первые минуты после воздействия , способствуя,таким образом, регуляции, осуществляемой кальциевыми насосами.
  5. Важно отметить, что сама организация клетки обеспечивает её гомеостаз, в большинстве случаев именно через влияние ионов кальция на энергетические процессы. Конкретным координирующим механизмом выступает при этом общеклеточный колебательный контур: Са2+ цитозоля - кальмодулин (СаМ) - система циклических нуклеотидов [Меерсон Ф.З., 1984]. Также задействуется и другой механизм через Са2+-связывающие белки: кальбиндин, кальретинин, парвальбумин и эффекторы, такие как тропонин С, СаМ, синаптотагмин, белки S100 и аннексины, которые отвечают за активацию Са2+-чувствительных процессов в клетках .
  6. Наличие различных колебательных контуров изменений концентраций активных внутриклеточных веществ тесно связано с динамикой высвобождения и регулирования содержания ионов кальция. Дело в том, что локальное повышение концентрации Са2+ не заканчивается равномерным диффузным распределением ионов в цитозоле или включением механизмов закачивания излишков во внутриклеточные депо, а сопровождается распространением волн повышенной концентрации Са2+ внутри клетки, вызывающим многочисленные кальций-зависимые процессы . Ионы кальция, высвобождаемые одним кластером специализированных канальцев, диффундируют к соседним и активируют их. Этот механизм скачкообразного распространения позволяет начальному местному сигналу запустить глобальные волны и колебания концентраций Са2+ .
  7. Иногда волны Са2+ очень ограниченны в пространстве, например, в амакриновых клетках сетчатки, в которых местные сигналы с дендритов используются для расчёта направления движения . Вдобавок к таким внутриклеточным волнам информация может распространяться отклетки к клетке посредством межклеточных волн, как это было описанодля эндокринных клеток , гаструлы позвоночных и интактной перфузируемой печени . В некоторых случаях межклеточные волны могут переходить с одного типа клеток на другие, как это бывает в эндотелиальных клетках и клетках гладкой мускулатуры . Факт такого распространения волн Са2+ очень важен, например, для объяснения механизма генерализации лазерного воздействия при заживлении значительной по размеру раны (например, ожог) при локальномвоздействии НИЛИ.

Итак, что же происходит после того, как волны повышенной концентрацииСа2+ стали распространяться под влиянием НИЛИ в цитозоле клетки и между группами клеток на тканевом уровне? Для ответа на этот вопрос необходимо рассмотреть, какие изменения вызывает НИЛИ на уровне организма. Лазерная терапия получила широкое распространение практически во всех областях медицины благодаря тому, что НИЛИ инициирует самые разнообразные биохимические и физиологические отклики, которые представляют собой комплекс адаптационных и компенсационных реакций, возникающих в результате реализации первичных эффектов в тканях, органах и целостном живом организме и направленных на его восстановление:

  • активизация метаболизма клеток и повышение их функциональной активности;
  • стимуляция репаративных процессов;
  • противовоспалительное действие;
  • активизация микроциркуляции крови и повышение уровня трофического обеспечения тканей;
  • обезболивание;
  • иммуномодулирующее действие;
  • рефлексогенное действие на функциональную активность различных органов и систем.

Здесь следует обратить внимание на два важнейших момента. Во-первых, почти в каждом из перечисленных пунктов априори задана однонаправленность влияния НИЛИ (стимуляция, активация и пр.). Как будет показано ниже, это не совсем так, и лазерный свет может вызывать прямо противоположные эффекты, что хорошо известно из клинической практики. Во-вторых, все эти процессы -Са2+-зависимые! Вот действительно на что никто раньше не обращал внимания. Рассмотрим теперь, как именно происходят представленные физиологические изменения, приведя в качестве примера лишь небольшую часть известных путей их регулирования.

Активизация метаболизма клеток и повышение их функциональной активности происходят, в первую очередь, вследствие кальций-зависимого повышения редокс-потенциала митохондрий, их функциональной активности и синтеза АТФ [Кару Т.Й., 2000; Filippin L. et al., 2003; Schaffer M. et al., 1997].

Стимуляция репаративных процессов зависит от Са2+ на самых различных уровнях. Кроме активизации работы митохондрий при повышении концентрации ионов кальция активируются протеинкиназы, принимающие участие в образовании мРНК . Также ионы кальция являются аллостерическими ингибиторами мембранно-связанной тиоредоксинредуктазы - фермента, контролирующего сложный процесс синтеза пуриновых дезоксирибонуклеотидов в период активного синтеза ДНК и деления клеток [Родуэлл В., 1993]. В физиологии раневого процесса, кроме того, активно участвует основной фактор роста фибробластов (bFGF), синтез которого и активность зависят от концентрации Са2+ .

Противовоспалительное действие НИЛИ и его влияние на микроциркуляцию обусловлены, в частности, Са2+-зависимым высвобождением медиаторов воспаления, таких как цитокины , а также Са2+-зависимым выделением клетками эндотелия вазодилататора - оксида азота (NO) - предшественника эндотелиального фактора расслабления стенок сосудов (EDRF) .

Поскольку кальций-зависимым является экзоцитоз , в частности высвобождение нейромедиаторов из синаптических везикул , процесс нейрогуморальной регуляции полностью контролируется концентрацией Са2+, следовательно, подвержен и влиянию НИЛИ. Кроме того, известно, что Са2+ является внутриклеточным посредником действия ряда гормонов, в первую очередь медиаторов ЦНС и ВНС [Греннер Д., 1993], что также предполагает участие лазериндуцированных эффектов в нейрогуморальной регуляции.

Взаимодействие нейроэндокринной и иммунной систем изучено недостаточно, но установлено, что цитокины, в частности ИЛ-1 и ИЛ-6, действуют в обоих направлениях, играя роль модуляторов взаимодействия этих двух систем [Ройт А. и др., 2000]. НИЛИ может влиять на иммунитет как опосредованно через нейроэндокринную регуляцию, так и непосредственно через иммунокомпетентные клетки (что доказано в экспериментах in vitro). К числу ранних пусковых моментов бласттрансформации лимфоцитов относится кратковременное повышение внутриклеточной концентрации ионов кальция, который активирует протеинкиназу, принимающую участие в образовании мРНК в Т-лимфоцитах , что, в свою очередь, является ключевым моментом лазерной стимуляции Т-лимфоцитов [Мантейфель В.М., Кару Т.Й., 1999]. Воздействие НИЛИ на клетки фибробластов in vitro приводит также к повышеннойгенерации внутриклеточного эндогенного γ-интерферона .

Кроме физиологических реакций, описанных выше, для понимания картиныв целом необходимо также знать, каким образом лазерный свет может влиять на механизмы нейрогуморальной регуляции. НИЛИ рассматривается как неспецифический фактор, действие которого направлено не против возбудителя или симптомов болезни, а на повышение сопротивляемости (жизненности) организма. Это биорегулятор как клеточной биохимической активности, так и физиологических функций организма в целом - нейроэндокринной, эндокринной, сосудистой и иммунной систем.

Данные научных исследований позволяют с полной уверенностью говорить о том, что лазерный свет не является основным терапевтическим агентом на уровне организма в целом, но как бы устраняет препятствия, дисбаланс в центральной нервной системе (ЦНС), мешающий саногенетической функции мозга. Это осуществляется возможным изменением под действием лазерного света физиологии тканей как в сторону усиления, так и в сторону угнетения их метаболизма в зависимости, в основном, от исходного состояния организма и энергетической плотности НИЛИ, что и приводит к затуханию процессов патологического характера, нормализации физиологических реакций и восстановлению регулирующих функций нервной системы. Лазерная терапия при правильном применении поpволяет восстановить нарушенное системное равновесие [Москвин С.В., 2003(2); Скупченко В.В., 1991].

Рассмотрение ЦНС и вегетативной нервной системы (ВНС) как независимых структур в последние годы уже перестало устраивать многих исследователей. Находится всё больше фактов, подтверждающих их самое тесное взаимодействие и взаимовлияние. На основе анализа многочисленных данных научных исследований была предложена модель единой регулирующей и поддерживающей гомеостаз системы, названной нейродинамическим генератором (НДГ) [Москвин С.В., 2003(2)].

Основная идея модели НДГ заключается в том, что дофаминергический отдел ЦНС и симпатический отдел ВНС, объединённые в единую структуру, названную В.В. Скупченко (1991) фазическим моторно-вегетативным (ФМВ) системокомплексом, тесно связаны с другой, зеркально взаимосодействующей (термин П.К. Анохина) структурой - тоническим моторно-вегетативным (ТМВ) системо комплексом. Представленный механизм функционирует не столько как рефлекторная система реагирования, сколько как спонтанный нейродинамический генератор, перестраивающий свою работу по принципу самоорганизующихся систем.

