Генная инженерия

Материал из Википедии - свободной энциклопедии

Ге́нная инжене́рия - совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Генная инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя исследования таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.

1 Экономическое значение

2 История развития и достигнутый уровень технологии

3 Применение в научных исследованиях

4 Генная инженерия человека

5 Примечания

7 Литература

Экономическое значение

Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путем использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований.

Основой микробиологической, биосинтетической промышленности является бактериальная клетка. Необходимые для промышленного производства клетки подбираются по определённым признакам, самый главный из которых - способность производить, синтезировать, при этом в максимально возможных количествах, определённое соединение - аминокислоту или антибиотик, стероидный гормон или органическую кислоту. Иногда надо иметь микроорганизм, способный, например, использовать в качестве «пищи» нефть или сточные воды и перерабатывать их в биомассу или даже вполне пригодный для кормовых добавок белок. Иногда нужны организмы, способные развиваться при повышенных температурах или в присутствии веществ, безусловно смертельных для других видов микроорганизмов.

Задача получения таких промышленных штаммов очень важна, для их видоизменения и отбора разработаны многочисленные приёмы активного воздействия на клетку - от обработки сильно действующими ядами до радиоактивного облучения. Цель этих приёмов одна - добиться изменения наследственного, генетического аппарата клетки. Их результат - получение многочисленных микробов-мутантов, из сотен и тысяч которых учёные потом стараются отобрать наиболее подходящие для той или иной цели. Создание приёмов химического или радиационного мутагенеза было выдающимся достижением биологии и широко применяется в современной биотехнологии.

Но их возможности ограничиваются природой самих микроорганизмов. Они не способны синтезировать ряд ценных веществ, которые накапливаются в растениях, прежде всего в лекарственных и эфирномасличных. Не могут синтезировать вещества, очень важные для жизнедеятельности животных и человека, ряд ферментов, пептидные гормоны, иммунные белки, интерфероны да и многие более просто устроенные соединения, которые синтезируются в организмах животных и человека. Разумеется, возможности микроорганизмов далеко не исчерпаны. Из всего изобилия микроорганизмов использована наукой, и особенно промышленностью, лишь ничтожная доля. Для целей селекции микроорганизмов большой интерес представляют, например, бактерии анаэробы, способные жить в отсутствие кислорода, фототрофы, использующие энергию света подобно растениям, хемоавтотрофы, термофильные бактерии, способные жить при температуре, как оказалось недавно, около 110 °C, и др.

И всё же ограниченность «природного материала» очевидна. Обойти ограничения пытались и пытаются с помощью культур клеток и тканей растений и животных. Это очень важный и перспективный путь, который также реализуется в биотехнологии. За последние несколько десятилетий учёные создали методы, благодаря которым отдельные клетки тканей растения или животного можно заставить расти и размножаться отдельно от организма, как клетки бактерий. Это было важное достижение - полученные культуры клеток используют для экспериментов и для промышленного получения некоторых веществ, которые с помощью бактериальных культур получить невозможно.

[править]

История развития и достигнутый уровень технологии

Во второй половине ХХ века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках - это мутации. Они происходят под действием, например, мутагенов - химических ядов или излучений. Но такие изменения нельзя контролировать или направлять. Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.

Основные этапы решения генноинженерной задачи следующие:

1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды). Получила распространение техника, позволяющая использовать для синтеза ДНК, в том числе мутантной, полимеразную цепную реакцию. Термостабильный фермент, ДНК-полимераза, используется в ней для матричного синтеза ДНК, в качестве затравки которого применяют искусственно синтезированные кусочки нуклеиновой кислоты - олигонуклеотиды. Фермент обратная транскриптаза позволяет с использованием таких затравок (праймеров) синтезировать ДНК на матрице веделенной из клеток РНК. Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Изолированный, «химически чистый» ген может быть также получен из фаговой библиотеки. Так называется препарат бактериофага, в геном которого встроены случайные фрагменты из генома или кДНК, воспроизводимые фагом вместе со всей своей ДНК.

Чтобы встроить ген в вектор, используют ферменты - рестриктазы и лигазы, также являющиеся полезным инструментом генной инженерии. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор. За открытие рестриктаз Вернер Арбер, Даниел Натанс и Хамилтон Смит также были удостоены Нобелевской премии (1978 г.).

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки.

Значительные трудности были связаны с введением готового гена в наследственный аппарат клеток растений и животных. Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать «свой» белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку. Такой процесс получил название трансфекция.

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, т.е. отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с измененным генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идет о животных. В результате рождаются детеныши с измененным или неизмененным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение в научных исследованиях

Генетический нокаут. Для изучения функции того или иного гена может быть применен генетический нокаут. Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, измененный так, чтобы продукт гена потерял свою функцию. Для получения нокаутных мышей полученную генноинженерную конструкцию вводят в эмбриональные стволовые клетки и замещают ею нормальный ген, а измененные клетки имплантируют в бластоцисты суррогатной матери. У плодовой мушки дрозофилы мутации инициируют в большой популяции, в которой затем ищут потомство с нужной мутацией. Сходным способом получают нокаут у растений и микроорганизмов.

Искуственная экспрессия. Логичным дополнением нокаута является искусственная экспресия, т.е. добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

Мечение генных продуктов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортерным элементом, например, с геном зеленого флуоресцентного белка (GRF). Этот белок, флуоресцирующий в голубом свете, используется для визуализации продукта генной модификации. Хотя такая техника удобна и полезна, ее побочными следствиями может быть частичная или полная потеря функции исследуемого белка. Более изощренным, хотя и не столь удобным методом является добавление к изучаемому белку не столь больших олигопептидов, которые могут быть обнаружены с помощью специфических антител.

Исследование механизма экспрессии. В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для сязывания факторов транскрипции. Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, того же GFP или фермента, катализирующего хорошо детектируемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать его функции.

[править]

Генная инженерия человека

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако есть существенная разница между лечением самого пациента и изменением генома его потомков.

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия . Для этого используют яйцеклетки здоровой женщины. Ребенок в результате наследует генотип от одного отца и двух матерей. При помощи генной инженерии можно получать потомков с измененной внешностью, умственными и физическими способностьями, характером и поведением. В принципе можно создавать и более серьезные изменения, но на пути подобных преобразований человечеству необходимо решить множество этических проблем.

Примечания

BBC News. news.bbc.co.uk. Проверено 2008-04-26 г.

Литература

Сингер М., Берг П. Гены и геномы. - Москва, 1998.

Стент Г., Кэлиндар Р. Молекулярная генетика. - Москва, 1981.

Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. - 1989.

Генная инженерия — это область биотехнологий, включающая в себя действия по перестройке генотипов. Уже сегодня генная инженерия позволяет включать и выключать отдельные гены, контролируя таким образом деятельность организмов, а также — переносить генетические инструкции из одного организма в другой, в том числе - организмы другого вида. По мере того, как генетики всѐ больше узнают о работе генов и белков, всѐ более реальной становится возможность произвольным образом программировать генотип (прежде всего, человеческий), с лѐгкостью достигая любых результатов: таких, как устойчивость к радиации, способность жить под водой, способность к регенерации повреждѐнных органов и даже бессмертие.

Генетическая информация . Генетическая информация (геном) содержится в клетке в хромосомах (у человека их 46), состоящих из молекулы ДНК и упаковывающих еѐ белков, а также в митохондриях. ДНК (дезоксирибонуклеиновая кислота) является последовательностью нуклеотидов, каждый из которых содержит одно из четырех азотистых. С функциональной точки зрения ДНК состоит из множества блоков (последовательностей нуклеотидов), хранящих определенный объем информации — генов.

Ген — участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген — один белок ). Совокупность всех генов организма составляет его генотип. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Лишь те гены активны, которые необходимы для функционирования данной клетки, поэтому, например, нейроны и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.

Роль белков в организме . Белки являются наиболее важными молекулами в каждом живом организме, химической основой живой материи. По определению Энгельса "жизнь есть способ существования белковых тел". Белки осуществляют обмен веществ (перенос веществ в организме) и энергетические превращения, обеспечивают структурную основу тканей, служат катализаторами химических реакций, защищают организмы от патогенов, переносят сообщения, регулирующие деятельность организма. Химически белки представляют собой цепочку аминокислот, свѐрнутую в пространстве особым образом. Одна из функций белков - активация генов. Некоторые гены содержат фрагменты, притягивающие к себе определѐнные белки. Если такие белки содержатся в клетке, они присоединяются к этому участку гена и может разрешать или запрещать его копирование на РНК. Наличие или отсутствие в клетке подобных регулирующих белков определяет, какие гены активируются, а значит, какие новые белки синтезируются. Именно этот регулирующий механизм определяет, должна ли клетка функционировать как мышечная или как нервная клетка или какая часть тела должна развиваться в этой части эмбриона. Если внести в организм (растение, микроорганизм, животное или даже человек) новые гены, то можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал

Генная инженерия берет свое начало в 1973 году, когда генетики Стэнли Кохен и Герберт Бойер внедрили новый ген в бактерию кишечной палочки (E. coli).Начиная с 1982 года фирмы США, Японии, Великобритании и других стран производят генно-инженерный инсулин. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. Около 200 новых диагностических препаратов уже введены в медицинскую практику, и более 100 генно-инженерных лекарственных веществ находится на стадии клинического изучения. Среди них лекарства, излечивающие артрозы, сердечно-сосудистые заболевания, некоторые опухолевые процессы и, возможно, даже СПИД. Среди нескольких сотен генно-инженерных фирм 60% работают над производством лекарственных и диагностических препаратов.

Генная инженерия в сельском хозяйстве. К концу 1980-х удалось успешно внедрить новые гены в десятки видов растений и животных — создать растения табака со светящимися листьями, томаты, легко переносящие заморозки, кукурузу, устойчивую к воздействию пестицидов. Одна из важных задач - получение растений, устойчивых к вирусам, так как в настоящее время не существует других способов борьбы с вирусными инфекциями сельскохозяйственных культур. Введение в растительные клетки генов белка оболочки вируса, делает растения устойчивыми к данному вирусу. В настоящее время получены трансгенные растения, способные противостоять воздействию более десятка различных вирусных инфекций. Еще одна задача связана с защитой растений от насекомых-вредителей. Применение инсектицидов не вполне эффективно. В генно-инженерных лабораториях Бельгии и США были успешно проведены работы по внедрению в растительную клетку генов земляной бактерии Bacillus thuringiensis, позволяющих синтезировать инсектициды бактериального происхождения. Эти гены ввели в клетки картофеля, томатов и хлопчатника. Трансгенные растения картофеля и томатов стали устойчивы к непобедимому колорадскому жуку, растения хлопчатника оказались устойчивыми к разным насекомым, в том числе к хлопковой совке. Использование генной инженерии позволило сократить применение инсектицидов на 40 - 60%. Генные инженеры вывели трансгенные растения с удлиненным сроком созревания плодов. Такие помидоры, например, можно снимать с куста красными, не боясь, что они перезреют при транспортировке. Список растений, к которым успешно применены методы генной инженерии, составляет около пятидесяти видов, включая яблоню, сливу, виноград, капусту, баклажаны, огурец, пшеницу, сою, рис, рожь и много других сельскохозяйственных растений.

