Хроматин представляет собой белки (негистоновые и гистоновые) и комплекс нуклеиновых кислот (РНК и ДНК), которые своей совокупностью образуют в пространстве высокоупорядоченные структуры - хромосомы эукариот.

В хроматине соотношение белка и ДНК - приблизительно 1:1, основная масса белка представлена гистонами.

Виды хроматина

По своей структуре хроматин неоднороден. Условно весь хроматин подразделяется на две функциональные категории:

1) неактивная - гетерохроматин - содержит в себе в данный момент несчитываемую генетическую информацию;

2) активная - эухроматин - именно с него производится считывание генетической информации.

Соотношение содержания гетерохроматина и эухроматина постоянно находится в подвижной стадии. Зрелые клетки, к примеру крови, имеют ядра, характеризующиеся конденсированным, наиболее плотным хроматином, лежащим глыбками.

В ядрах соматических женских клеток глыбки хроматина сближены с мембраной ядра - это женский хроматин половой клетки.

Половой мужской хроматин представлен глыбкой в мужских соматических клетках, светящийся при окраске флюорохромами. Половой хроматин дает возможность устанавливать по клеткам, полученным из околоплодной жидкости беременной женщины, пол будущего ребенка.

Строение хроматина

Хроматин - нуклеопротеид клеточного ядра, который является основной составляющей хромосом.

Состав хроматина:

Гистоны - 30-50%;

Негистоновые белки - 4-33%;

ДНК - по массе 30-40%;

В зависимости от природы объекта, а также от способа выделения хроматина размеры молекул ДНК, число РНК, негистоновых белков колеблются в широких пределах.

Функции хроматина

Хроматин и хромосома по химической организации (комплекс ДНК с белками) друг от друга не отличаются, они переходят взаимно друг в друга.

В интерфазе различать отдельные хромосомы не представляется возможным. Они слабоспирализованны, образуют разрыхленный хроматин, распределяющийся по всему объему ядра. Как раз разрыхление структуры и считается требуемым условием для транскрипции, передачи информации наследственного характера, имеющейся в ДНК.

Кариотип

Кариотип (от карио... и греч. tэpos - образец, форма, тип), хромосомный набор, совокупность признаков хромосом (их число, размеры, форма и детали микроскопического строения) в клетках тела организма того или иного вида. Понятие кариотип введено сов. генетиком Г. А. Левитским (1924). Кариотип - одна из важнейших генетических характеристик вида, т.к. каждый вид имеет свой кариотип, отличающийся от кариотипа близких видов (на этом основана новая отрасль систематики - так называемая кариосистематика).



8.Особенности морфологического и функционального строения хромосом. Гетеро- и эухроматин. (один ответ на 2 вопроса).

Хромосомы: структура и классификация

Хромосомы (греч. – chromo – цвет, soma – тело) – это спирализованный хроматин. Их длина 0,2 – 5,0 мкм, диаметр 0,2 – 2 мкм.

Метафазная хромосома состоит из двух хроматид , которые соединяются центромерой (первичной перетяжкой ). Она делит хромосому на два плеча . Отдельные хромосомы имеют вторичные перетяжки . Участок, который они отделяют, называется спутником , а такие хромосомы – спутничными. Концевые участки хромосом называются теломеры . В каждую хроматиду входит одна непрерывная молекула ДНК в соединении с белками-гистонами. Интенсивно окрашивающиеся участки хромосом – это участки сильной спирализации (гетерохроматин). Более светлые участки – участки слабой спирализации (эухроматин).

Типы хромосом выделяют по расположению центромеры.

1. Метацентрические хромосомы – центромера расположена посередине, и плечи имеют одинаковую длину. Участок плеча около центромеры называется проксимальным, противоположный – дистальным.

2. Субметацентрические хромосомы – центромера смещена от центра и плечи имеют разную длину.

3. Акроцентрические хромосомы – центромера сильно смещена от центра и одно плечо очень короткое, второе плечо очень длинное.

В клетках слюнных желез насекомых (мух дрозофил) встречаются гигантские, политенные хромосомы (многонитчатые хромосомы).

Для хромосом всех организмов существует 4 правила:

1. Правило постоянства числа хромосом . В норме организмы определенных видов имеют постоянное, характерное для вида число хромосом. Например: у человека 46, у собаки 78, у мухи дрозофилы 8.