Появление фактов, свидетельствующих об одновременном участии одних и тех же структур мозга в обеспечении и соматического, и вегетативного регулирования, воспринимается сложно, поскольку они не укладываются в известные теоретические построения. Однако игнорировать то, что подтверждается повседневной клинической практикой, мы не можем. Такой механизм, обладая определённой нейродинамической подвижностью, не только способен обеспечивать непрерывно меняющуюся адаптивную настройку регуляции всей гаммы энергетических, пластических и метаболических процессов, что первым предположил и блестяще доказал В.В. Скупченко (1991), но управляет, по сути, всей иерархией регулирующих систем от клеточного уровня до центральной нервной системы, включая эндокринные и иммунологические перестройки [Москвин С.В., 2003(2)]. В клинической практике первые положительные результаты подобного подхода к механизму нейрогуморальной регуляции были получены в неврологии [Скупченко В.В., Маховская Т.Г., 1993] и при удалении келоидных рубцов [Скупченко В.В., Милюдин Е.С., 1994].

Термины «тонический» и «фазический» изначально сформулированы по названиям соответствующих типов мышечных волокон, т. к. впервые представленный механизм взаимосодействия двух типов нервных систем был предложен для объяснения двигательных нарушений (дискинезий). Несмотря на то что данная терминология далеко не отражает всей значимости НДГ, мы решили её сохранить в память о первооткрывателе такого механизма регулирования физиологических процессов - проф. В.В. Скупченко.

На рис. 3 представлена общая схема, демонстрирующая концепцию НДГ как универсального регулятора гомеостаза, разумеется, в «статическом», если так можно выразиться, состоянии. Основная идея такой систематизации - показать единство всех регулирующих систем. Это своего рода точка опоры, вокруг которой строится методология терапии под девизом: «Воздействие однонаправленными лечебными факторами» [Москвин С.В., 2003(2)].

Схема достаточно условна, что подчёркивается представлением НИЛИ как единственного метода регулирования нейродинамического состояния. В данном случае мы лишь демонстрируем способность одного и того же лечебногоэффекта, в зависимости от ЭП для выбранной длины волны НИЛИ, вызывать разнонаправленные действия, что является характерным свойством если не всех, то большинства неспецифических методов биологически значимого влияния. Однако нам лазерный свет представляется наиболее универсальным лечебным физическим фактором, далеко выходящим за рамки просто одного из физиотерапевтических методов. И для такого вывода есть все основания.

Предложенная нейродинамическая модель поддержания гомеостаза позволяет по-новому оценить системные механизмы медиаторного и вегетативного регулирования. Вся совокупность нейродинамических, нейротрансмиттерных, иммунологических, нейроэндокринных, метаболических и т. д. процессов реагирует как единое целое. Когда меняется на организменном уровне вегетативный баланс, то это означает, что одновременно нейродинамическая перестройка охватывает весь комплекс иерархически организованной системы внутренней регуляции. Ещё более впечатляющим является то, что локальное изменение гомеостаза на клеточном уровне вызывает также реакцию всего нейродинамического генератора, в большей или меньшей степени задействуя различные его уровни [Москвин С.В., 2003(2)]. Детали функционирования такого механизма ещё изучены не до конца, однако за последние несколько лет в зарубежных неврологических журналах лавинообразно увеличилось количество публикаций, посвящённых изучению этого вопроса. Нам всё-таки важнее проанализировать общие закономерности, связанные с реакцией организма на внешнее воздействие, некоторые из них уже известны и активно используются для повышения эффективности прогнозирования результатов лазерной терапии.

В первую очередь обращаем внимание на необходимость использования в отношении БД НИЛИ терминов «регуляция» и «модуляция», а не «активация» или «стимуляция», так как теперь совершенно понятно, что лазерный свет не является однонаправленным фактором влияния, а, как показано нами, в зависимости от ЭП воздействия возможен сдвиг гомеостаза в ту или иную сторону. Это чрезвычайно важно при выборе энергетических параметров терапевтического воздействия при одновременно правильной оценке исходного состояния организма и для этиопатогенетического обоснования методик ЛТ на основе предлагаемой концепции нейродинамической модели патогенеза заболеваний.

В норме происходят постоянные переходы из фазического состояния в тоническое и обратно. Стресс вызывает включение фазических (адренергических) механизмов регуляции, что подробно описано в работах Г. Селье (1960) как общий адаптационный синдром. При этом в ответ на превалирование дофаминергического влияния запускаются тонические (ГАМК-ергические и холинергические) механизмы регулирования. Последнее обстоятельство осталось за рамками исследований Г. Селье, а является, по сути, важнейшим моментом, объясняющим принцип саморегулирующей роли НДГ. В норме две системы, взаимосодействуя, сами восстанавливают нарушенный баланс.

Многие заболевания представляются нам связанными с превалированием одного из состояний данной регулирующей системы. При длительном, нескомпенсированном влиянии стрессорного фактора происходит сбой в работе НДГ и патологическая фиксация его в одном из состояний: в фазическом, что бывает чаще, или в тонической фазе, как бы переходя в режим постоянной готовности к ответу на раздражение, влияя практически на все регулирующие физиологические процессы, в частности метаболические. Таким образом, стресс, или постоянное нервное напряжение, могут сместить гомеостаз и зафиксировать его патологически либо в фазическом, либо в тоническом состоянии, что и вызывает развитие соответствующих заболеваний, лечение которых должно быть в первую очередь направлено на коррекцию нейродинамического гомеостаза. Сочетание нескольких обстоятельств - наследственная предрасположенность, определённый конституциональный тип, различные экзогенные и эндогенные факторы и др. - обуславливает развитие какой-либо конкретной патологии у конкретного индивидуума, но истинная причина заболевания общая - устойчивое превалирование одного из состояний НДГ.

Рис. 3. Схематичное изображение концепции нейродинамического регулирования гомеостаза низкоинтенсивным лазерным светом

Ещё раз обращаем внимание на важнейший факт, что не только ЦНС и ВНС регулируют различные процессы на всех уровнях, но и, наоборот, локально действующий внешний фактор, например, лазерный свет, может привести к системным сдвигам, устраняя истинную причину заболевания - дисбаланс НДГ, и при локальном освечивании устранить генерализованную форму заболевания. Это необходимо обязательно учитывать при разработке методик лазерной терапии.

Теперь становится понятной возможность разнонаправленного влияния в зависимости от энергетических и спектральных параметров воздействующего лазерного света - стимуляция физиологических процессов или их угнетение. Универсальность биоэффектов обусловлена в том числе тем, что в зависимости от ЭП НИЛИ как стимулируются, так и подавляются пролиферация и раневой процесс [Крюк А.С. и др., 1986; Al-Watban F.A.N., Zhang X.Y., 1995; Friedmann H.et al., 1991; Friedmann H., Lubart R., 1992].

Чаще всего в методиках используются минимальные, общепринятые ЭП лазерного воздействия (1-3 Дж/см2 для непрерывного режима работы лазера с длиной волны 635 нм), но иногда в клинической практике требуется именно условно НЕ стимулирующее действие НИЛИ. Например, при псориазе многократно повышена пролиферация кератиноцитов, данное заболевание типично для тонического состояния, при котором активизируются пластические процессы. Понятно, что минимальные ЭП НИЛИ, стимулирующие пролиферацию, в данном случае неуместны. Необходимо воздействовать сверхбольшими мощностями при малых площадях зоны освечивания с целью подавления избыточного деления клеток. Сделанные на основании такой модели выводы блестяще подтвердились на практике при разработке эффективных методик лечения больных псориазом [Пат. 2562316 RU], атопическим дерматитом [Пат. 2562317 RU], витилиго [Адашева О.В., Москвин С.В., 2003; Москвин С.В., 2003], болезнью Пейрони [Иванченко Л.П. и др., 2003].

Теперь, когда перед нами представлена достаточно полная картина механизмов действия НИЛИ, легко получить ответ на некоторые известные вопросы. Например, чем объяснить бифазный характер БД НИЛИ? При увеличении поглощённой энергии растёт и температурный градиент, что вызывает высвобождение большего числа ионов кальция, но как только их концентрация в цитозоле начинает превышать физиологически допустимый максимальный уровень, включаются механизмы закачивания Са2+ в кальциевые депо, и эффект исчезает.

Почему в импульсном режиме эффект выше при средней мощности, в 100-1000 раз меньше, чем при непрерывном режиме излучения? Потому что время термодинамической релаксации макромолекул (10-12 с) значительно меньше длительности светового импульса (10-7 с) и очень короткий, в нашем понимании, импульс мощностью в ватты оказывает значительно большее влияние на состояние локального термодинамического равновесия, чем непрерывное излучение в единицы милливатт.

Эффективно ли применение лазерных источников с двумя различными длинами волн? Безусловно, да! Различные длины волн вызывают высвобождение Са2+из различных внутриклеточных депо, обеспечивая потенциально выше концентрацию ионов, следовательно, более высокий эффект. Только важно понимать, что НЕ ДОПУСКАЕТСЯ одновременное освечивание лазерным светом с разной длиной волны, оно должно быть разнесено во времени или пространстве.