Генная терапия человека

На людях технология генной инженерии была впервые применена для лечения Ашанти Де Сильвы, четырѐхлетней девочки, страдавшей от тяжѐлой формы иммунодефицита. Ген, содержащий инструкции для производства белка аденозиндезаминазы (ADA), был у неѐ повреждѐн. А без белка ADA белые клетки крови умирают, что делает организм беззащитным перед вирусами и бактериями. Работающая копия гена ADA была введена в клетки крови Ашанти с помощью модифицированного вируса. Клетки получили возможность самостоятельно производить необходимый белок. Через 6 месяцев количество белых клеток в организме девочки поднялось до нормального уровня. После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения заболеваний. Сегодня мы знаем, что с помощью генной терапии можно лечить диабет, анемию, некоторые виды рака, болезнь Хантингтона и даже очищать артерии. Сейчас идѐт более 500 клинических испытаний различных видов генной терапии. Неблагоприятная экологическая обстановка и целый ряд других подобных причин приводят к тому, что все больше детей рождается с серьезными наследственными дефектами. В настоящее время известно 4000 наследственных заболеваний, для большинства из которых не найдено эффективных способов лечения. Сегодня существует возможность диагностировать многие генетические заболевания ещѐ на стадии эмбриона или зародыша. Пока можно только прекратить беременность на самой ранней стадии в случае серьѐзных генетических дефектов, но скоро станет возможным корректировать генетический код, исправляя и оптимизируя генотип будущего ребѐнка. Это позволит полностью избежать генетических болезней и улучшить физические, психические и умственные характеристики детей.

Проект "Геном человека". В 1990 году в США был начат проект "Геном человека", целью которого было определить весь генетический год человека. Проект, в котором важную роль сыграли и российские генетики, был завершѐн в 2003 году. В результате проекта 99% генома было определено с точностью 99,99% (1 ошибка на 10000 нуклеотидов). Завершение проекта уже принесло практические результаты, например, простые в применении тесты, позволяющие определять генетическую предрасположенность ко многим наследственным заболеваниям. Высказаны, например, надежды, что, благодаря расширфровке генома, уже к 2006 году будут разработаны препараты для лечения такого опасного заболевания, как СПИД, к 2009 году будут определены гены, которые связаны со злокачественными новообразованиями, а к 2010-2015 году будут установлены механизмы возникновения почти всех видов рака. К 2020 году может быть завершена разработка препаратов, предотвращающих рак.

Перспективы контроля над генами. Развитие генной инженерии сделает возможным улучшение генотипа человека. Масштабные задачи, стоящие сегодня перед человечеством требуют людей талантливых во многих отраслях, совершенных и высокоразвитых личностей, обладающих идеальным здоровьем, высочайшими физическими и умственными способностями. Таких людей можно будет создать методами генной, генетической и клеточной инженерии. Эти методы будут применимы как к только появляющимся на свет детям, так и к уже взрослым людям. Человек сможет многократно усилить свои собственные способности, и увеличить способности своих детей. С объективной точки зрения в этом нет ничего плохого или не этичного. Уже сегодня многие всемирно известные учѐные, такие как Уотсон, один из первооткрывателей ДНК, говорят о том, что человеческая глупость, например, является по сути своей генетическим заболеванием и в будущем будет излечима. Будут полностью ликвидированы генетические причины заболеваний, все люди будут совершенно здоровыми. Старение будет остановлено и никому не придѐтся сталкиваться с увяданием, с упадком сил, с дряхлостью. Люди станут практически бессмертными - смерть будет становиться всѐ более редким явлением, перестав быть неизбежностью. Известно, например, что одной из причин старения является сокращение теломер при каждом делении клетки. В конце 1990-х ученым удалось внедрить в клетки открытый ими ген, отвечающий за выработку белка теломеразы, восстанавливающего теломеры, и тем самым сделать их бессмертными. Конечно, отдельные группы, не отягченные соответствующими знаниями, но, преследующие какие то личные, идеологические или лоббистские цели могут пытаться запретить подобные технологии, но как показывает история развития науки, надолго это сделать им не удастся.

Генная инженерия совершила прорыв в лечении рака. Стивен Розенберг (Steven Rosenberg) и его коллеги из американского Национального института рака (National Cancer Institute) опробовали на ряде пациентов новый метод борьбы с опухолями, основанный на введении в организм перепроектированных иммунных клеток. Помните, как недавно учѐные сумели «обучить» иммунные системы мышей эффективной борьбе с раковыми опухолями путѐм простой трансплантации белых клеток крови, забранных от особей, по естественным причинам к раку невосприимчивым (ведь бывают и такие организмы)? Теперь схожий метод лечения рака опробован на людях. Сначала авторы работы взяли иммунные клетки — Т-лимфоциты — у человека, который, в силу своих природных особенностей, смог успешно «отогнать» у себя меланому. Учѐные определили в них гены, отвечающие за работу рецептора, признающего раковые клетки, и растиражировали этот ген. Затем они взяли Т-лимфоциты у нескольких больных меланомой и при помощи ретровируса внедрили в них искусственный, клонированный ген. Затем пациенты перенесли процедуру химиотерапии, после которой их иммунные системы оказались ослабленными, с крайне небольшим числом выживших иммунных клеток. Тут-то этим больным вернули их же собственные Т-клетки, забранные ранее, но теперь уже — с внедрѐнным в них новым геном (подробнее — в пресс-релизе института).Через месяц в 15 пациентах из 17 эти новые клетки не только выжили, но составили от 9% до 56% всего «населения» Т-лимфоцитов в организме.Но главное удивление — через 18 месяцев после лечения два пациента полностью избавились от рака, и также продемонстрировали высокий уровень Т-клеток в крови.У одного пациента раковых образований было два, одно из которых было разрушено полностью, а второе — сократилось на 89% (после чего его удалили хирургическим путѐм), а у второго пациента — была одна опухоль, которая «рассеялась». Розенберг отмечает, что «впервые генные манипуляции привели к регрессу опухоли у людей». «Мы теперь можем брать нормальные лимфоциты у пациентов и модифицировать их в лимфоциты, реагирующие на раковые клетки», — заявил учѐный, который намерен продолжить исследование. Он хочет узнать, как генетически модифицированные клетки выживут в организме в течение большего срока, как будет работать эта терапия в комплексе с другими методами лечения рака, как она сможет помочь при борьбе с другими типами раковых образований (здесь будут работать иные гены, кодирующие строительство других рецепторов). В общем — вопросов ещѐ немало. Если немного отойти то можно сказать еще и о ультразвуковой абляции HIFU терапии. Лидером в этой области являются врачи КНР. Ее технология заключается в сжигании раковых клеток ультразвуком, при температуре 100 градусов Цельсия опухоль буквально тает. Лидером в производстве специализированной техники является пекинская компания Haifuning HIFU Technology, которая совместно с американской компанией General Electric создала полностью компьютеризированный аппарат с управляемым температурным режимом- FEP BY 02.

Литература:

  1. Сингер М., Берг П. Гены и геномы. — Москва, 1998.
  2. Стент Г., Кэлиндар Р. Молекулярная генетика. — Москва,
  3. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. —
  4. Патрушев Л. И. Искусственные генетические системы. — М.:Наука, 2004.
  5. Щелкунов С. Н. Генетическая инженерия. — Новосибирск: Сиб. унив. изд-во, 2008.
  6. Свобода слова (газета, материалы с номера №4(348) 2.02.2012)

Генетическая инженерия

Современная биология коренным образом отличается от традиционной биологии не только большей глубиной разработки познавательных идей, но и более тесной связью с жизнью общества, с прак- тикой. Можно сказать, что в наше время биология стала средством преобразования живого мира с целью удовлетворения материальных потребностей общества. Это заключение иллюстрируется прежде всего тесной связью биологии с биотехнологией, которая стала важнейшей областью материального производства, равноправным партнером механической и химической технологий, созданных чело- веком, а также с медициной.

С момента своего возникновения биология и биотехнология всегда развивались совместно, причем с самого начала биология была научной основой биотехнологии. Однако длительное время недостаток собственных данных не позволял биологии оказывать очень большое влияние на биотехнологию. Положение резко изменилось с созданием во второй половине XX в. методологии генетической инженерии, под которой понимают генетическое манипулирование с целью конструкции новых и реконструкции существующих генотипов. Являясь по своей природе методическим достижением, генетическая инженерия не привела к ломке сложившихся представлений о биологических явлениях, не затронула основных положений биологии подобно тому, как радиоастрономия не поколебала основных положений астрофизики, установление «механического эквивалента тепла» не привело к изменению законов теплопроводности, а доказательство атомистической теории вещества не изме- нило соотношений термодинамики, гидродинамики и теории упругости (А.А. Баев).

Тем не менее генетическая инженерия открыла новую эру в биологии по той причине, что появились новые возможности для про- никновения в глубь биологических явлений с целью дальнейшей характеристики форм существования живой материи, более эффективного изучения структуры и функции генов на молекулярном уровне, понимания тонких механизмов работы генетического аппарата. Успехи генетической инженерии означают переворот в современном

естествознании. Они определяют критерии ценности современных представлений о структурно-функциональных особенностях молекулярного и клеточного уровней живой материи. Современные данные о живом имеют гигантское познавательное значение, ибо обеспечивают понимание одной из важнейших сторон органического мира и тем самым вносят неоценимый вклад в создание научной картины мира. Таким образом, резко расширив свою познавательную базу, биология через генетическую инженерию оказала также ведущее влияние на подъем биотехнологии.

Генетическая инженерия создает заделы на пути познания способов и путей «конструирования» новых или улучшения существующих организмов, придавая им большую хозяйственную ценность и способность резкого увеличения продуктивности биотехнологических процессов. Однако генетическая инженерия создала новые горизонты и для медицины по линии диагностики и лечения многих болезней, как ненаследственных, так и наследственных. Она открыла новые пути в поисках новых лекарств и материалов, используемых в медицине. Генетическая инженерия и биотехнология стимулировали разработку методов бионанотехнологии.

В рамках генетической инженерии различают генную и клеточную инженерию. Под генной инженерией понимают манипуляции с целью создания рекомбинантных молекул ДНК. Часто эту методологию называют молекулярным клонированием, клонированием генов, технологией рекомбинантных ДНК или просто генетическими манипуляциями. Важно подчеркнуть, что объектом генной инженерии являются молекулы ДНК, отдельные гены. Напротив, под клеточной инженерией понимают генетические манипуляции с изолированными отдельными клетками или группами клеток растений и животных.

ГЕННАЯ ИНЖЕНЕРИЯ И ЕЕ ИНСТРУМЕНТЫ

Генную инженерию составляет совокупность различных экспериментальных приемов (методик), обеспечивающих конструкцию (реконструкцию), клонирование молекул ДНК и генов с заданными целями.

Методы генной инженерии используют в определенной последовательности (рис. 127), причем различают несколько стадий в выпол-

нении типичного генно-инженерного эксперимента, направленного на клонирование какого-либо гена, а именно:

1. Выделение плазмидий ДНК из клеток интересующего организма (исходного) и выделение ДНК-вектора.

2. Разрезание (рестрикция) ДНК исходного организма на фрагменты, содержащие интересующие гены, с помощью одного из ферментов-рестриктаз и выделение этих генов из рестрикционной смеси. Одновременно разрезают (рестрицируют) векторную ДНК, превращая ее из кольцевой структуры в линейную.

3. Смыкание интересующего сегмента ДНК (гена) с ДНК вектора с целью получения гибридных молекул ДНК.

4. Введение рекомбинантных молекул ДНК путем трансформации в какой-либо другой организм, например в Е. coli или соматические клетки.

5. Высев бактерий, в которые вводили гибридные молекулы ДНК, на питательные среды, позволяющие рост только клеток, содержащих гибридные молекулы ДНК.

6. Идентификация колоний, состоящих из бактерий, содержащих гибридные молекулы ДНК.

7. Выделение клонированной ДНК (клонированных генов) и ее характеристика, включая секвентирование азотистых оснований в клонированном фрагменте ДНК.

Рис. 127. Последовательные стадии генно-инженерного эксперимента

В ходе эволюции бактерии развили способность синтезировать так называемые рестрицирующие ферменты (эндонуклеазы), которые стали частью клеточной (бактериальной) системы рестрикциимодификации. У бактерий системы рестрикции-модификации являются внутриклеточной иммунной системой защиты от чужеродной ДНК. В отличие от высших организмов, у которых распознание и разрушение вирусов, бактерий и других патогенов происходит внеклеточно, у бактерий защита от чужеродной ДНК (ДНК растений и животных, в организме которых они обитают) происходит внутриклеточно, т.е. тогда, когда чужеродная ДНК проникает в цитоплазму бактерий. С целью защиты бактерии в ходе эволюции развили также способность «метить» собственную ДНК метилирующими основаниями на определенных последовательностях. По этой же причине чужеродная ДНК из-за отсутствия в ней метильных групп на тех же последовательностях плавится (разрезается) на фрагменты разными бактериальными рестриктазами, а затем деградируется бактериальными экзонуклеазами до нулеотидов. Можно сказать, что таким образом бактерии защи- щают себя от ДНК растений и животных, в организме которых они обитают временно (как патогены) или постоянно (как сапрофиты).

Рестриктазы впервые были выделены из Е. coli в 1968 г. Оказалось, что они способны разрезать (плавить) молекулы ДНК на разных сайтах (местах) рестрикции. Эти ферменты получили название эндонуклеаз класса I. Затем у бактерий были обнаружены эндонуклеазы класса II, которые распознают в чужеродной ДНК сайты рестрикции специфически и на этих сайтах тоже осуществляют рестрикцию. Именно ферменты этого класса стали использовать в генной инже- нерии. Тогда же были открыты ферменты класса III, которые плавят ДНК рядом с сайтами распознания, но эти ферменты не имеют значения в генной инженерии.

Действие системы рестрикции-модификации «рационализуется» так называемыми палиндромными (распознающими) последователь- ностями азотистых оснований, которые являются сайтами рестрикции ДНК. Палиндромные последовательности - это последовательности оснований, которые одинаково читаются вперед и назад, как, например, последовательность букв радар. Поскольку цепи ДНК обладают антипараллельным направлением, то считают, что последовательность является палиндромной, если она идентична, когда читается в направлении от 5" - к 3"-концу на верхней и на нижней цепи от 3" - к 5"-концу, а именно:

Палиндромы могут быть любых размеров, но большинство тех палиндромов, которые используют в качестве сайтов узнавания рестриктазами, состоят из 4, 5, 6 и реже 8 оснований.

Рестриктазы - это абсолютно необходимый инструмент в генной инженерии для вырезания интересующих фрагментов (генов) из больших молекул ДНК. Поскольку известно более 100 ферментов рестрикции, то это позволяет выбор рестриктаз и селективное вырезание фрагментов из исходной ДНК.

Замечательной особенностью рестриктаз является то, что они продуцируют разрезы молекул на несколько фрагментов (рестриктов) ДНК уступами, в результате чего в образующихся концах одна цепь длиннее другой, образуя своеобразный хвост. Такие концы (хвосты) получили название «липких» концов, так как они способны к самокомплементарности.

Рассмотрим результаты рестрикции на примере одной из наиболее известных рестриктаз Eco RI из системы рестрикция-модификация Е. соИ. Вместо того чтобы плавить ДНК в центре палиндромной последовательности узнавания, этот фермент плавит ДНК за преде- лами центра и продуцирует 4 самокомплементарных («липких») конца, состоящих из разного количества нуклеотидов, а именно:

Эти «липкие» концы в генно-инженерных опытах полезны по той причине, что они могут быть воссоединены комплементарно при низких температурах, что позволяет эффективное смыкание ДНК-фрагментов.

Сайты распознавания и сайты плавления в случае других рестриктаз имеют другое содержание, а именно:

Вслед за рестрикцией ДНК из рестрикционной смеси выделяют рестрикционные ДНК-фрагменты (ДНК-рестрикты), которые необ- ходимы затем для объединения с вектором. Для выделения ДНКрестриктов прибегают к электрофорезу, поскольку с помощью этого метода рестрикцированную ДНК очень легко фракционировать благодаря размерам фрагментов-рестриктов и константным отношениям электрический заряд-масса. Фрагменты в электрическом поле мигрируют в ходе электрофореза при частоте, зависимой от их размеров (массы). Чем больше (длиннее) фрагмент, тем медленнее он мигрирует в электрическом поле. Материалом, в котором проводят электрофорез, являются незаряжающиеся агароза или полиакриламид. Для опознания фрагментов используют этидий бромид, который красит фрагменты, что ведет к их более легкому обнаружению.

Результативность электрофореза очень высока, поскольку с его помощью могут быть разделены фрагменты, размеры которых состав- ляют от 2 до 50 000 оснований.

После электрофореза фрагменты из агарозы выделяют с помощью разных методов. На основании результатов сравнения размеров

рестриктов одной и той же ДНК, полученных с помощью разных рестриктаз, строят рестрикционные карты, на которых показывают сайты рестрикции каждой из использованных рестриктаз. В практическом плане рестрикционные карты позволяют определять не только размеры рестриктов, но и выяснять расположение в молекулах ДНК локусов тех или иных генов.

Поскольку у высших организмов в ходе транскрипции синтезируется гетерогенная ДНК, корректируемая процессингом, то в генной инженерии обычно используют комплементарную ДНК (кДНК), которую получают при использовании в качестве матрицы мРНК, на которой обратная транскриптаза синтезирует одноцепочечную ДНК (кДНК), являющуюся копией мРНК. В последующем эти одноцепочечные ДНК превращают в двухцепочечные ДНК. Считают, что кДНК содержит непрерывные нуклеотидные последовательности (транскрибируемые и транслируемые). Именно кДНК используют для рестрикции.

Выделенные после электрофореза из агарозных гелей фрагменты ДНК (рестрикты) можно предварительно подвергнуть сек-вентированию, т.е. определить в них нуклеотидную последовательность. Для этого служат химический и ферментативный методы секвентирования. Химический метод основан на получении меченных радиоактивным фосфором (32 Р) фрагментов и удалении из этих фрагментов одного из оснований с последующим учетом результатов радиоавтографии гелей, содержащих эти фрагменты. Ферментативный метод основан на том, что в конец анализируемого фрагмента вводят нуклеотид, используемый затем в синтезе разных фрагментов in vitro, анализируемых на нуклеотидную последовательность электрофоретически. Для изучения специфических последовательностей нуклеотидов в молекуле ДНК используют

также гибридизацию ДНК-ДНК, РНК-РНК, ДНК-РНК, Нозерн-

и Саузерен-блоттинги.

Генетические векторы. Сегмент ДНК (ген), который предназначен для молекулярного клонирования, должен обладать способностью к репликации при переносе его в бактериальную клетку, т.е. быть репликоном. Однако он такой способностью не обладает. Поэтому, чтобы обеспечить перенос и обнаружение клонируемых генов в клетках, их объединяют с так называемыми генетическими векторами. Последние должны обладать как минимум двумя свойствами. Во-первых, векторы должны быть способны к репликации

в клетках, причем в нескольких концах. Во-вторых, они должны обеспечивать возможность селекции клеток, содержащих вектор, т.е. обладать маркером, на который можно вести контрселекцию клеток, содержащих вектор вместе с клонируемым геном (рекомбинантные молекулы ДНК). Таким требованиям отвечают плазмиды и фаги. Плазмиды являются хорошими векторами по той причине, что они являются репликонами и могут содержать гены резистентности к какому-либо антибиотику, что позволяет вести селекцию бактерий на устойчивость к этому антибиотику и, следовательно, легкое обнаружение рекомбинантных молекул ДНК

(рис. 128).

Рис. 128. Вектор pBRl

Поскольку не существует природных плазмидных векторов, то все известные к настоящему времени плазмидные векторы были сконструированы искусственно. Исходным материалом для создания ряда генетических векторов послужили R-плазмиды, в которых с помощью рестриктаз удаляли излишние последовательности ДНК, в том числе те, на которых располагались множественные сайты рестрикции. Это удаление определялось тем, что плазмидный вектор должен обладать только одним сайтом узнавания для одной рестриктазы, причем этот сайт должен лежать в функционально несущественном районе плазмидного генома. Например, плазмидый вектор pBR 322, который имеет гены резистентности к ампициллину и тетрациклину, что делает его очень удобным

для селекции бактерий, содержащих клонируемый сегмент ДНК, обладает одиночными сайтами рестрикции для более 20 ферментов- рестриктаз, включая такие известные рестриктазы, как Eco RI, Hind III, Pst I, Pva II и Sal I.

Фаговые векторы тоже обладают рядом преимуществ. Они могут включать в себя более крупные (более длинные) клонируемые фрагменты ДНК по сравнению с плазменными векторами. Далее, перенос фагами клонируемого фрагмента в клетки в результате инфицирования ими последних является более эффективным, чем трансформация ДНК. Наконец, фаговые векторы позволяют более эффективный скрининг (распознание) на поверхности агара колоний, содержащих клетки, несущие клонируемый ген. Многие фаговые векторы сконструированы на базе фага лямбда.

Кроме фаговых используют и другие вирусные векторы, сконструированные на базе вируса герпеса, а также векторы, сконструированные на базе дрожжевой ДНК.

Если клонирование генов проводят, используя клетки млекопитающих или растений, то требования к векторам те же, что и в случае клонирования в бактериальных клетках.

Конструирование рекомбинантных молекул ДНК. Непосредственное конструирование рекомбинантных молекул ДНК следует после того, как получены рестрикты исследуемой ДНК и векторной ДНК. Оно заключается в смыкании сегментов-рестриктов исследуемой ДНК с рестриктом векторной ДНК, которая в результате рестрикции превращается из кольцевой в линейную ДНК.

Чтобы сомкнуть фрагменты исследуемой ДНК с ДНК вектора, используют ДНК-лигазу (рис. 129). Лигирование будет успешным, если смыкаемые структуры обладают З"-гидроксильной и 5"-фос- фатной группами и если эти группы расположены соответствующим образом относительно одна другой. Фрагменты объединяются через их «липкие» концы в результате самокомплементарности. При высоких концентрациях фрагментов последние время от времени становятся в правильное положение (напротив друг друга). Многие рестриктазы, такие как Eco RI, продуцируют «липкие» концы, состоящие из четырех оснований. Процесс лигирования «липких» концов, состоящих из четырех оснований, происходит при пониженной температуре (до 12 ?С).

Рис. 129. ДНК-лигирование

Если при рестрикции образуются фрагменты без «липких» концов, то их «насильственно» конвертируют в молекулы с «липкими» концами, используя фермент трансферазу. Этот фермент добавляет нуклеотиды к 3"-концу ДНК. На одном фрагменте может быть добавлен поли-А-хвост, на другом - поли-Т-хвост. Для генерации любых желаемых концов ДНК используют также полимеразную цепную реакцию (ПЦР). Принцип ПЦР основан на денатурации выделенной из клеток ДНК и «отжиге» ее с добавлением к ренатурирующимся цепям ДНК-олигонуклеотидов, состоящих из 15-20 нуклеотидов каждый. Эти олигонуклеотиды должны быть комплементарны последовательностям в цепях, разделенных расстояниями в 50-2000 нуклеотидов. Будучи «затравкой» для синтеза ДНК in vitro, они позволяют ДНК-полимеразе копировать те участки, которые находятся между «затравками». Это копирование дает большое количество копий изучаемого фрагмента ДНК.