С другими способами повышения эффективности лазерной терапии, известными и разработанными нами на основе предложенной концепции механизмов БД НИЛИ, можно ознакомиться во 2-м томе серии книг «Эффективная лазерная терапия» [Москвин С.В., 2014].

Итак, применение системного анализа позволило разработать универсальную, единую теорию механизмов биомодулирующего действия низкоинтенсивного лазерного света. В качестве первичного действующего фактора выступают локальные термодинамические сдвиги, вызывающие цепь изменений Са2+-зависимых физиологических реакций, как на клеточном уровне, так и организма в целом. Причём направленность этих реакций может быть различна, что определяется энергетической плотностью, длиной волны лазерного света и локализацией воздействия, а также исходным состоянием самого организма (биологической системы).

Разработанная нами концепция позволяет не только объяснить практически все уже имеющиеся научные факты, но и сделать выводы как о прогнозировании результатов влияния НИЛИ на физиологические процессы, так и о возможных способах повышения эффективности лазерной терапии.

Источник : Москвин С.В., Фёдорова Т.А., Фотеева Т.С. Плазмаферез и лазерное освечивание крови. - М.-Тверь: ООО «Издательство «Триада», 2018. - С. 7-23.

1. Физические характеристики действия лазерного света

Лазерная терапия относится к одной из наиболее быстро развивающихся отраслей медицины и ветеринарии и широко применяется в лечении дистрофических и травматических повреждений опорно-двигательной системы. Для терапевтических целей в основном используют низкоинтенсивное лазерное излучение (НИЛИ) с длиной волны 0,632 мкм и 0,830-0,888 мкм (красной и инфракрасной оптической области спектра электромагнитных волн), которое дают гелий-неоновые и углекислотные лазеры.

Механизмы действия НИЛИ.

В настоящее время существует ряд гипотез относительно механизмов действия НИЛИ на биологические объекты, которые по предлагаемому уровню воздействия света можно разделить условно на три группы: биофизический, физический и биохимический, а также уровень молекулярно-структурных изменений клеточных мембран.

Гипотеза биофизического уровня воздействия связывает биологическое действие НИЛИ с взаимодействием электромагнитных волн с электрическими полями клеток. Согласно общепринятой теории, фотоэффект обусловливается первичным поглощением кванта света молекулой-акцептором и переходом её в возбужденное состояние. При этом возникает разность потенциалов между участками облучаемого объекта, а возникающая фотоэлектродвижущая сила активизирует физиологические процессы.

Гипотеза физического и биохимического уровня воздействия НИЛИ подразумевает, что механизм действия связан, в первую очередь, с фотоакцепцией ферментами, либо веществами, имеющими в составе ионы металла. В клетках животных к таким веществам относят каталазу, цитохромоксидазный комплекс, церулоплазмин, порфирины, гемоглобин и др. Возможным механизмом действия НИЛИ может явиться реактивация ферментов дыхательной цепи (цитохром-с-оксидазы, НАДН-дигидрогиназы), приводящая к восстановлению потока электронов, формированию трансмембранного потенциала, что в конечном счете отражается на клеточном метаболизме и обусловливает повышение антиоксидантной активности организма. Физико-биомеханическая теория, не исключает и конформационных преобразований макромолекул мембран. В результате их структурно-функциональных перестроек создается физико-химическая основа для формирования неспецифических адаптационных реакций клеток, что стимулирует биоэнергетические и биосинтетические процессы в организме. В связи с этим, гипотезы третьей группы, которые основаны на оценке молеку-лярно-структурных изменений клеточных мембран под действием лазерных излучений, тесно связаны с гипотезами, относящимися ко второй группе. В настоящее время дискутируется два механизма возможности лазерного воздействия на плазматическую мембрану -механизм акцепции или рецепции квантов света. Мы считаем, что в целом, воздействие НИЛИ на клеточную мембрану выступает как пусковой фактор каскада молекулярных и морфологических провесов. В клетке активизируется биосинтез нуклеиновых кислот и белков, окислительно-восстановительные реакции, ферментные системы, увеличивается энергетический потенциал, стимулируется биогенез мембранных органелл, повышается разность заряда на клеточных мембранах. Действие НИЛИ также может сопровождаться гиперплазией внутриклеточных органелл, имитирующих функции этих клеток.

Сложные внутриклеточные преобразования невозможны без участия генетического аппарата клетки. В настоящее время экспериментально доказано, что НИЛИ влияет на генетический аппарат клетки без грубых структурных нарушений хромосом (мутаций) путём модификаций отдельных генов, т.е. действие НИЛИ на клеточный геном носит модифицирующий характер, проявляющийся активацией или ингибированием отдельных генных локусов и не приводящий к появлению нарушений в молекуле ДНК.

Основные физические процессы, происходящие в коже, слизистых и других тканях при поглощении световой энергии, сводятся к проявлению внутреннего фотоэффекта, электрической диссоциации молекул и различных комплексов.

2. Биологические аспекты действия лазерного излучения

Разнообразные биологические эффекты, проявляющиеся при действии НИЛИ на молекулярном, клеточном, тканевом, органном и организменном уровнях обуславливают также широкий диапазон медицинских эффектов: противоотечным, противовоспалительным,

аналгезирующим, денсибилизирующим, гипохолестеринонемическим, бактерицидным, бактериостатическим, иммуномоделирую-щим и др. (Петраков К.А., Тимофеев СВ. 1994 г.).

Как показывает практика, недостаточная экспериментально-теоретическая обоснованность способов лазеротерапии имеет в отдельных случаях, наряду с положительным эффектом, и отрада-тельное побочное действие. Для получения прогнозируемого клинического эффекта лазеротерапии необходимо учитывать отдельные результаты лечения. Зачастую следует остановить свой выбор на более безопасном и простом способе лазеротерапии, действие которого хорошо изучено и подтверждено экспериментальными исследованиями^ Тимофеев СВ., 2000 г.).

Противовоспалительное действие проявляется в:

— активизации микроциркуляции;

— изменении уровня простагландинов;

— выравнивании осмотического давления;

— снижении отечности тканей. Аналгезирующее действие проявляется в:

— повышении уровня эндорфинов;

— активизации метаболизма невронов;

— повышении порога болевой чувствительности.

В настоящее время существует множество способов и вариантов в проведении лазеротерапии, что создаёт определённые трудности при выборе и рациональной комбинации с другими методами лечения.

Способы проведения лазеротерапии разделяют в зависимости:

От мощности излучения: высокоинтенсивное и низкоинтенсивное (терапевтическое);

От точек приложения (непосредственное воздействие на органы и ткани, фотодинамическая терапия, применение облученных инфузионных жидкостей и медикаментов);

От способа доставки лазерного излучения к тканям и органам пациентов (дистанционный, контактный, через жидкую среду);

В комбинации с другими физиотерапевтическими факторами (магнитотерапией, ультразвуком и др.);

Прочее (лазерный пластырь, лазерные таблетки).

Нами доказано, что выраженность биоэффектов под влиянием НИЛИ гораздо больше зависит от точек приложения, чем от способа

доставки НИЛИ. Для лечения патологии опорно-двигательной системы и травматических повреждений широко используется красное и инфракрасное излучение.

3. Методика лазерной терапии у животных больных остеоартрозом

Поскольку остеоартроз — заболевание, сопровождающееся дистрофическими изменениями суставного хряща в эпифизах сочленяющихся костей, основной задачей лазерной терапии должно быть обезболивание, усиление трофики и оксигенации тканей пораженных суставов за счет активизации макроциркуляции, а также стимуляция восстановительных процессов, позволяющих нормализовать функцию сустава. При применении сканирующего инфракрасного лазерного излучения на область крупных суставов у животных, страдающих коксартрозом, гонортрозом, артрозом суставов конечностей отмечается снижение болевого синдрома и увеличение объема движения в пораженном суставе.

В настоящее время не существует единой, общепринятой, методики лечения остеоартроза лазерным излучением. До сих пор нет единого мнения в выборе оптимального режима облучения (мощности излучения, плотности потока излучения, экспозиции, количества и регулярности сеансов). Отличия в методах лечения остеоартроза при помощи лазерной терапии, описанные в доступной литературе, объясняются использованием разных типов лазерных аппаратов, наличием у больных животных сопутствующих заболеваний и, наконец, собственными клинико-теоретическими соображениями лечащих врачей. В основном лазерная терапия применяется как самостоятельный лечебный фактор, но мы получили положительные экспериментальные и клинические данные о сочетании лазеротерапии с другими физиотерапевтическими факторами, в частности с магнитотерапией и ультразвуком при лечении животных больных остеоартрозом.

При использовании лазерной терапии в лечении остеоартрозов надо учитывать тот факт, что лазерный свет воздействует на суставной хрящ и синовиальную мембрану — основной материальный субстрат, на котором манифестируют деструктивно-дистрофический и воспалительный процессы в суставе.