Введение рекомбинантных молекул ДНК в клетки. После смыкания интересующего фрагмента ДНК (гена) с генетическим вектором с помощью ДНК-лигазы образованные рекомбинантные молекулы вводят в клетки с целью добиться их репликации (за счет генетического вектора) и увеличения количества копий. Наиболее популярным способом введения в клетки рекомбинантных молекул ДНК, в которых вектором служит плазмида, является трансформация Е. coli. С этой целью бактериальные клетки предварительно обрабатывают кальцием или рубидием (ионами), для того

чтобы они стали «компетентными» в восприятии рекомбинатной ДНК. Чтобы повысить частоту проникновения ДНК в клетки, используют метод электропорации, заключающийся в кратком экспонировании клеток в интенсивном электрическом поле. Эта обработка создает полости в мембранах клеток, что способствует лучшему восприятию клетками ДНК. После введения рекомбинатных молекул ДНК в бактерии последние высевают на МПА (мясо-пептонный агар), обогащенный антибиотиками для селекции желаемых клеток, т.е. клеток, содержащих рекомбинантные молекулы ДНК. Частота трансформации является невысокой. Обычно один трансформант возникает на 10 5 высеянных клеток. Если же вектор является фаговым, то прибегают к трансфекции клеток (бактерий или дрожжей) фагом. Что касается соматических клеток животных, то их трансфекцию осуществляют ДНК в присутствии химических веществ, облегчающих прохождение ДНК через плазматические мембраны. Возможны также прямые микроинъекции ДНК в овоциты, в культивируемые соматические клетки и в эмбрионы млекопитающих.

Важнейшим моментом, связанным с молекулярным клонированием, является поиск способа, позволяющего установить, действитель- но ли клонируемый фрагмент включился в вектор и вместе с вектором, образовав рекомбинатную молекулу ДНК, вошел в клетки. Если речь идет о бактериальных клетках, то один из способов основан на учете инсерционной инактивации плазмидного (векторного) гена резистентности. Например, в плазмидном векторе pBR 322, детерминирующем резистентность к ампициллину и тетрациклину, един- ственный сайт для рестриктазы Pst I находится в локусе, занимаемом геном резистентности к ампициллину. Pst I-плавление на этом сайте генерирует «липкие» концы, позволяющие лигирование клонируемого фрагмента с векторной ДНК. Однако при этом плазмидный (векторный) ген ампициллинрезистентности инактивируется, тогда как ген тетрациклинрезистентности на векторе остается интактным. Именно ген тетрациклинрезистентности и используется для селекции клеток, трансформируемых рекомбинантными молекулами ДНК. Это позволяет убедиться, что клетки выросших колоний на среде с тетрациклином действительно содержат рекомбинантные молекулы ДНК, их проверяют с помощью так называемого «спот-теста» на паре чашек с плотной средой, одна из которых содержит ампициллин, тогда как другая лишена этого антибиотика. Клонируемые ДНК находятся

лишь в трансформантах, резистентных к тетрациклину. Что касается трансформантов, резистентных одновременно к ампициллину и тетрациклину (АрТс), то они содержат плазмидные (векторные) молекулы, которые спонтанно приобрели кольцевую форму без включения в них чужеродной (клонируемой) ДНК.

Другой способ обнаружения инсерции чужеродных (клонируемых) фрагментов в плазмидный вектор основан на использовании вектора, содержащего ген β-галактозидазы. Инсерция чужеродной ДНК в этот ген неизбежно инактивирует синтез β-галактозидазы, что может быть обнаружено посевом трансформированных клеток на среду, которая содержит субстраты β-галактозидазы. Эта среда позволяет селекцию окрашенных колоний клеток. Существуют и другие методы.

Как уже отмечено, рестрикционные линейные фрагменты векторной ДНК способны к восстановлению кольцевой структуры без включения в них клонируемых сегментов. Чтобы уменьшить частоту спонтанного образования таких кольцевых молекул векторной ДНК, рестрикты векторной ДНК обрабатывают фосфатазой. В результате этого образование кольцевых молекул ДНК становится невозможным, поскольку будут отсутствовать концы 5"-РО 4 , необходимые для действия лигазы.

Совокупность колоний-трансформантов, выросших на селективной среде, представляет собой совокупность клеток, содержащих клоны разных фрагментов (генов) клонируемой геномной или кДНК. Коллекции этих клонов формируют так называемые библиотеки ДНК, широко используемые в генно-инженерных работах.

Заключительной стадией клонирования генов является выделение и исследование клонированной ДНК, включая секвенирование. Перспективные штаммы бактерий или соматических клеток, содержащих рекомбинантные молекулы ДНК, которые контролируют синтез интересующих белков, имеющих коммерческую ценность, передают в промышленность.

КЛЕТОЧНАЯ ИНЖЕНЕРИЯ

Как отмечено в начале главы, клеточной инженерией называют генетические манипуляции с изолированными клетками животных и растений. Эти манипуляции часто осуществляют in vitro, а главной целью они имеют получение генотипов этих организмов с заданными свойствами, в первую очередь хозяйственно полезными. Что касает-

ся человека, то клеточная инженерия оказалась применимой к его половым клеткам.

Предпосылкой к развитию клеточной инженерии у человека и животных явилась разработка методов культивирования их сома- тических клеток на искусственных питательных средах, а также получение гибридов соматических клеток, включая межвидовые гибриды. В свою очередь успехи в культивировании соматических клеток оказали влияние на изучение половых клеток и оплодотворения у человека и животных. Начиная с 60-х гг. ХХ в. в нескольких лабораториях мира были выполнены многочисленные эксперименты по пересадке ядер соматических клеток в яйцеклетки, искусственно лишенные ядер. Результаты этих экспериментов часто были противоречивы, но в целом они привели к открытию способности клеточных ядер обеспечивать нормальное развитие яйцеклетки (см. гл. IV).

На основе результатов изучения развития оплодотворенных яйцеклеток в 60-е гг. XX в. были начаты также исследования по выяснению возможности оплодотворения яйцеклеток вне организма матери. Очень быстро эти исследования привели к открытию возможности оплодотворения яйцеклеток сперматозоидами в пробирке и дальнейшего развития образованных таким путем зародышей при имплантации в матку женщины. Дальнейшее совершенствование разработанных в этой области методов привело к тому, что рождение «пробирочных» детей стало реальностью. Уже к 1981 г. в мире было рождено 12 детей, жизнь которым была дана в лаборатории, в пробирке. В настоящее время этот раздел клеточной инженерии получил большое распространение, а количество «пробирочных» детей составляет уже десятки тысяч (рис. 130). В России работы по получению «пробирочных» детей были начаты только в 1986 г.

В 1993 г. была разработана методика получения монозиготных близнецов человека in vitro путем разделения эмбрионов на бласто- меры и доращивания последних до 32 клеток, после чего они могли быть имплантированы в матку женщины.

Под влиянием результатов, связанных с получением «пробирочных» детей, у животных тоже была разработана технология, получившая название трансплантации эмбрионов. Она связана с разработкой способа индукции полиовуляции, способов искусственного оплодот- ворения яйцеклеток и имплантации зародышей в организм животных - приемных матерей. Суть этой технологии сводится к следую-

щему. Высокопродуктивной корове вводят гормоны, в результате чего наступает полиовуляция, заключающаяся в созревании сразу 10-20 клеток. Затем яйцеклетки искусственно оплодотворяются мужскими половыми клетками в яйцеводе. На 7-8-й день зародыши вымывают из матки и трансплантируют в матки другим коровам (приемным матерям), которые затем дают жизнь телятам-близнецам. Телята наследуют генетический статус своих подлинных родителей.

Рис. 130. «Пробирочные» дети

Другой областью клеточной инженерии у животных является создание трансгенных животных. Наиболее простой способ получения таких животных заключается во введении в яйцеклетки исходных животных линейных молекул ДНК. Животные, развившиеся из оплодотворенных таким образом яйцеклеток, будут содержать в одной из своих хромосом копию введенного гена и, кроме того, они будут передавать этот ген по наследству. Более сложный способ получения трансгенных животных разработан на мышах, различающихся по окраске шерстного покрова, и сводится к следующему. Вначале из организма беременной серой мыши извлекают четырехдневных зародышей и измельчают их на отдельные клетки. Затем из эмбриональных клеток извлекают ядра, переносят их в яйцеклетки черных мышей, предварительно лишенных ядер. Яйцеклетки черных мышей, содержащие чужие ядра, помещают в пробирки

с питательным раствором для дальнейшего развития. Развившиеся из яйцеклетки черных мышей зародыши имплантируют в матки белых мышей. Таким образом, в этих экспериментах удалось получить клон мышей с серой окраской шерстного покрова, т.е. клонировать эмбриональные клетки с заданными свойствами. В главе IV мы рассмотрели результаты оплодотворения искусственно лишенных ядер яйцеклеток овец ядерным материалом соматических клеток животных этого же вида. В частности, из яйцеклеток овец удаляли ядра, а затем в такие яйцеклетки вводили ядра соматических клеток (эмбриональных, плодовых или клеток взрослых животных), после чего оплодотворенные таким образом яйцеклетки вводили в матки взрослых овец. Рождающиеся ягнята оказались идентичными овцедонору. Пример - овца Долли. Получены также клоновые телята, мыши, кролики, кошки, мулы и другие животные. Такое конструирование трансгенных животных представляет собой прямой путь клонирования животных с хозяйственно полезными признаками, включая особей определенного пола.

Трансгенные животные получены также при использовании исходного материала, принадлежащего разным видам. В частности, известен способ передачи гена, контролирующего гормон роста, от крыс в яйцеклетки мышей, а также способ комбинирования бластомеров овцы с бластомерами козы, что привело к возникновению гибридных животных (ковец). Эти эксперименты указывают на воз- можность преодоления видовой несовместимости на самых ранних этапах развития. Особенно заманчивые перспективы открываются (если видовая несовместимость будет преодолена полностью) на пути оплодотворения яйцеклеток одного вида ядрами соматических клеток другого вида. Речь идет о реальной перспективе создания хозяйственно ценных гибридов животных, которых невозможно получить путем скрещиваний.

Следует отметить, что ядерно-трансплантационные работы еще не очень эффективны. Эксперименты, выполненные на земноводных и млекопитающих, в целом показали, что их результативность является небольшой, причем она зависит от несовместимости между донорскими ядрами и реципиентными овоцитами. Кроме того, препятствием на пути к успехам являются также образующиеся хромосомные аберрации в трансплантированных ядрах в ходе даль- нейшего развития, которые сопровождаются гибелью трансгенных животных.

На стыке работ по изучению гибридизации клеток и иммунологических исследований возникла проблема, связанная с получением и изучением так называемых моноклональных антител. Как отмечено выше, антитела, продуцируемые организмом в ответ на введение антигена (бактерии, вирусы, эритроциты и т.д.), представляют собой белки, называемые иммуноглобулинами и составляющие фундаментальную часть защитной системы организма против возбудителей болезней. Но любое чужеродное тело, вводимое в организм, представляет собой смесь разных антигенов, которые будут возбуждать продукцию разных антител. Например, эритроциты человека обладают антигенами не только для групп крови А (II) и В (III), но и многими другими антигенами, включая резус-фактор. Далее, белки клеточной стенки бактерий или капсида вирусов также могут действовать в качестве разных антигенов, вызывающих образование разных антител. В то же время лимфоидные клетки иммунной системы организма обычно представлены клонами. Значит, даже только по этой причине в сыворотке крови иммунизированных животных антитела всегда представляют собой смесь, состоящую из антител, продуцируемых клетками разных клонов. Между тем для практических потребностей необходимы антитела только одного типа, т.е. так называемые моноспецифические сыворотки, содержащие антитела только одного типа или, как их называют, моноклональные антитела.

В поисках методов получения моноклональных антител швейцарскими исследователями в 1975 г. был открыт способ гибридизации между лимфоцитами мышей, иммунизированных тем или иным антигеном, и культивируемыми опухолевыми клетками костного мозга. Такие гибриды получили название «гибри- домные». От «лимфоцитарной» части, представленной лимфоцитом одного клона, одиночная гибридома наследует способность вызывать образование необходимых антител, причем одного типа, а благодаря «опухолевой (миэломной)» части она становится способной, как и все опухолевые клетки, бесконечно долго размно- жаться на искусственных питательных средах, давая многочисленную популяцию гибридов. На рис. 131 показана схема выделения клеточных линий, синтезирующих моноклональные антитела. Линии мышиных клеток, синтезирующих моноклональные антитела, выделяют путем слияния миеломных клеток с лимфоцитами из селезенки мыши, иммунизированной за пять дней до этого

желаемым антигеном. Слияния клеток достигают смешиванием их в присутствии полиэтиленгликоля, который индуцирует слияние клеточных мембран, а затем в высеве их на питательную среду, позволяющую рост и размножение только гибридных клеток (гибридом). Размножение гибридом проводят в жидкой среде, где они растут далее и секретируют антитела в культуральную жидкость, причем только одного типа, к тому же в неограниченных количествах. Эти антитела получили название моноклональных. Чтобы повысить частоту образования антител, прибегают к клонированию гибридом, т.е. к селекции отдельных колоний гибридом, способных вызывать образование наибольшего количе- ства антител желаемого типа. Моноклональные антитела нашли широкое применение в медицине для диагностики и лечения ряда болезней. В то же время важнейшее преимущество моноклональной технологии заключается в том, что с ее помощью могут быть получены антитела против материалов, которые невозможно очистить. Напротив, можно получить моноклональные антитела против клеточных (плазматических) мембран нейронов животных. Для этого мышей иммунизируют выделенными мембранами нейронов, после чего их селезеночные лимфоциты объединяют с миеломными клетками, а дальше поступают, как описано выше.

Рис. 131. Получение моноклональных антител

ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ И МЕДИЦИНА

Генная инженерия оказалась очень перспективной для медицины, прежде всего в создании новых технологий получения физиологически активных белков, используемых в качестве лекарств (инсулин, соматостатин, интерфероны, соматотропин и др.).

Инсулин используют для лечения больных диабетом, который стоит на третьем месте (после болезней сердца и рака) по частоте вызываемых смертельных случаев. Мировая потребность инсулина составляет несколько десятков килограммов. Традиционно его получают из панкреатических желез свиней и коров, но гормоны этих животных слегка отличаются от инсулина человека. Инсулин свиней различается по одной аминокислоте, а коровий - по трем. Считают, что инсулин животных часто вызывает побочные эффекты. Хотя химический синтез инсулина осуществлен давно, но до сих пор промышленное производство гормонов оставалось очень дорогим. Сейчас получают дешевый инсулин с помощью генно-инженерного метода путем химико-ферментативного синтеза гена инсулина с последующим введением этого гена в кишечную палочку, которая затем синтезирует гормон. Такой инсулин более «биологичен», так как химически идентичен инсулину, вырабатываемому клетками поджелудочной железы человека.

Интерфероны - белки, синтезируемые клетками главным образом в ответ на заражение организма вирусами. Интерфероны характери- зуются видовой специфичностью. Например, у человека установлены три группы интерферонов, продуцируемых различными клетками под контролем соответствующих генов. Интерес к интерферонам определяется тем, что их широко используют в клинической практике для лечения многих болезней человека, особенно вирусных.

Имея крупные размеры, молекулы интерферона мало доступны для синтеза. Поэтому большинство интерферонов сейчас получают из крови человека, но выход при таком способе получения небольшой. Между тем потребности в интерфероне исключительно велики. Это поставило задачу изыскать эффективный метод производства интерферона в промышленных количествах. Генетическая инженерия лежит в основе современного производства «бактериального» интерферона.

Усилилось влияние генетической инженерии на технологию тех лекарственных веществ, которые уже давно создаются по био- логической технологии. Еще в 40-50-е гг. XX в. была создана

биологическая промышленность для производства антибиотиков, которые составляют наиболее эффективную часть лекарственного арсенала современной медицины. Однако в последние годы отмечается значительный рост лекарственной устойчивости бактерий, особенно к антибиотикам. Причина заключается в широком распространении в микробном мире плазмид, детерминирующих лекарственную устойчивость бактерий. Именно поэтому многие знаменитые ранее антибиотики утратили свою былую эффективность. Единственный пока путь преодоления резистентности бактерий к антибиотикам - это поиски новых антибиотиков. По оценкам специалистов, в мире ежегодно создают около 300 новых антибиотиков. Однако большинство из них либо неэффективно, либо токсично. В практику же каждый год вводится лишь несколько антибиотиков, что заставляет не только сохранять, но и увеличивать мощность антибиотической промышленности на основе генно-инженерных разработок.

Основные задачи генной инженерии в тех технологиях лекарственных веществ, в которых продуцентами лекарств являются микроорганизмы, определяются необходимостью генно-инженерной реконструкции последних с целью повышения их активности. В то же

время началась реализация идеи создания лекарств в виде малых молекул, что способствует их большей эффективности.

Иммунная биотехнология связана с производством прежде всего вакцин нового поколения для профилактики инфекционных болезней человека и животных. Первыми коммерческими продуктами, созданными с помощью генетической инженерии, стали вакцины против гепатита людей, ящура животных и некоторые другие. Исключительно важное направление в этой области связано с производством моноклональных антител, реагентов, необходимых для диа- гностики возбудителей болезни, а также для очистки гормонов, витаминов, белков различной природы (ферментов, токсинов и др.).

Значительный практический интерес представляет метод получения искусственного гемоглобина путем введения гемоглобиновых генов в растения табака, где под контролем этих генов продуциру- ются α- и β-цепи глобина, которые объединяются в гемоглобин. Синтезируемый в клетках табачных растений гемоглобин полностью функционален (связывает кислород). Клеточная инженерия в применении к человеку связана не только с решением фундаментальных проблем биологии человека, но и с преодолением прежде всего женского бесплодия. Поскольку частота положительных случаев имплантации в матку женщин эмбрионов, полученных in vitro, является небольшой, то получение монозиготных близнецовэмбрионов in vitro также имеет значение, так как увеличиваются возможности повторных имплантаций за счет «запасных» эмбрионов. Особый интерес представляют перспективы использования стволовых клеток в качестве источника замены клеток и тканей в лечении таких болезней, как диабет, повреждения спинного мозга, боли сердца, остиоартриты, болезнь Паркинсона. Но для реализации этих перспектив необходимо углубленное изучение биологии стволовых клеток.

В использовании генетической инженерии применительно к проблемам медицины особое значение приобрела задача разработки генно-инженерных методов радикального лечения наследственных болезней, которые, к сожалению, еще не поддаются лечению существующими методами. Содержание этой задачи заключается в разработке способов исправления (нормализации) мутаций, результатом которых являются наследственные болезни, и в обеспечении передачи «исправлений» по наследству. Считают, что успешной разработке генно-инженерных методов лечения наследственных болезней будут

способствовать данные о геноме человека, полученные в результате выполнения международной научной программы «Геном человека».

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ГЕНЕТИЧЕСКОЙ ИНЖЕНЕРИИ

Подняв на новый уровень биотехнологию, генетическая инженерия нашла также применение в разработке способов определения и устранения загрязнений окружающей среды. В частности, сконструированы штаммы бактерий, которые являются своеобразными индикаторами мутагенной активности химических загрязнений. С другой стороны, генно-инженерным способом сконструированы штаммы бактерий, содержащие плазмиды, под контролем которых происходит синтез ферментов, способных разрушать многие химические соединения- загрязнители среды обитания. В частности, некоторые плазмидосодержащие бактерии способны разлагать до безвредных соединений нефть и нефтепродукты, оказавшиеся в среде в результате различных аварий или других неблагоприятных причин.

Однако генетическая инженерия - это превращение генетического материала, которое в природе отсутствует. Следовательно, продукты генной инженерии - это абсолютно новые продукты, не существующие в природе. Поэтому она сама по себе из-за неизвестности ее продуктов таит опасность как для природы и среды обитания, так и для персонала, работающего в лабораториях, где используют методы генетической инженерии или работают со структурами, созданными в ходе генно-инженерных работ.

Поскольку возможности клонирования генов безграничны, то еще в самом начале этих исследований среди ученых возникли вопросы о природе создаваемых организмов. Одновременно были высказаны предположения о ряде нежелательных последствий этой методологии, причем эти предположения нашли поддержку и среди широкой общественности. В частности, появились раз- ногласия о свойствах бактерий, получивших в генно-инженерных экспериментах гены животных. Например, сохраняют ли бактерии Е. coli свою видовую принадлежность из-за содержания введенных в них генов животного происхождения (например, гена инсулина) или их следует считать новым видом? Далее, насколько долговечны такие бактерии, в каких экологических нишах они могут

существовать? Но самое главное стало заключаться в появлении опасений, что в ходе производства и манипуляций с рекомбинантными молекулами ДНК могут быть созданы генетические структуры со свойствами, непредвиденными и опасными для здоровья человека, для исторически сложившегося экологического равновесия. Тогда же начались и призывы к мораторию на генетическую инженерию. Эти призывы вызвали международный резонанс и привели к международной конференции, которая состоялась в 1975 г. в США и на которой широко обсуждались возможные последствия исследований в этой области. Затем в странах, где стала развиваться генетическая инженерия, были выработаны правила работы с рекомбинантными молекулами ДНК. Эти правила направлены на исключение попадания в среду обитания продуктов деятельности генно-инженерных лабораторий.

Другой аспект нежелательных последствий генно-инженерных работ связан с опасностью для здоровья персонала, работающего в лабораториях, где применяют методы генетической инженерии, поскольку в таких лабораториях используют фенол, этидий бромид, УФ-излучения, которые являются вредными для здоровья факторами. Кроме того, в этих лабораториях существует возможность заражения бактериями, содержащими рекомбинантные молекулы ДНК, контролирующие нежелательные свойства, например лекарственную резистентность бактерий. Эти и другие моменты определяют необходимость повышения уровня техники безопасности в генноинженерных работах.

Наконец, широко обсуждаются в обществе проблемы опасности генетически модифицированных продуктов (генетически изме- ненных томатов, картофеля, кукурузы, сои), а также таких продуктов, как хлеб, пасты, конфеты, мороженое, сыр, растительное масло, мясные продукты, которые в ряде стран, особенно в США, приобрели широкое распространение. На протяжении 12 000 лет сельского хозяйства человек употреблял продукты естественного происхождения. Поэтому предполагают, что с генетически модифицированной пищей в организм человека попадут новые токсины, аллергены, бактерии, канцерогены, что приведет к совершенно новым болезням будущих поколений. В связи с этим возникает вопрос о подлинно научной оценке генетически модифицированной пищи.

ВОПРОСЫ ДЛЯ ОБСУЖДЕНИЯ

1. Что понимают под генной, клеточной и генетической инженерией? Есть ли разница между этими понятиями и молекулярном клонировании?