— Действие лазера на коленный сустав в условиях травматического повреждения стимулирует биосинтез хондроцитами макромолекул матрикса. Облучаются болевые зоны в области суставов методом медленного сканирования (мощность излучения 4 мВт, длительность сеанса 5-8 мин, количество процедур 8-12).

— Лазерная терапия животных больных остеоартрозом конечностей может проводиться методом точечной акупунктуры лазером красного спектра. Облучается 6 или 10 точек в проекции суставной щели (на каждую точку 2 мин, суммарное время — не более 20 мин). Возможно проведение комбинированного облучения лазером синей и красной области спектров, а также поочередное раздельное воздействие лазером синей области спектра (Д=441,6 нм), а затем красной (Д = 632,8 нм) по 10 мин (6 точек в области патологического очага, а 4 точки — проекция на иммунокомпетентные органы).

— При патологии тазобедренного сустава наряду с лазеротерапией (длина волны 0,6328 мкм, мощность 120 мВт/см") при воздействии на рефлексогенные параартикулярные зоны (суммарная экспозиция 25-30 мин, длительность курса 20 дней), возможно применение импульсной магнитотерапии. Сочетание данных методов может быть использовано при лечении больных остеоартрозом с сопутствующими заболеваниями: глаукомой, ишемической болезнью сердца и пневмосклерозом.

Необходимо учитывать, что действие гелий-неонового лазера «ГНЛ» (длина волны 0,63 мкм, режим 0,5 мВт/см2 с экспозицией’ 10 мин и 15 мВт/см2, с экспозицией 2 мин) на растущую костную ткань у мелких домашних животных разного возраста неоднозначно. Так, у молодых животных возможно снижение темпов аппозиционного роста, у половозрелых и старых — усиление данного процесса.

Расчет дозировок лазерного излучения

Средняя мощность

Излучения по индикатору

Мощности — Р, 1 мВт = 0,001 ВТ

Экспозиция (время

Облучения) — Т,с

Суммарная доза

Энергии СДЭ, Р*Т, мДж

Артриты, артрозы

Область лазерного облучения

Мощность (мВт)

Плечевой сустав

Локтевой сустав

Лучезапястный сустав

Тазобедренный

Коленный

Мелкие суставы передних конечностей (до 10 на один сеанс)

Мелкие суставы задних конечностей (до 10 на один сеанс)

Облучаемая зона должна быть освобождена от каких-либо повязок, шерстный покров должен быть чистым. При лечении облучающую головку устанавливают или медленно перемещают над поверхностью тела животного. Между головкой излучателя и обрабатываемой поверхностью поддерживают зазор 0,3-1,5 см. Рекомендуется использовать магнитную насадку. Перед каждой процедурой и после нее необходимо протереть рабочую поверхность излучателя (или насадки) тампоном, смоченным 70%-ным спиртом или другим антисептическим раствором.

5. Меры безопасности при работе с лазерами Запрещается:

— допускать к работе с лазерными аппаратами неподготовленных лиц;

— разбирать блоки питания;

— оставлять аппарат включенным без присмотра;

— направлять излучатель в область глаза или на зеркальную поверхность;

— использовать аппарат с механическими повреждениями. Рекомендуется:

— при работе с аппаратом пользоваться защитными очками с сине-зелеными стеклами;

— включать излучение только после установки излучателя на пораженную область тела животного.

Противопоказания:

— заболевания крови с преимущественным поражением свертывающей системы (гемофилия),

— декомпенсированные состояния сердечно-сосудистой системы,

— несостоятельность адаптивной системы (отсутствие адекватного ответа на энергетическое воздействие), глубокий склероз, тяжелые декомпесации в сосудистой системе.

Широкий диапазон спектров излучения и вариабильность энергетического потока, как в количественном, так и резонансном отношении до минимума сводит перечень противопоказаний.

Практические навыки работы с аппаратом, точность дозирования позволяют применять лазеротерапию в самых критических состояниях, как единственный, еще возможный метод лечения — энергетической поддержки. Существование противопоказаний не всегда является подтверждением запрета использования метода вследствие отрицательного его влияния, нередко противопоказания созданы в силу отсутствия опыта применения данного фактора у аналогичной группы больных. Энергетическая поддержка жизнеобеспечения ни у одной группы больных по существу не может явиться отрицательной. Все дело в дозе подводимой энергии и способности организма ее использовать. Только знание механизма действия различных спектров излучения, постоянный опыт работы с лазерными излучателями обеспечит эффективность применения и безопасность для больного животного.

ЛАЗЕРНАЯ НИЗКОИНТЕНСИВНАЯ ТЕРАПИЯ

На сегодня ситуацию в лазерной медицине можно охарактеризовать как обогатившуюся новыми тенденциями. Если залезть в ИНТЕРНЕТ, то по лазерной медицине выскочит более 27 000 ссылок, а если сюда присовокупить работы, выполненные ранее в СССР и России-СНГ в течение 30 лет, то число публикаций уверенно превзойдет 30 000. Еще сравнительно недавно подавляющее большинство работ было посвящено лазерной хирургии. Сегодня уже более половины всех публикаций связано с проблемами лазерной терапии. Что же изменилось? Прежде всего - повысился уровень понимания механизмов воздействия низкоинтенсивного оптического излучения (НОИ) на живые организмы.

Напомним: мы подразделяем лечебное воздействие лазерного излучения на хирургическое и терапевтическое. Терапевтическое, в отличие от хирургического, представляет собой управляющее , а не деструктивное , воздействие. Это значит, что после воздействия биообъект остается живым. Более того, если задача управления объектами в живом организме, поставленная как основная при лазерной терапии, решается правильно, то биообъект становится после воздействия как бы «лучше, чем был» - в нем подавляются патологические процессы и стимулируются естественные, поддерживающие гомеостаз. Заметим, что для НОИ имеется естественная «точка отсчета» - спектр солнечного света (см. рис 21.1).



Рис. 21.1.

Зависимости спектральной плотности солнечного света от длины волны:

1 - за пределами атмосферы; 2 - излучение абсолютно черного тела с температурой 5900 0 К; 3 - на поверхности Земли на средних широтах (высота 30 0 над горизонтом).

Этот «репер» уже рассматривался выше (Л1). Интегральная по спектру интенсивность солнечного излучения в свободном пространстве на расстоянии, равном среднему расстоянию между Землей и солнцем, составляет 1353 Вт/м 2 . На пути к поверхности Земли излучение активно фильтруется земной атмосферой. Поглощение в атмосфере в основном обусловлено молекулами паров воды (Н 2 О), углекислого газа (СО 2), озона (О 3), окиси азота (N 2 O), окиси углерода (СО), метана (СН 4) и кислорода (О 2).

Живые организмы в процессе эволюции многократно адаптировались к изменяющейся «электромагнитной обстановке». На поверхности Земли обитает около полутора миллионов видов живых организмов, и все они существуют благодаря солнечному свету.

В ХХ веке ситуация с «электромагнитной средой» на Земле оказалась весьма отличной от той, с которой организмы сталкивались в течение многих миллионов лет эволюции. Появилось множество антропогенных излучений. В оптическом (УФИКОП) диапазоне выше всех по спектральной плотности излучения располагаются лазерные аппараты. Зависимость спектральной плотности излучения медицинских лазеров от длины волны в сравнении с аналогичной зависимостью для излучения Солнца и некоторых других источников света представлена на рис 21.2.


Рис. 21.2.

Спектр излучения различных источников света:

1 – солнечный свет на поверхности Земли в средних широтах; 2 – максимальный оценочный уровень естественного фона; 3 – неон-гелиевый лазер непрерывного режима, мощность 15 мВт, длина волны 633 нм, площадь пятна 1 см 2 ; 4 – суперлюминесцентный светодиод, интегральная мощность 5 мВт, максимум интенсивности 660 нм; 5 – полупроводниковый лазер квазинепрерывного режима, 5 мВт, 780 нм; 6 – полупроводниковый лазер импульсно-периодического режима, мощность в импульсе 4 Вт, 890 нм; 7 – бытовая лампа накаливания 60 Вт, расстояние 60 см.

Сплошная линия, перекрывающая весь спектральный диапазон от УФ до ИК- областей, демонстрирует «сглаженный» уровень солнечного света на средних широтах в ясный летний день. По отношению к естественному уровню солнечного света спектральные плотности применяемых в медицине лазерных и светодиодных аппаратов сильно различаются. Например, спектральный максимум светодиодного облучателя (кривая 4, см. ниже) в соответствующем спектральном интервале находится на уровне излучения Солнца, а аналогичная кривая ИК лазерного аппарата на базе полупроводникового лазера квазинепрерывного режима (кривая 5) достигает максимального оценочного уровня естественного фона (кривая 2). В то же время максимумы кривых для импульсного полупроводникового лазера (кривая 6) и особенно для неон-гелиевого (кривая 3) перекрывают эти значения на несколько порядков. При этом максимумы спектральной плотности источников отражают не столько энергетические характеристики света, сколько степень его монохроматичности. Так, выходная мощность неон-гелиевого лазера превышает мощность красного светодиода всего в 3 раза, а по максимуму спектральной плотности это превышение составляет более 10 5 (!).

Повышенный в сравнении с естественным фоном уровень «искусственного» ЭМИ соответствует появлению на поверхности Земли дополнительной электромагнитной энергии, величина которой непрерывно возрастает. Эта энергия в принципе может (да, пожалуй, и должна) «заинтересовать» биологические системы либо в плане выработки общего адаптационного синдрома (типа стрессовой реакции), либо адаптироваться к воздействию подобно фотосинтезу. Прошедший век, очевидно, представляет собой слишком маленький срок для реализации столь масштабной программы, но задумываться над проблемой необходимо уже сейчас.

Низкоинтенсивное оптическое излучение, в первую очередь лазерное, нашло широчайшее применение в медицине. «Трудно назвать заболевание, в лечении которого не было бы апробировано лазерное воздействие. Простое перечисление форм и вариантов патологии, в лечении которых показана эффективность лазерного луча, займет много места, а перечень заболеваний, при которых лечебный эффект НОИ не вызывает сомнений, будет достаточно представительным» .

Имеется много работ по изучению механизмов действия НОИ на биологические объекты разного уровня организации - от молекулярного до организменного и надорганизменного. Однако нет до сих пор общепринятой концепции механизма действия НОИ на живые организмы. Есть несколько альтернативных точек зрения, объясняющих частные явления или эксперименты.

Почему мы говорим не НИЛИ (низкоинтенсивное лазерное излучение) а НОИ (низкоинтенсивное оптическое излучение)? Потому что из основных характеристик лазерного излучения основное значение имеют длина волны и спектральная плотность. Когерентность и поляризация лазерного излучения не влияют в столь сильной степени на биостимуляционный эффект, хотя утверждать, что они вообще не имеют значения, нет достаточных оснований.

Среди проблем фототерапии, находящихся в центре внимания как медиков и биологов, так и разработчиков аппаратуры, главная - выяснение механизмов действия НОИ на биообъекты. Эта проблема является центральной в течение вот уже почти 50 лет развития НИЛТ. Пока она далека от разрешения, хотя сам факт резкого повышения интереса к НИЛТ в последние 10 лет говорит о положительных сдвигах в ее изучении. В среде медиков и биологов сформировалось представление о специфичности и неспецифичности взаимодействия НОИ с живыми организмами. Именно, специфическим называют взаимодействие света и БО, связанное с интенсивным молекулярным поглощением света, т.е. таким, для которого установлены «специфические» фотоакцепторы, осуществляющие первичное поглощение света и запускающие затем ряд «специфических» фотохимических реакций. Типичный пример такого взаимодействия - фотосинтез. Соответственно, неспецифическим взаимодействие считается тогда, когда биологический отклик велик, а поглощение света настолько мало, что однозначно установить первичный акцептор не представляется возможным. Именно этот аспект - установление первичных акцепторов при отсутствии сильного поглощения - и вызывает наиболее ожесточенные дискуссии, поскольку превращение неспецифического взаимодействия в специфическое открывает путь к практическому применению НИЛТ не на эмпирической, а на строго научной основе.

Феномен действия НОИ исследуется на различных уровнях. Имеются в виду иерархические уровни построения живой системы: молекулярный, органоидный, клеточный, тканевый, организменный, надорганизменный. На любом из этих уровней встречаются свои проблемы, но наибольшие затруднения связаны с переходами с одного уровня на другой.

Если прежде всего следует учитывать спектральную плотность и длину волны, то это значит, что аналогичное биологическое действие может быть обеспечено как лазерными, так и некогерентными источниками (прежде всего, светодиодами) при условии совпадения указанных характеристик.

Спектральный диапазон, в котором работают лазерные терапевтические аппараты, соответствует «окну прозрачности» биотканей (600-1200 нм) и находится далеко от характерных полос электронного поглощения всех известных хромофоров организма (исключение - пигменты глаза, поглощающие на линиях 633 и 660 нм). Следовательно, ни о какой значительной поглощенной энергии не может быть и речи.

Тем не менее, под действием НОИ наблюдается целый ряд клинических эффектов, которые в течение длительного времени служат основой НИЛТ. Если попытаться обобщить все эти эффекты, то можно сформулировать неспецифическое интегральное действие на клеточном уровне: лазерное излучение воздействует на функциональную активность клеток. При этом оно не меняет самой функции, но может усиливать ее интенсивность. Т.е., эритроцит как пролезал через капилляры, отдавая через свою оболочку и стенки капилляров кислород, так и продолжает этот делать, но он после облучения может это делать лучше. Фагоцит как отлавливал и уничтожал болезнетворных гостей, так и продолжает это делать, но уже с другой скоростью . Иначе говоря, под действием НОИ изменяется скорость процессов клеточного метаболизма. На физико-химическом языке это означает, что потенциальные барьеры ключевых биологических реакций меняют свою высоту и ширину. В частности, НОИ может сильно повлиять на мембранный потенциал. С ростом напряженности поля мембраны активационные барьеры ферментативных реакций, завязанных на мембранный транспорт, снижаются, обеспечивая тем самым экспоненциальный рост скорости ферментативных реакций.

Ключевым понятием при рассмотрении действия НОИ является спектр биологического действия (СБД) . Определение СБД уже давалось в курсе ОВФПБО. Ввиду важности вспомним его еще раз.

Если в результате поглощения света возникает некоторый новый продукт, то временная зависимость концентрации этого продукта c(t) подчиняется уравнению:

(21.1)

где η - квантовая эффективность, σ - сечение поглощения света в пересчете на единичный квант, Ι(t) - интенсивность падающего света, ħω - энергияпоглощаемого фотона.

Очевидно, означает число поглощенных фотонов. Если ввести в рассмотрение функцию , имеющую смысл скорости продукции биомолекул данного вида в пересчете на один фотон с длиной волны λ, то она и является количественным выражением СБД. Качественно же СБД определяется как зависимость относительной эффективности изучаемого фотобиологического эффекта от длины волны. СБД, тем самым, есть та часть спектра поглощения, которая отвечает за определенный фотобиологический эффект. На молекулярном уровне можно рассматривать СБД в пересчете на единичный квант. Но СБД интересен тем, что его можно рассматривать на любом системном уровне. В самом деле, все излучение, поглощаемое биообъектом, формирует его спектр поглощения (СП). Но спектр биологического действия формируется только теми молекулами, которые инициируют данный эффект. Поэтому естественно называть молекулы, ответственные за СБД, дифференциальными молекулами (в отличие от фоновых молекул, ответственных за весь СП). Часто СБД рассматривается как аддитивная часть СП. Но такое рассмотрение можно признать корректным только в том случае, когда имеется рецепт выделения СБД из СП (подобно тому, как выделяется при сильном зашумлении сигнал из шума за счет различия корреляционных функций). Если же шум носит модуляционный характер, т.е. присутствует не как прибавляемая к сигналу величина, а как множитель , так что амплитуда шума растет при росте сигнала, то выделение полезной информации резко осложняется. Аддитивность СБД по отношению к СП можно рассматривать только в случае линейности взаимодействия лазерного излучения с биосредой, или при заведомо пренебрежимо малом взаимодействии дифференциальных молекул друг с другом. Это в очень многих случаях не представляется очевидным, поскольку, как правило, всякий фотобиологический эффект носит пороговый характер, т.е. проявляет нелинейность. Поэтому для регистрации СБД необходим методический копромисс, включающий переход с одного системного уровня на другой. Именно,

1) подбор стандартного и, по возможности, хорошо изученного биообъекта со стабильными и воспроизводимыми характеристиками;

2) выбор параметра Р, характеризующего биообъект на более высоком (в данном случае клеточном) уровне, с тем, чтобы Р был линейно связан с вероятностью микрособытия (первичного акта возбуждения биомолекулы), т.е. его измерение не вносило бы возмущений в клетку и позволяло бы реализовывать приемлемую точность;

3) наличие источника излучения, перестраиваемого в заданном диапазоне спектра с достаточной монохроматичностью и заданной интенсивностью, обеспечивающей достижение требуемого эффекта.

Одновременное обеспечение этих условий представляет большие практические затруднения. Поэтому приводимые в литературе сведения об измерении СБД почти все несостоятельны с методической точки зрения. Исключение составляют работы, проводимые в ФИАН (С.Д. Захаров с сотр.) совместно с Онкологическим центром РАМН им. Н.Н. Блохина (А.В. Иванов с сотр.).