2. В чем заключается прогрессивность генетической инженерии по сравнению с другими методами, используемыми в биологии?

3. Перечислите основные «инструменты» генной инженерии.

4. Что представляют собой ферменты-рестриктазы, каковы их свойства и их роль в генной инженерии?

5. Все ли рестриктазы образуют «липкие» концы исследуемых ДНК и зависит ли структура «липких» концов от вида рестриктазы?

6. Дайте определение генетическим векторам. Существуют ли природные векторы?

7. Как получают генетические векторы в лабораторных условиях? Какие биологические объекты являются исходным материалом для получения векторов?

8. Какова предельная длина последовательностей азотистых оснований ДНК, которые еще могут включиться в генетический вектор? Различаются ли векторы по «мощности»?

9. Охарактеризуйте свойства ДНК-лигазы и определите ее роль в генной инженерии.

10. Как смыкают клонируемый сегмент ДНК (ген) с генетическим вектором?

11. Какова частота введения рекомбинантных молекул ДНК в бактериальные клетки?

12. На каком принципе основана селекция бактериальных клеток, содержащих рекомбинантные молекулы ДНК? Приведите один из примеров такой селекции.

14. Многие штаммы бактерий обладают одинаковыми ферментами, практически одинаково обеспечивающими их метаболизм. Между тем нуклеотидная специфичность систем рестрикции-модификации бактерий различна. Можете ли вы объяснить это явление?

15. Почему последовательности ДНК, представляющие сайты распознавания рестриктазами, не могут содержать более восьми пар оснований?

16. Сколько раз последовательность ГГЦЦ, распознаваемая рестриктазой Нае III, будет встречаться в сегменте ДНК длиной в 50 000 пар оснований с 30-, 50- и 70-процентным содержанием ГЦ?

17. Рестриктазы Bam HI и Bgl I плавят последовательности Г ГАТЦЦ и Т ГАТЦА соответственно. Можно ли включить в сайт Bam HI фрагменты ДНК, продуцированные Bgl I-рестрикцией? Если да, то почему? Если используемая плазмида (вектор) содержит один сайт для рестрикции Bgl I, то на какой питательной среде можно осуществить селекцию бактерий, эту плазмиду?

18. Вычислите частоту трансформации бактерий на одну молекулу ДНК, если на 5000 плазмидных пар оснований образуется 5-10 5 трансформантов?

19. Можно ли клонировать 0-пункт репликации ДНК Е. coli и если да, то каким образом?

20. Можно ли определить, сколько необходимо молекул ДНК для трансформации одной клетки Е. coli?

21. Можно ли с помощью полимеразной цепной реакции определить сайт сплайсинга на мРНК?

22. Каким образом можно использовать полимеразную цепную реакцию для того, чтобы ввести желаемый сайт рестрикции в интересующее место на фрагменте ДНК, предназначенном для клонирования?

23. Назовите методы клеточной инженерии в применении к животным. Какова хозяйственная ценность животных, получаемых этими методами?

24. Дайте определение понятиям «трансгенные растения» и «трансгенные животные». Сохраняют ли трансгенные организмы свою видовую принадлежность или их можно считать организмами новых видов?

25. Что такое гибридомы и моноклональные антитела? Как их получают?

26. Применима ли клеточная инженерия к человеку?

27. Допустим, что инъекция чужеродной ДНК в яйцеклетку мыши и имплантация оплодотворенной таким путем яйцеклетки в организм мыши закончились ее беременностью и рождением мышат, содержащих в геноме копии инъецированной ДНК. Однако мышата оказались мозаиками, т.е. одни их клетки содержат копии инъецированной ДНК, другие лишены этой ДНК. Можете ли вы объяснить природу этого явления?

28. Считаете ли вы генетически опасной пищу, приготовленную из генетически измененных продуктов?

29. Необходима ли научная экспертиза генетически измененных продуктов питания?

Познание определяется тем, что утверждается нами как Истина.

П.А. Флоренский, 1923

(ДНК и РНК) и генетики микроорганизмов. Она занимается расшифровкой структуры , синтезом химическим или биохимическим путем, клонированием , вставкой выделенных или вновь синтезированных в организмов с целью направленного изменения их наследственных свойств. Генная инженерия осуществляет вековую мечту человечества — управление .

Два открытия сделали возможным создание генной инженерии. Первое из них — открытие специфических — , названных рестриктазами. Рестриктазы рвут, разрезают последовательность нуклеотидов в ДНК, но не где попало, а только в тех местах, где имеется сочетание определенных нуклеотидов, узнаваемое только данной рестриктазой. Эти «умные» выделяют из микроорганизмов, которых они защищают от чужой генетической информации (например, от ДНК ). С помощью рестриктаз можно получать разрезанные по одинаковым местам части ДНК, например включающие последовательность нуклеотидов, кодирующую определенный . Таким может быть инсулин, необходимый для лечения диабета, человеческий или же , применяемый для лечения вирусных заболеваний.

Важен для генной инженерии и другой — лигаза, «пришивающий» отрезки ДНК один к другому. С его помощью можно, смешав в пробирке растворы разных разрезанных (рестриктированных) молекул ДНК, сшить их в один , т. е. соединить одну последовательность с другой.

Второе открытие, лежащее в основе генной инженерии, — размножающиеся в генетические элементы. Это кольцевые молекулы ДНК относительно небольшой длины (не более 100 тыс. нуклеотидных пар). Их называют . Возможно, берут начало от так называемых умеренных фагов (см. ) — , не убивающих бактериальную , а передающихся из поколения в поколение . и умеренные могут передаваться от к , и , входящие в состав их кольцевой ДНК, могут быть матрицами для синтеза специфических по обычному механизму — через информационную (матричную) РНК с участием рибосом хозяина (см. , ). Плазмидная и фаговая ДНК могут также разрезаться рестриктазами и сшиваться лигазами.

Генная инженерия возникла, когда ученые установили, что с помощью рестриктаз и лигаз можно вставить в или умеренный фаг чужеродные , а затем заразить ими . Трудности со вставкой в бактериальные и фаги (их называют векторами, переносчиками) высших организмов были быстро преодолены. Сейчас генные инженеры усердно ищут умеренные , которые смогли бы стать безопасными векторами для .

Уже сейчас генная инженерия может дать в неограниченном количестве и другие человека, необходимые для лечения генетических болезней (например, инсулин, и др.). Их синтезируют размножаемые в больших количествах , в которые были введены соответствующие . В ближайшем будущем этим путем будут получены ингибиторы (замедлители) злокачественных опухолей, для лечения вирусных болезней, энкефалины и эндорфины для лечения психических заболеваний. В принципе можно заставить синтезировать мяса или молока. В конце нашего века, вероятно, будет решена проблема направленного изменения высших растений, что произведет революцию в сельском хозяйстве. В первую очередь речь пойдет о создании

1. Возможности генной инженерии. 4

2. История генной инженерии. 6

3. Генная инженерия как наука. Методы генной инженерии. 10

4. Области применения генной инженерии. 12

5. Научные факты опасности генной инженерии. 18

Заключение. 22

Список литературы.. 23

Введение

Тема генной инженерии в последнее время пользуется все большей популярностью. Больше всего внимания уделяется негативным последствиям, к которым может привести развитие этой отрасли науки, и в совсем малой степени освещается польза, которую может принести генная инженерия.

Наиболее многообещающая область применения - это производство лекарственных препаратов с использованием генно-инженерных технологий. Недавно появилась возможность получать полезные вакцины на основе трансгенных растений. Не меньший интерес представляет производство пищевых продуктов с использованием все тех же технологий.

Генная инженерия - наука будущего. На данный момент во всем мире миллионы гектаров земли засеваются трансгенными растениями, создаются уникальные медицинские препараты, новые продуценты полезных веществ. Со временем генная инженерия позволит добиться новых достижений в медицине, сельском хозяйстве, пищевой промышленности и в животноводстве.

Цель данной работы - изучить особенности возможности, историю развития и области применения генной инженерии.

1. Возможности генной инженерии

Важной составной частью биотехнологии является генетическая инженерия. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств. В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин. Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100 г кристаллического инсулина требуется 800-1000 кг поджелудочной железы, а одна железа коровы весит 200 - 250 грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков. В 1978 году исследователи из компании «Генентек» впервые получили инсулин в специально сконструированном штамме кишечной палочки. Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин. Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не

отличается. Впоследствии в клетках E. coli был осуществлен синтез проинсулина, для чего на матрице РНК с помощью обратной транскриптазы синтезировали ее ДНК-копию. После очистки полученного проинсулина его расщепили и получили нативный инсулин, при этом этапы экстракции и выделения гормона были сведены к минимуму. Из 1000 литров культуральной жидкости можно получать до 200 граммов гормона, что эквивалентно количеству инсулина, выделяемого из 1600 кг поджелудочной железы свиньи или коровы.

Соматотропин - гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа: 4 - 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. Компания «Genentec» в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР. При производстве интерферона используют как E. coli, S. cerevisae (дрожжи), так и культуру фибробластов или трансформированных лейкоцитов. Аналогичными методами получают также безопасные и дешевые вакцины.

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.

Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом, можно исправлять дефектные гены и лечить наследственные заболевания.

Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, экспрессирующие мутантный ген и передающие его потомками. Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.

Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации - генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген - участок молекулы ДНК,в котором находится информация о первичной структуре какого-либо одного белка (один ген - один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.

Сейчас, даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.

2. История генной инженерии

История высоких медико-биологических технологий, генетических методов исследования, как, впрочем, и самой генной инженерии, непосредственно связана с извечным стремлением человека к улучшению пород домашних животных и возделываемых людьми культурных растений. Отбирая, определенные особи из групп животных и растений и скрещивая их между собой, человек, не имея правильного представления о внутренней сути процессов, протекавших внутри живых существ, тем не менее, многие сотни и тысячи лет создавал улучшенные породы животных и сорта растений, которые обладали определенными полезными и нужными для людей свойствами.

В XVIII и XIX веках предпринималось немало попыток выяснить, как передаются признаки из поколения в поколение. Одно важное открытие сделал в 1760 году ботаник Кельрейтер, который скрещивал два вида табака, перенося с тычинок пыльцу одного вида на пестики другого вида. Растения, полученные из гибридных семян, имели признаки, промежуточные между признаками обоих родителей. Кельрейтер сделал из этого логический вывод, что родительские признаки передаются как через пыльцу (семенные клетки), так и через семяпочки (яйцеклетки). Однако ни ему, ни его современникам, занимавшимся гибридизацией растений и животных, не удалось раскрыть природу механизма передачи наследственности. Отчасти это объясняется тем, что в те времена еще не были известны цитологические основы этого механизма, но главным образом тем, что ученые пытались изучать наследование всех признаков растений одновременно.

Научный же подход при изучении наследования определенных признаков и свойств был разработан австрийским католическим монахом Грегором Менделем, который летом 1865 года приступил к своим опытам по гибридизации растений (к скрещиванию различных сортов гороха) на территории своего монастыря. Он и открыл впервые основные законы генетики. Грегор Мендель достиг успеха, потому что изучал наследование отдельных, четко отличающихся один от другого (контрастирующих) признаков, подсчитывал число потомков каждого типа и тщательно вел подробные записи всех своих опытов по скрещиванию. Знакомство с основами математики позволило ему правильно истолковать полученные данные и выдвинуть предположение о том, что каждый признак определяется двумя наследственными факторами. Талантливому монаху-исследователю удалось позднее ясно показать, что наследственные свойства не смешиваются, а передаются потомству в виде определенных единиц. Это блестящее умозаключение было впоследствии полностью подтверждено, когда удалось увидеть хромосомы и выяснить особенности разных видов клеточного деления: митоза (соматических клеток - клеток тела), мейоза (половых, воспроизводящих, герминативных) и оплодотворения.