Исследование спектров биологического действия - это путь от неспецифического действия света к специфическому. Основной «камень преткновения» при поиске первичного фотоакцептора («проблема первичного фотоакцептора») - это отсутствие заметного поглощения НОИ для всех используемых в фототерапии длин волн. Поэтому в рамках традиционной фотобиологии лазерные биостимуляционные эффекты не находят удовлетворительного объяснения. Что же до «нетрадиционной» фотобиологии, то здесь на первый план выдвигается вода (внутриклеточная, внутритканевая и т.д.) как универсальный неспецифический фотоакцептор, предполагающий наличие первичных фотофизических процессов. Такая концепция предполагает, что первичным фотоакцептором (на молекулярном уровне) является растворенный молекулярный кислород, который при поглощении кванта света переходит в синглетное состояние. Тем самым специфичность на молекулярном уровне сочетается с неспецифичностью на последующих уровнях системной иерархии. Переход 3 О 2 → 1 О 2 происходит на длинах волн 1270, 1060, 760, 633, 570, 480 нм, причем для изолированной молекулы О 2 этот переход запрещен. Однако в водной среде образование синглетного кислорода возможно, и это прежде всего проявляется в спектре возбуждения клеточной реакции эритроцитов (как изменение упругости мембраны). Максимум этого эффекта соответствует 1270-1260 нм (полоса поглощения молекулярного кислорода), а форма спектра детально совпадает с линией перехода из основного в первое возбужденное состояние молекулярного кислорода (3 Σ g → 1 Δ g).

Синглетный кислород играет ключевую роль практически во всех процессах клеточного метаболизма, причем для изменения характера ферментативных реакций требуется очень малое изменение концентрации 1 О 2 (в пределах порядка). Эксперименты последних лет (в частности, Г. Клима ) показали, что скорость клеточного роста для важнейших клеточных культур (лейкоциты, лимфоциты, фибробласты, злокачественные клетки и др.) существенно изменяется в зависимости от плотности энергии (в пределах от 10 до 500 Дж/см 2), режима и длины волны падающего излучения. Переход с молекулярного уровня на клеточный осуществляется через изменение структуры водной матрицы. Тушение синглетного кислорода может происходить, как известно, либо химическим, либо физическим путем. В отсутствие сенсибилизаторов (см. ниже, гл. 24) можно считать, что преобладает физическое тушение (в клетках хорошо развита защита от химического тушения). При физической дезактивации молекул 1 О 2 на колебательные подуровни окружающих молекул передается энергия порядка 1 эВ. Этой энергии достаточно для разрыва водородных связей, создания ионных или ориентационных эффектов. Средняя колебательная энергия на степень свободы при физиологической температуре (~ 310 К) составляет ~ 0,01 эВ, поэтому локальное высвобождение энергии 1 эВ приводит к сильному возмущению структуры ближнего окружения растворенной молекулы 1 О 2 .Если предположить, что среда в пределах молекулярных масштабов расстояний подчиняется законам теплопроводности (что, вообще говоря, неверно!), то в результате решения уравнения для сферически симметричного случая получаем:

где Q - мгновенно высвобождаемая в начальный момент энергия, D - коэффициент теплопроводности, H - теплоемкость, ρ - плотность вещества. Если подставить сюда данные для воды и принять Q = 1 эВ, то за время порядка 10 -11 с выделение такой энергии приведет к разогреву до 100 0 С области диаметром ~10Å (10 -7 см). Эта оценка, заведомо неправомерная на малых расстояниях, может рассматриваться как нижний предел пространственно-временного масштаба для своеобразного микрогидравлического удара. В термодинамически устойчивом состоянии единичное возмущение на расстояниях ~10 -7 см не может играть заметной роли и должно с гарантией разрушаться тепловыми флуктуациями. Однако биожидкости нельзя, вообще говоря, рассматривать как термодинамически равновесные структуры. Для моделирования процессов в биожидкостях следует использовать метастабильное состояние растворов биомолекул, возникающее в начальных фазах процесса растворения. Особенность таких метастабильных состояний - высокая чувствительность к локальным возмущениям.

Оценим объем сферы возмущения, не прибегая к уравнению теплопроводности. Полагая, что средняя колебательная энергия на одну молекулу водной матрицы составляет 0,01 эВ, получим, что энергия дезактивации 1 О 2 в 1 эВ равномерно распределяется между 100 молекулами воды. Внутриклеточная или внутритканевая вода представляют собой структуры, близкие к жидкому кристаллу (одномерный дальний порядок), с расстоянием между молекулами ~ 2,7 Å. При «сворачивании» таких частиц в шаровой слой 100 молекул как раз помещаются внутри сферы радиусом ~ 10 Å., что качественно совпадает с «антиоценкой» по теплопроводности.

Изменение структуры водной матрицы должно отражаться в изменении показателя преломления раствора биожидкости, что наблюдалось экспериментально при облучении растворов биожидкостей излучением Не-Nе лазера (λ = 632,8 нм).

Отметим, что динамические возбуждения жидкокристаллической воды могут при определенных условиях приводить к возникновению коллективных динамических состояний (аналогично превышению порога генерации в лазере, где обозначается лавинообразное возрастание преобладания индуцированного излучения). Иначе говоря, динамика воды становится когерентной , так что структура жидкости в объеме некоторого кластера становится доминирующей во всем объеме раствора. По проведенным оценкам, в 1 см 3 воды находится в среднем 10 16 -10 17 кластеров, из которых только в 10 10 -10 11 возникают молекулы фотовозбужденного синглетного кислорода (~ 10 -6 от общего числа). При релаксации этих кластеров формируются зародыши новой структурной фазы. Синергетика при росте зародышей дает изменение Δn 0 , в 10 6 раз большее, чем соответствовало бы переориентации отдельного кластера. Это как раз наблюдалось экспериментально (С.Д. Захаров с сотр., 1989 ): поглощение света от лазера в пределах 10 -2 -10 -9 Дж вызывало такое изменение показателя преломления плазмы крови, которое соответствовало бы «охлаждению» всего объема среды на ~ 6 Дж (!). После Захарова аналогичные по характеру зависимости наблюдались в растворах белков, липидов, гликопротеинов и др. Общим для всех этих веществ ингредиентом является вода, а это косвенно подтверждает тот вывод, что вода является универсальным неспецифическим акцептором для всех видов электромагнитных излучений, «специфическим» акцептором для которого является растворенный газ из воздуха (О 2 , N 2 , CO 2 , NO и др.). Тем самым первичные процессы с участием газов воздуха («дыхательная цепь») приводят к вторичным процессам, связанным с переориентацией водной матрицы.

Вторичные процессы иначе называют темновыми, имея в виду то, что многие реакции на клеточном уровне, вызванные облучением, происходят достаточно долго после прекращения облучения. Например, синтез ДНК и РНК после 10-секундного облучения наблюдается через 1,5 часа. Обилие возможных вторичных механизмов на сегодня не дает построить более-менее убедительный «мостик» между клеточным и тканевым уровнем, подобный «когерентности» ориентации водной матрицы. Тем не менее, накопление данных говорит в пользу преобладания окислительно-восстановительных процессов.

При анализе процессов на тканевом уровне на первый план выходят характеристики падающего излучения (не только длина волны и доза, но когерентность, поляризация, пространственное распределение мощности). Особенные споры вызывает роль когерентности.

В пользу необходимости учета когерентности говорит то, что при рассеянии лазерного излучения от биообъекта всегда наблюдается спекл-структура, несущая информацию об объекте (подробнее см. ниже, гл. 27) и позволяющая добиваться при определенных условиях терапевтического эффекта. Спекл-структура наблюдается только при достаточно высокой степени когерентности падающего излучения. Значит, пренебрегать когерентностью нельзя, тем более, что для различных типов лазерных источников степень когерентности может различаться достаточно сильно (см. рис. 21.2, где спектральная плотность для неон-гелиевого лазера многократно превосходит таковую для полупроводникового лазера из-за более высокой монохроматичности; но монохроматичность - прямое следствие временной когерентности).

Противники учета когерентности приводят в свою пользу тот факт, что когерентность практически сразу разрушается при взаимодействии лазерного излучения с оптически анизотропными биотканями. Многочисленные эксперименты на клеточном и субклеточном уровнях показывают, что аналогичные эффекты наблюдаются как при использовании лазера, так и некогерентных источников (лампы накаливания, снабженной светофильтром).

По-видимому, истина, как это обычно бывает, спрятана где-то между полярными точками зрения. В процессе переизлучения внутри ткани когерентность, действительно, разрушается. Но при этом формируются зоны с высокой степенью пространственной неоднородности излучения. Степень возникающей пространственной неоднородности прямо связана со степенью когерентности падающего излучения. Высокая плотность мощности вызывает локальные нелинейные эффекты на уровне первичных процессов. На клеточном уровне эта нелинейность неминуемо вызовет соответствующую неспецифическую реакцию. Тем самым:

1) биоткань воздействует на излучение, разрушая когерентность;

2) излучение воздействует на биоткань, меняя ее характеристики в соответствии со степенью когерентности падающего излучения.

Итак, когерентность не исчезает в тканях бесследно, но дает начало каскаду процессов, от которых зависит эффект на тканевом уровне. Детальное изучение пространственных и временных характеристик этих процессов позволит однозначно установить роль когерентности в конкретных случаях (см. литературу к Л. 27).

Дозовая зависимость эффекта на тканевом уровне также может принимать специфический характер. Выделяют три дозовых порога:

1) минимальная доза, вызывающая изменения на клеточном уровне;

2) оптимальная доза, вызывающая а) усиление морфообразовательных процессов, б) ускорение пролиферации, в) дифференциацию клеток;

3) предельная доза, при которой стимуляция сменяется угнетением пролиферационной активности.

Количественное выражение дозовых порогов зависит от многих параметров (характеристик лазера, функционального состояния ткани, общего состояния организма). В целом легко установить системную связь между сложностью выяснения механизмов и уровнем организации, на котором мы желаем устанавливать какие-либо закономерности: чем выше поднимаемся по иерархии, тем заметнее роль эмпирики. Выделение первичного фотоакцептора на молекулярном уровне позволяет построить, хоть и с немалыми трудностями, картину вторичных эффектов на субклеточном и клеточном уровнях. Переход с клеточного на тканевый уровень уже гораздо сложнее, поэтому рекомендации к выбору дозы уже звучат не на уровне записи решений тех или иных уравнений, а на уровне словесного описания возможных процессов. Переход с тканевого на организменный уровень и вообще грешит значительной долей шаманства: делай, как я говорю, иначе будет плохо. Но, чтобы, с одной стороны, не уподобляться первобытным священнослужителям, а с другой - не строить из себя глубокомысленного теоретика, всю жизнь рассчитывающего не то, что нужно для практики, а то, что ему самому нравится, попробуем обобщить задачу на надорганизменный уровень.

Все живые системы являются открытыми неравновесными системами, работающими на балансе вещества и энергии при обмене с окружающей средой. Живая система постоянно самооорганизуется, т.е. снижает свою энтропию. Интенсивность снижения энтропии прямо связана с количеством поступающей в систему информации. С этой точки зрения низкоинтенсивное оптическое излучение выступает в роли внешнего сигнала (информация), который скачком переводит триггер (энергоинформационное состояние патологического очага с преобладанием энтропии) из одного стационарного состояния в другое. Перевод организма как системы из одного состояния в другое неразрывно связан с биоритмами. Диапазон биоритмов простирается от 10 - 15 с (время одного периода световой волны, имеющее тот же порядок, что и время молекулярных электронных переходов) до ~ 7·10 10 с (средняя продолжительность жизни), составляя, тем самым, около 10 25 Гц по шкале частот. Задача оптимизации воздействия на организменном уровне - привести воздействие в соответствие с биоритмами.

Касательно низкочастотных биоритмов, измеряемых днями, неделями, месяцами, годами, оптимизация воздействия означает проведение сеансов облучения в те моменты, когда это способствует упорядочению естественных процессов и сбою патологических, являющих собой увеличение энтропии организма как системы. Например, лечение хронических заболеваний, обостряющихся в соответствии с сезонами (весна, осень) предписывает проведение курсов НИЛТ в начале соответствующего сезона, еще до того, как начинается очередное обострение болезни. Практика показывает, что эффективность лечения при этом повышается, причем это относится не только к собственно фототерапии, но и к сопутствующим медикаментозным и другим методикам лечения. Предупреждение отдаленных последствий радикального лечения также рекомендует периодическое повторение курсов НИЛТ в соответствии с временными характеристиками патологических процессов (подробнее см. Л.23). Иногда такой подход к НИЛТ на организменном и надорганизменном уровне называют хронобиологическим.

Применительно к высокочастотным биоритмам (в пределах одного сеанса облучения) можно отметить следующие особенности лазерной терапии.

Высокая собственная частота воздействующего электромагнитного излучения, соответствующая периодическим процессам в биомолекулах на уровне электронных переходов, предоставляет богатейшие возможности для модуляции воздействия. Кроме того, возможно формирование информационного блока воздействия с чрезвычайно большой емкостью. В рамках такого блока возможно создание многочастотного воздействия с заданным спектром частот модуляции. Наконец, что особенно важно с системной точки зрения, возможно введение биосинхронизации в само воздействие за счет обратной связи через биообъект.

Организм как целое имеет более низкие частоты биоритмов (доли герц), его системы и органы - более высокие (единицы и десятки герц). Спектр биоритмов носит индивидуальный характер и может рассматриваться как колебательный «портрет» конкретной личности. Многочастотное биосинхронизованное лазерное воздействие может исключительно эффективно управлять всеми реакциями организма, в том числе и защитными реакциями на внешние неблагоприятные воздействия самой различной природы.

Литература к лекции 21.

1. Действие электромагнитного излучения на биологические объекты и лазерная медицина. Сб. под ред акад. В.И. Ильичева. - Владивосток: ДВО АН СССР, 1989, 236 с.

2. В.М. Чудновский, Г.Н. Леонова, С.А. Скопинов с сотр. Биологические модели и физические механизмы лазерной терапии. - Владивосток: Дальнаука, 2002, 157 с.

МЕХАНИЗМЫ БИОЛОГИЧЕСКИХ ЭФФЕКТОВ НИЗКОИНТЕНСИВНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Биологическое (терапевтическое) действие низкоинтенсивного лазерного излучения (когерентного, монохроматического и поляризованного света) может быть условно подразделено на три основные категории:

1) первичные эффекты (изменение энергетики электронных уровней молекул живого вещества, стереохимическая перестройка молекул, локальные термодинамические нарушения, возникновение градиентов концентрации внутриклеточных ионов в цитозоле);

2) вторичные эффекты (фотореактивация, стимуляция или угнетение биопроцессов, изменение функционального состояния как отдельных систем биологической клетки, так и организма в целом);

3) эффекты последействия (цитопатический эффект, образование токсических продуктов тканевого обмена, эффекты отклика системы нейрогуморального регулирования и др.).

Все это многообразие эффектов в тканях определяет широчайший спектр адаптивных и саногенетических реакций организма на лазерное воздействие. Ранее было показано, что начальным пусковым моментом биологического действия НИЛИ является не фотобиологическая реакция как таковая, а локальный нагрев (более корректно – локальное термодинамическое нарушение), и мы имеем дело в данном случае с термодинамическим, а не с фотобиологическим эффектом. Это объясняет многие, если не все, известные явления в этой области биологии и медицины.

Нарушение термодинамического равновесия вызывает высвобождение ионов кальция из внутриклеточного депо, распространение волны повышенной концентрации Ca2+ в цитозоле клетки, запускающей кальций-зависимые процессы. После этого развиваются вторичные эффекты, представляющие собой комплекс адаптационных и компенсационных реакций , возникающих в тканях, органах и целостном живом организме, среди которых выделяют следующие:

1) активизацию метаболизма клеток и повышение их функциональной активности;

2) стимуляцию репаративных процессов;

3) противовоспалительное действие;

4) активизацию микроциркуляции крови и повышение уровня трофического обеспечения тканей;

5) аналгезирующее действие;

6) иммуностимулирующее действие;

7) рефлексогенное действие на функциональную активность различных органов и систем.

Необходимо обратить внимание на два важнейших момента. Во-первых, в каждом из перечисленных пунктов априорно задана однонаправленность влияния НИЛИ (стимуляция, активация и др.). Как будет показано ниже, это не совсем так, и лазерное излучение может вызывать прямо противоположные эффекты, что хорошо известно из клинической практики. Во-вторых, все эти процессы – кальций-зависимые. Рассмотрим теперь, как именно происходят представленные физиологические изменения, приведя в качестве примера лишь небольшую часть известных путей их регулирования.

Активизация метаболизма клеток и повышение их функциональной активности происходят в первую очередь вследствие кальций-зависимого повышения редокс-потенциала митохондрий, их функциональной активности и синтеза АТФ.

Стимуляция репаративных процессов зависит от Са2+ на самых различных уровнях. Кроме активизации работы митохондрий при повышении концентрации свободного внутриклеточного кальция активируются протеинкиназы, принимающие участие в образовании мРНК. Также ионы кальция являются аллостерическими ингибиторами мембранно-связанной тиоредоксинредуктазы – фермента, контролирующего сложный процесс синтеза пуриновых дизоксирибонуклеотидов в период активного синтеза ДНК и деления клеток. В физиологии раневого процесса, кроме того, активно участвует основной фактор роста фибробластов (bFGF), синтез которого и активность зависят от концентрации Са2+.

Противовоспалительное действие НИЛИ и его влияние на микроциркуляцию обусловлены, в частности, кальций-зависимым высвобождением медиаторов воспаления – таких как цитокины, – а также кальций-зависимым выделением клетками эндотелия вазодилататора – оксида азота (NO) – предшественника эндотелиального фактора расслабления стенок сосудов (EDRF).