Мендель сообщил об итогах своих работ на собрании Брюннского общества естествоиспытателей и опубликовал их в трудах этого общества. Значение полученных им результатов не было понято его современниками, и эти исследования не привлекали внимания со стороны ученых-селекционеров и естествоиспытателей в течение почти 35 лет.

В 1900 году, после того как стали известны подробности деления клеток по типу митоза, мейоза и самого оплодотворения, три исследователя - де Фриз в Голландии, Корренс в Германии и Чермак в Австрии - провели ряд опытов и независимо друг от друга вторично открыли законы наследственности, описанные ранее Менделем. Позднее, обнаружив статью Менделя, в которой эти законы были ясно сформулированы за 35 лет до них, эти ученые единодушно воздали должное ученому-иноку, назвав два основных закона наследственности его именем.

В первом десятилетии XX века были проведены опыты с самыми разнообразными растениями и животными, а также сделаны многочисленные наблюдения, касающиеся наследования признаков у человека, которые ясно показали, что у всех этих организмов наследственность подчиняется тем же основным законам. Было установлено, что описанные Менделем факторы, определяющие отдельный признак, находятся в хромосомах клеточного ядра. Впоследствии, в 1909 году, эти единицы были названы датским ботаником Иогансеном генами (от греческого слова «ге-нос» - род, происхождение), а американский ученый Уильям Сэттон заметил удивительное сходство между поведением хромосом во время образования гамет (половых клеток), их оплодотворением и передачей менделевских наследственных факторов - генов. На основании этих гениальных открытий и была создана так называемая хромосомная теория наследственности.

Собственно говоря, сама генетика как наука о наследственности и изменчивости живых организмов и о методах управления ими, возникла в начале XX века. Американский ученый-генетик Т. Морган вместе со своими сотрудниками провел многочисленные опыты, позволившие раскрыть генетическую основу определения пола и объяснить ряд необычных форм наследования, при которых передача признака зависит от пола особи (так называемые признаки, сцепленные с полом). Следующий крупный шаг вперед был сделан в 1927 году, когда Г. Меллер установил, что, облучая плодовую муху-дрозофилу и другие организмы рентгеновскими лучами, можно искусственно вызывать у них изменения генов, то есть мутации. Это позволило получить множество новых мутантных генов - дополнительный материал для изучения наследственности. Данные о природе мутаций послужили одним из ключей к пониманию и строению самих генов.

В 20-е годы нашего века советскими учеными школы А.С. Серебровского были проведены первые опыты, показавшие насколько сложно устроен ген. Эти представления и были использованы Дж. Уотсоном и Ф. Криком, которым удалось в 1953 году в Англии создать модель ДНК и расшифровать генетический код. Развернутая затем научно-исследовательская работа, связанная с целенаправленным созданием новых комбинаций генетического материала, и привела к появлению самой генной инженерии.

Одновременно, в 40-х годах, началось опытное изучение отношений между генами и ферментами. С этой целью был широко использован другой объект - плесневый гриб Neurospora, у которого можно было искусственно получать и исследовать ряд биохимических мутаций, связанных с выпадением того или иного особого фермента (белка). В течение двух последних десятилетий самыми распространенными объектами генетических исследований были кишечная палочка (Escherichia coli) и некоторые бактериофаги, поражающие эту бактерию.

С самого начала XX века наблюдался неослабевающий интерес к изучению наследования определенных (специфических) признаков у человека и к наследственной передаче желательных и нежелательных признаков у домашних животных и культурных растений. Опираясь на все более глубокое знание генетических закономерностей, ученые-генетики и селекционеры научились почти по заказу выводить породы скота, способные выживать в условиях жаркого климата, коров, дающих много молока с высоким содержанием жира, кур, несущих крупные яйца с тонкой скорлупой, сорта кукурузы и пшеницы, обладающие высокой устойчивостью к определенным болезням.

В 1972 году в США в лаборатории П. Берга была получена первая гибридная (рекомбинантная) ДНК. Захватывающие идеи в области генетики человека и генетические методы исследования стали широко разрабатываться и применяться и в самой медицине. В 70-е годы началась расшифровка генома человека. Вот уже более десятков лет существует проект под названием «Геном человека». Из 3 миллиардов пар нуклеотидов, расположенных в виде сплошных непрерывных пассажей, прочтено пока всего около 10 миллионов знаков. Вместе с тем создаются и новые генетические методики, которые увеличивают скорость прочтения ДНК. Директор медико-генетического Центра Российской Академии медицинских наук В.И. Иванов определенно полагает, что «весь геном будет прочитан примерно к 2020 году».

3. Генная инженерия как наука. Методы генной инженерии

Генетическая инженерия - конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или иначе - создание искусственных генетических программ (Баев А.А.). По Э.С. Пирузян генетическая инженерия - система экспериментальных приемов, позволяющих конструировать лабораторным путем (в пробирке) искусственные генетические структуры в виде так называемых рекомбинантных или гибридных молекул ДНК.

Речь идет о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма с последующим введением их в живой организм. При этом рекомбинантные ДНК становятся составной частью генетического аппарата рецепиентного организма и сообщают ему новые уникальные генетические, биохимические, а затем и физиологические свойства.

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.

Технология рекомбинантных ДНК использует следующие методы:

Специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

Быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

Конструирование рекомбинантной ДНК;

Гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью, основанную на их способности связывать комплементарные последовательности нуклеиновых кислот;

Клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

Введение рекомбинантной ДНК в клетки или организмы.

4. Области применения генной инженерии

Совершаемые в настоящее время научные открытия в области генетики человека имеют на самом деле революционное значение, поскольку речь идет о возможности создания «карты генома человека», или «патологической анатомии генома человека». Эта генетическая карта позволит установить на длинной спирали ДНК местонахождение генов, несущих ответственность за определенные наследственные заболевания. Как полагают ученые-генетики, эти неограниченные возможности легли в основу идеи применения в клинической практике, так называемой генной терапии, представляющей собой такое направление лечения больных, которое связано с заменой пораженных генов при помощи высоких медико-биологических технологий и генной инженерии. Вторжение в состав генных систем человека и обеспечение их жизнедеятельности возможно как на уровне соматических (всяких телесных, обладающих определенными структурными и функциональными различиями) клеток тела, так и на уровне половых, воспроизводящих (герминативных) и зародышевых (эмбриональных) клеток.

Генная инженерия как разновидность терапии - лечения определенного генетически обусловленного заболевания - связана с поставкой соответствующей недефектной молекулы ДНК с целью замены при помощи ее того гена - участка хромосомы, который содержит в себе дефект, либо для встраивания в генетический материал человека путем слияния с так называемыми соматическими клетками тела человека, имеющими генетический дефект. Задачей генной инженерии в отношении человека является оказание соответствующего целенаправленного воздействия на определенный ген для его исправления в сторону правильного функционирования и обеспечение человека, страдающего от наследственного заболевания, нормальным, неизмененным вариантом гена. В отличие от медикаментозной, лекарственной терапии такая терапия, называемая генной инженерией, сможет, по всей видимости, предоставить больному длительное, пролонгированное, высокоэффективное, приносящее большое облегчение и пользу лечение.

Однако все современные методы введения ДНК в живые организмы не способны направить и доставить ее к определенной популяции клеток, содержащих измененный и потому превратно функционирующий ген. Другими словами, так называемый направленный перенос, транспорт генов в условиях организма (в модели «in vivo») в настоящее время невозможен.

Иной методологический подход, основанный на извлечении из организма больного определенной популяции клеток, содержащих пораженный ген, и манипуляции с генетическим материалом путем замены дефектных генов в клетках при помощи генной инженерии (в модели «in vitro») и возвращении их в то место в организме, откуда они были взяты у больного, в настоящее время в условиях медико-генетических центров возможен. Этот метод генной терапии посредством генной инженерии уже был использован при опытной попытке излечить двух больных, страдавших редким генетически обусловленным заболеванием, так называемой бета-талассемией, которое, подобно серповидно-клеточной анемии, также вызывается наличием в эритроцитах неправильно устроенного и потому неверно функционирующего белка. Суть манипуляции заключалась в том, что из костного мозга этих больных были выделены так называемые стволовые клетки, в хромосомы которых был введен ответственный за выработку нормального белка гемоглобулина участок ДНК - ген. После того как оставшиеся в костном мозге больных неправильно функционировавшие стволовые клетки были почти полностью разрушены, пациентам были введены улучшенные при помощи генной инженерии стволовые клетки. К сожалению, эти две попытки оказались клинически неудачными, так как больные скончались. Этот первый случай применения генной инженерии в условиях больничного стационара не был разрешен и не был одобрен соответствующими контрольными комитетами, и его участники были решительно осуждены за грубое нарушение правил проведения научно-исследовательских работ в области генетики человека.

Совсем к иным последствиям может привести генная инженерия воспроизводящих (половых) клеток, поскольку введение ДНК в эти клетки отличается от исправления генетического дефекта в соматических (телесных, неполовых) клетках. Известно, что внедрение других генов в хромосомы половых клеток приводит к их передаче последующим поколениям. В принципе можно представить прибавление определенных участков ДНК взамен дефектных участков к генетическому материалу каждой воспроизводящей клетки определенного человека, который поражен той или иной генетически предопределенной болезнью.

Действительно, этого удалось достичь у мышей. Так, из яичника самки была получена яйцеклетка, которая впоследствии и была оплодотворена в пробирке (in vitro), а затем в хромосому оплодотворенной яйцеклетки был введен инородный участок ДНК. Сама же оплодотворенная яйцеклетка с измененным геномом была имплантирована (внедрена) в материнскую матку мыши-самки. Источником инородной ДНК в одном опыте был генетический материал кролика, а в другом - человека.

Для того чтобы обнаружить в период внутриутробного развития плода вероятность рождения ребенка с определенными генетическими отклонениями, такими, например, как синдром Дауна или болезнь Тай-Сакса, применяют научно-исследовательскую методику так называемого амниоцентеза - предродового анализа, во время которого проба биологической жидкости, содержащей зародышевые клетки, берется из амниотического мешка на ранней стадии второго триместра беременности. Помимо этого, свое дальнейшее развитие получила методика извлечения различных клеток зародыша из пробы плацентарной крови матери. Полученные таким образом утробные клетки могут быть в настоящее время использованы только для выявления ограниченного числа генетически обусловленных заболеваний, при которых имеются выраженные, грубые нарушения в структуре ДНК и определяемые при помощи биохимических анализов изменения. Генная инженерия с использованием рекомбинантных ДНК при внутриутробном исследовании открывает возможность правильно поставить диагноз различных и многочисленных наследственных заболеваний.

В этом случае разрабатываются методики по созданию так называемых генных «зондов», используя которые можно установить, имеется ли в хромосоме нормальный, неизмененный ген либо присутствует аномальный, дефектный ген. Помимо того, связанная с использованием рекомбинантных ДНК генная инженерия, находящаяся на одном из этапов своего становления, в будущем позволит проводить так называемое «планирование» генов человека, с тем расчетом, чтобы определенный ген, несущий в себе искаженную, патологическую информацию и потому представляющий интерес для врачей-генетиков, мог бы быть выявлен вовремя и достаточно быстро по аналогии с методикой использования другого «меченого» гена. Эта сложная медико-биологическая методика должна помочь при определении местонахождения любого гена в утробных клетках, а не только в тех, вероятность обнаружения в которых различных нарушений осуществима при помощи методики амниоцентезиса.