Поскольку кальций-зависимым является экзоцитоз, в частности высвобождение нейромедиаторов из синаптических везикул, процесс нейрогуморальной регуляции полностью контролируется концентрацией Са2+, а следовательно, подвержен и влиянию НИЛИ. Кроме того, известно, что Са2+ является внутриклеточным посредником действия ряда гормонов, в первую очередь медиаторов ЦНС и ВНС, что также предполагает участие эффектов, вызванных лазерным излучением, в нейрогуморальной регуляции.

Взаимодействие нейроэндокринной и иммунной систем изучено мало, однако установлено, что цитокины, в частности ИЛ-1 и ИЛ-2, действуют в обоих направлениях, играя роль модуляторов взаимодействия этих двух систем. НИЛИ может влиять на иммунитет как опосредованно через нейроэндокринную регуляцию, так и непосредственно через иммунокомпетентные клетки (что доказано в экспериментах in vitro). К числу ранних пусковых моментов бласттрансформации лимфоцитов относится кратковременное повышение концентрации свободного внутриклеточного кальция, который активирует протеинкиназу, принимающую участие в образовании мРНК в Т-лимфоцитах, что, в свою очередь, является ключевым моментом лазерной стимуляции Т-лимфоцитов. Воздействие НИЛИ на клетки фибробластов in vitro приводит также к повышенной генерации внутриклеточного эндогенного g-интерферона.

Кроме физиологических реакций, описанных выше, для понимания целостной картины необходимо также знать, каким образом лазерное излучение может влиять на механизмы нейрогуморальной регуляции . НИЛИ рассматривается как неспецифический фактор, действие которого направлено не против возбудителя или симптомов болезни, а на повышение сопротивляемости (жизненности) организма. Это биорегулятор как клеточной биохимической активности, так и физиологических функций организма в целом – нейроэндокринной, эндокринной, сосудистой и иммунной систем.

Данные научных исследований позволяют с полной уверенностью говорить о том, что лазерное излучение не является основным терапевтическим агентом на уровне организма в целом, но как бы устраняет препятствия, дисбаланс в центральной нервной системе, мешающий саногенетической функции мозга. Это осуществляется возможным изменением под действием НИЛИ физиологии тканей как в сторону усиления, так и в сторону угнетения их метаболизма в зависимости от исходного состояния организма и дозы воздействия, что и приводит к затуханию процессов патологического характера, нормализации физиологических реакций и восстановлению регулирующих функций нервной системы. Лазерная терапия при правильном применении позволяет организму восстановить нарушенное системное равновесие.

Рассмотрение ЦНС и ВНС как независимых систем регулирования в последние годы уже перестало устраивать многих исследователей. Находится все больше фактов, подтверждающих их самое тесное взаимодействие. На основе анализа многочисленных данных научных исследований была предложена модель единой регулирующей и поддерживающей гомеостаз системы, названной нейродинамическим генератором (НДГ).

Основная идея модели НДГ заключается в том, что дофаминергический отдел ЦНС и симпатический отдел ВНС, объединенные в единую структуру, названную В.В. Скупченко (1991) фазическим моторно-вегетативным (ФМВ) системокомплексом, тесно взаимодействует с другой, зеркально взаимосодействующей структурой – тоническим моторно-вегетативным (ТМВ) системокомплексом. Представленный механизм функционирует не столько как рефлекторная система реагирования, а как спонтанный нейродинамический генератор, перестраивающий свою работу по принципу самоорганизующихся систем.

Появление фактов, свидетельствующих об одновременном участии одних и тех же структур мозга в обеспечении и соматического, и вегетативного регулирования, воспринимается сложно, поскольку они не укладываются в известные теоретические построения. Однако игнорировать то, что подтверждается повседневной клинической практикой, мы не можем. Такой механизм, обладая определенной нейродинамической подвижностью, не только способен обеспечивать непрерывно меняющуюся адаптивную настройку регуляции всей гаммы энергетических, пластических и метаболических процессов, но управляет, по сути, всей иерархией регулирующих систем от клеточного уровня до центральной нервной системы, включая эндокринные и иммунологические перестройки. В клинической практике первые положительные результаты подобного подхода к механизму нейрогуморальной регуляции были получены в неврологии и при лечении келоидных рубцов.

В норме происходят постоянные переходы из фазического состояния в тоническое и обратно. Стресс вызывает включение фазических (адренергических) механизмов регуляции, как общий адаптационный синдром. При этом как ответная реакция на превалирование дофаминергического влияния запускаются тонические (ГАМК-ергические и холинергические) механизмы регулирования. Последнее обстоятельство осталось за рамками исследований Г. Селье, а является, по сути, важнейшим моментом, объясняющим принцип саморегулирующей роли НДГ. В норме две системы, взаимодействуя, восстанавливают нарушенный баланс.

Многие заболевания представляются нам связанными с превалированием одного из состояний данной регулирующей системы. При длительном, нескомпенсированном влиянии стрессорного фактора происходит сбой в работе НДГ и патологическая фиксация его в одном из состояний, в фазическом, что бывает чаще, или в тонической фазе, как бы переходя в режим постоянной готовности к ответу на раздражение. Таким образом, стресс или постоянное нервное напряжение могут сместить гомеостаз и зафиксировать его патологически либо в фазическом, либо в тоническом состоянии, что и вызывает развитие соответствующих заболеваний, лечение которых должно быть в первую очередь направлено на коррекцию нейродинамического гомеостаза.

Сочетание различных причин (наследственная предрасположенность, определенный конституциональный тип, различные экзогенные и эндогенные факторы и др.) приводит к началу развития какой-либо конкретной патологии у конкретного индивидуума, но причина заболевания общая – устойчивое превалирование одного из состояний НДГ.

Еще раз обращаем внимание на важнейший факт, что не только ЦНС и ВНС регулируют различные процессы на всех уровнях, но и, наоборот, локально действующий внешний фактор, например НИЛИ, может привести к системным сдвигам, устраняя истинную причину заболевания – дисбаланс НДГ, и при локальном действии НИЛИ устранить генерализованную форму заболевания. Это необходимо обязательно учитывать при разработке методик лазерной терапии.

Теперь станов ится понятной возможность разнонаправленного влияния НИЛИ в зависимости от дозы воздействия – стимуляция физиологических процессов или их угнетение. Универсальность действия НИЛИ обусловлена в том числе тем, что в зависимости от дозы лазерным воздействием как стимулируются, так и подавляются пролиферация и раневой процесс.

Чаще всего в методиках используются минимальные, общепринятые дозы лазерного воздействия (1–3 Дж/см2 для непрерывного излучения), но иногда в клинической практике требуется именно условно НЕстимулирующее действие НИЛИ. Сделанные из предложенной ранее модели выводы блестяще подтвердились на практике при обосновании эффективных методик лечения витилиго и болезни Пейрони.

Итак, в биологических эффектах НИЛИ в качестве первичного действующего фактора выступают локальные термодинамические нарушения, вызывающие цепь изменений кальций-зависимых физиологических реакций организма. Причем направленность этих реакций может быть различна, что определяется дозой и локализацией воздействия, а также исходным состоянием самого организма.

Разработанная концепция позволяет не только объяснить практически все уже имеющиеся факты, но и на основе данных представлений сделать выводы как о прогнозировании результатов влияния НИЛИ на физиологические процессы, так и о возможности повышении эффективности лазерной терапии.

Показания и противопоказания к применению НИЛИ

Основное показание – целесообразность применения , в частности:

Болевые синдромы нейрогенного и органического характера;

Нарушение микроциркуляции;

Нарушение иммунного статуса;

Сенсибилизация организма к лекарствам, аллергические проявления;

Заболевания воспалительного характера;

Необходимость стимулирования репаративных и регенеративных процессов в тканях;

Необходимость стимулирования систем регуляции гомеостаза (рефлексотерапия).

Противопоказания:

Сердечно-сосудистые заболевания в фазе декомпенсации;

Нарушение мозгового кровообращения II степени;

Легочная и легочно-сердечная недостаточность в фазе декомпенсации;

Злокачественные новообразования;

Доброкачественные образования со склонностью к прогрессированию;

Заболевания нервной системы с резко повышенной возбудимостью;

Лихорадки невыясненной этиологии;

Заболевания кроветворной системы;

Печеночная и почечная недостаточность в стадии декомпенсации;

Сахарный диабет в стадии декомпенсации;

Гипертиреоз;

Беременность во всех сроках;

Психические заболевания в стадии обострения;

Повышенная чувствительность к светолечению (фотодерматит и фотодерматоз, порфириновая болезнь, дискоидная и системная красная волчанка).

Необходимо заметить, что абсолютных специфических противопоказаний для лазерной терапии нет . Однако в зависимости от состояния пациента, фазы течения заболевания и др. возможны ограничения использования НИЛИ. В некоторых областях медицины – онкологии, психиатрии, эндокринологии, фтизиатрии и педиатрии – строго обязательно, чтобы лазерная терапия назначалась и проводилась специалистом или при его непосредственном участии.