В связи с этим в последние годы возникли новые разделы медико-биологических наук, такие, как, например, высокие ДНК-технологии, эмбриональная терапия и клеточная терапия (цито-терапия), то есть внутриутробное диагностирование и лечение генетически обусловленного заболевания как на этапе образования и развития зародыша (эмбриона), так и на стадии созревания плода. Вторжения в эмбриональный материал и манипуляции с ним оказывают непосредственное воздействие на наследование генетических изменений, поскольку обладают способностью передаваться из поколения в поколение. Мало того, само генетическое диагностирование начинает перерастать в генетическое прогнозирование, то есть в определение, будущей участи человека, закрепляя главные революционные перемены в самой медицине, которая в итоге проведения сложных медико-генетических опытов и методик получила возможность задолго до появления «клинической картины болезни», подчас даже до самого рождения человека, определить, какие наследственные недуги ему грозят. Таким образом, благодаря усилиям врачей-генетиков и специалистов в области генной инженерии зародилась в недрах медико-биологических наук так называемая «прогностическая медицина», то есть медицина, «делающая прогнозы на будущее».

Вместе с тем, различные технологии и методики генной инженерии позволяют предсказать еще во внутриутробном периоде развития ребенка, до его рождения, не только наличие у него определенного наследственного заболевания, но и подробно описать медико-генетические свойства растущего эмбриона и плода.

По мере накопления новых данных по генетическому картированию генома человека и описанию (секвенированию) его ДНК, а также потому, что разрабатываемые современные методы исследования ДНК-полиморфизмов позволяют сделать доступной генетическую информацию о тех или иных структурно-функциональных (включая патологические) особенностях организма человека, которые, по всей видимости, проявятся в будущем, но еще не заметны теперь, становится возможным получение при помощи медико-генетической диагностики всех генетических сведений о ребенке не только преклинически, то есть до проявления определенного наследственного заболевания, и пренатально, то есть до его рождения, но и прецептивно, то есть даже до его зачатия.

Во вполне обозримом будущем, благодаря успеху и прогрессу в области медико-генетической диагностики, можно будет по данным ДНК-диагностики достаточно уверенно судить о том, например, каким будут рост человека, его умственные способности, предрасположенность к определенным заболеваниям (в частности, к онкологическим или психическим), обреченность на проявление и развитие каких-либо наследственных болезней.

Современные медико-биологические технологии позволяют обнаруживать различные нарушения в генах, способные проявить себя и вызвать определенные недуги, не только на стадии выраженного клинически заболевания, но и тогда, когда никаких признаков патологии еще нет и сама болезнь заявит о себе не так скоро. Примерами тому могут быть поражающие человека в возрасте старше 40 лет, а то и в 70 лет, болезнь Альцгеймера и хорея Гентингтона. Однако и в этих случаях возможно обнаружение генов, способных вызвать подобные болезни у человека, даже до зачатия самого больного. Известно также, что и сахарный диабет может быть отнесен к числу таких заболеваний. Предрасположенность к этому заболеванию и сама генетически обусловленная патология передаются по наследству и могут проявить себя в случае несоблюдения определенного образа жизни в зрелом или пожилом возрасте. Можно с достаточной уверенностью заявить о том, что если оба родителя или один из них страдают от диабета, то вероятность наследования гена «диабета» либо совокупности таких генов передается детям.

При этом оказывается возможным провести соответствующие медико-биологические исследования и поставить верный диагноз при наличии микроскопически малых количеств биологического материала. Иногда для этого бывает достаточно нескольких отдельных клеток, которые будут размножены в культуре in vitro, и по ним будет получен «генетический портрет» испытуемого лица, конечно, не по всем генам его генома (их ведь десятки тысяч!), а по тем из них, в отношении которых существуют веские основания подозревать наличие определенных дефектов. Одновременное развитие методов клеточной и генной инженерии позволит на последующих этапах познания генома открыть практическую возможность произвольно, и, прежде всего в терапевтических целях, изменять последовательность и порядок генов, их состав и строение.

Медицина не единственная область применения генной инженерии. Различают генную инженерию растений, генную инженерию бактериологических клеток.

В последнее время появились новые возможности в получении «съедобных» вакцин на основе трансгенных растений.

По трансгенным растениям в мире достигнуты большие успехи. Они во многом связаны с тем, что проблема получения организма из клетки, группы клеток или незрелого зародыша у растений сейчас не представляет большого труда. Клеточные технологии, культура тканей и создание регенерантов широко применяются в современной науке.

Рассмотрим достижения в области растениеводства, которые были получены в Сибирском институте физиологии и биохимии растений СО РАН.

Так, в последние годы получен целый ряд трансгенных растений путем переноса в их геном генов ugt, acp, acb, accc и других, выделенных из различных растительных объектов.

В результате введения этих генов появились трансгенные растения пшеницы, картофеля, томата, огурца, сои, гороха, рапса, клубники, осины и некоторых других.

Введение генов производилось либо «обстрелом» тканей из «генной пушки» (конструкция которой разработана в нашем институте), или генетическим вектором на основе агробактериальной плазмиды, имеющей встроенные целевые гены и соответствующие промоторы.

В итоге образован ряд новых трансгенных форм. Вот некоторые из них.

Трансгенная пшеница (2 сорта), обладающая значительно более интенсивным ростом и кущением, предположительно более устойчива к засухе и другим неблагоприятным факторам среды. Продуктивность ее и наследование приобретенных свойств изучаются.

Трансгенный картофель, наблюдения за которым ведутся уже три года. Он стабильно дает урожай на 50--90 процентов выше контроля, приобрел практически полную устойчивость к гербицидам ауксинового ряда и, кроме того, его клубни значительно меньше «чернеют» на срезах за счет снижения активности полифенолоксидазы.

Трансгенный томат (несколько сортов), отличающийся большей кустистостью и урожайностью. В условиях теплицы его урожай — до 46 кг с квадратного метра (в два с лишним раза выше контроля).

Трансгенный огурец (несколько сортов) дает большее количество фертильных цветков и, следовательно, плодов с урожайностью до 21 кг с квадратного метра против 13,7 в контроле.

Имеются трансгенные формы и других растений, многие из которых также обладают рядом полезных хозяйственных признаков.

Генная инженерия - это наука сегодняшнего и завтрашнего дня. Уже сейчас в мире трансгенными растениями засеваются десятки миллионов гектаров, создаются новые лекарственные препараты, новые продуценты полезных веществ. Со временем генная инженерия станет все более мощным инструментом для новых достижений в области медицины, ветеринарии, фармакологии, пищевой промышленности и сельском хозяйстве.

5. Научные факты опасности генной инженерии

Следует отметить, что наряду с прогрессом, который несет в себе развитие генной инженерии, выделяют и некоторые факты опасности генной инженерии, основные из которых представлены ниже.

1. Генная инженерия в корне отличается от выведения новых сортов и пород. Искусственное добавление чужеродных генов сильно нарушает точно отрегулированный генетический контроль нормальной клетки. Манипулирование генами коренным образом отличается от комбинирования материнских и отцовских хромосом, которое происходит при естественном скрещивании.

2. В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень неполны для того, чтобы предсказать результаты.

3. В результате искусственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. В худшем случае это могут быть токсические вещества, аллергены или другие вредные для здоровья вещества. Сведения о подобного рода возможностях еще очень неполны.

4. Не существует совершенно надежных методов проверки на безвредность. Более 10% серьезных побочных эффектов новых лекарств не возможно выявить, несмотря на тщательно проводимые исследования на безвредность. Степень риска того, что опасные свойства новых, модифицированных с помощью генной инженерии продуктов питания, останутся незамеченными, вероятно, значительно больше, чем в случае лекарств.

5. Существующие в настоящее время требования по проверке на безвредность крайне недостаточны. Они совершенно явно составлены таким образом, чтобы упростить процедуру утверждения. Они позволяют использовать крайне нечувствительные методы проверки на безвредность. Поэтому существует значительный риск того, что опасные для здоровья продукты питания смогут пройти проверку незамеченными.

6. Созданные до настоящего времени с помощью генной инженерии продукты питания не имеют сколько-нибудь значительной ценности для человечества. Эти продукты удовлетворяют, главным образом, лишь коммерческие интересы.

7. Знания о действии на окружающую среду модифицированных с помощью генной инженерии организмов, привнесенных туда, совершенно недостаточны. Не доказано еще, что модифицированные с помощью генной инженерии организмы не окажут вредного воздействия на окружающую среду. Экологами высказаны предположения о различных потенциальных экологических осложнениях. Например, имеется много возможностей для неконтролируемого распространения потенциально опасных генов, используемых генной инженерией, в том числе передача генов бактериями и вирусами. Осложнения, вызванные в окружающей среде, вероятно, невозможно будет исправить, так как выпущенные гены невозможно взять обратно.

8. Могут возникнуть новые и опасные вирусы. Экспериментально показано, что встроенные в геном гены вирусов могут соединяться с генами инфекционных вирусов (так называемая рекомбинация). Такие новые вирусы могут быть более агрессивными, чем исходные. Вирусы могут стать также менее видоспецифичными. Например, вирусы растений могут стать вредными для полезных насекомых, животных, а также людей.

9. Знания о наследственном веществе, ДНК, очень неполны. Известно о функции лишь трех процентов ДНК. Рискованно манипулировать сложными системами, знания о которых неполны. Обширный опыт в области биологии, экологии и медицины показывает, что это может вызвать серьезные непредсказуемые проблемы и расстройства.

10. Генная инженерия не поможет решить проблему голода в мире. Утверждение, что генная инженерия может внести существенный вклад в разрешение проблемы голода в мире, является научно необоснованным мифом.

Заключение

Генная инженерия - это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механическая сумма генов, а сложная, сложившаяся в процессе эволюции организмов система. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим.

Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения генов, прежде всего, связано с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

Список литературы

2. Ли А., Тинланд Б. Интеграция т-ДНК в геном растений: прототип и реальность // Физиология растений. 2000. - Том 47. - № 3.

3. Лутова Л. А., Проворов Н. А., Тиходеев О. Н. и др. Генетика развития растений. - СПб.: Наука, 2000. - 539с.

4. Лядская М. Генная инженерия может все - даже вырастить вакцину в огороде // Фармацевтический вестник. - 2000. - №7.

5. Романов Г. А. Генетическая инженерия растений и пути решения проблемы биобезопасности // Физиология растений, 2000. - Том 47. - № 3.

6. Саляев Р. Мифы и реальности генной инженерии // Наука в Сибири. - 2002. - №7.

7. Фаворова О. О. Лечение генами - фантастика или реальность? // Фармацевтический вестник. - 2002. - №5.


Кузьмина Н.А. Основы биотехнологии: учебное пособие. - Омск: ОГПУ, 2001. - 256с.

Лутова Л. А., Проворов Н. А., Тиходеев О. Н. и др. Генетика развития растений. - СПб.: Наука, 2000. - 539с.

Лядская М. Генная инженерия может все - даже вырастить вакцину в огороде // Фармацевтический вестник. - 2000. - №7.

Кузьмина Н.А. Основы биотехнологии: учебное пособие. - Омск: ОГПУ, 2001. - 256с.

Фаворова О. О. Лечение генами - фантастика или реальность? // Фармацевтический вестник. - 2002. - №5.

Саляев Р. Мифы и реальности генной инженерии // Наука в Сибири. - 2002. - №7.

Кузьмина Н.А. Основы биотехнологии: учебное пособие. - Омск: ОГПУ, 2001. - 256с.