2. Парность хромосом . В диплоидном наборе в норме каждая хромосома имеет парную хромосому – одинаковую по форме и по величине.



3. Индивидуальность хромосом . Хромосомы разных пар отличаются по форме, строению и величине.

4. Непрерывность хромосом . При удвоении генетического материала хромосома образуется от хромосомы.

Набор хромосом соматической клетки, характерный для организма данного вида, называется кариотипом .

1. Хромосомы, одинаковые в клетках мужского и женского организмов, называются аутосомами

идиограммой

Классификацию хромосом проводят по разным признакам.

1. Хромосомы, одинаковые в клетках мужского и женского организмов,называются аутосомами . У человека в кариотипе 22 пары аутосом. Хромосомы, различные в клетках мужского и женского организмов, называются гетерохромосомами, или половыми хромосомами . У мужчины это Х и Y хромосомы, у женщины – Х и Х.

2. Расположение хромосом по убывающей величине называется идиограммой . Это систематизированный кариотип. Хромосомы располагаются парами (гомологичные хромосомы). Первая пара – самые большие, 22-я пара – маленькие и 23-я пара – половые хромосомы.

3. В 1960г. была предложена Денверская классификация хромосом. Она строится на основании их формы, размеров, положения центромеры, наличия вторичных перетяжек и спутников. Важным показателем в этой классификации является центромерный индекс (ЦИ). Это отношение длины короткого плеча хромосомы ко всей ее длине, выраженное в процентах. Все хромосомы разделены на 7 групп. Группы обозначаются латинскими буквами от А до G.

Группа А включает 1 – 3 пары хромосом. Это большие метацентрические и субметацентрические хромосомы. Их ЦИ 38-49%.

Группа В . 4-я и 5-я пары – большие метацентрические хромосомы. ЦИ 24-30%.

Группа С . Пары хромосом 6 – 12: средней величины, субметацентрические. ЦИ 27-35%. В эту группу входит и Х-хромосома.

Группа D . 13 – 15-я пары хромосом. Хромосомы акроцентрические. ЦИ около 15%.

Группа Е . Пары хромосом 16 – 18. Сравнительно короткие, метацентрические или субметацентрические. ЦИ 26-40%.

Группа F . 19 – 20-я пары. Короткие, субметацентрические хромосомы. ЦИ 36-46%.

Группа G . 21-22-я пары. Маленькие, акроцентрические хромосомы. ЦИ 13-33%. К этой группе относится и Y-хромосома.

4. Парижская классификация хромосом человека создана в 1971 году. С помощью этой классификации можно определять локализацию генов в определенной паре хромосом. Используя специальные методы окраски, в каждой хромосоме выявляют характерный порядок чередования темных и светлых полос (сегментов). Сегменты обозначают по названию методов, которые их выявляют: Q – сегменты – после окрашивания акрихин-ипритом; G – сегменты – окрашивание красителем Гимза; R – сегменты – окрашивание после тепловой денатурации и другие. Короткое плечо хромосомы обозначают буквой p, длинное – буквой q. Каждое плечо хромосомы делят на районы и обозначают цифрами от центромеры к теломеру. Полосы внутри районов нумеруют по порядку от центромеры. Например, расположение гена эстеразы D – 13p14 – четвертая полоса первого района короткого плеча 13-й хромосомы.

Функция хромосом : хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.

Хромосомы (от греч. Хромаmoc - окрашенный, сома - тельце ) - структуры ядра, которые являются материальными носителями наследственной информации. Эти органеллы ядра образуются в результате уплотнения и спирализации хроматина и становятся заметными при делении клетки. На стадии метафазы хромосомы выстраиваются на экваторе клетки, образуя метафазную пластинку. Состоят хромосомы с ДНК, РНК, ядерных белков и ферментов, необходимых для их удвоение или синтеза иРНК.

Количество хромосом в клетках организмов разных видов различна и не зависит от высоты организации, а также не всегда указывает на филогенетическую родство.

Количество хромосом у некоторых видов

Строение . В строении метафазной хромосомы выделяют хроматиды, первичную перетяжку, плечи, вторичную перетяжку, спутники, ядрышковые организаторы, теломеры и др. Каждая такая хромосома состоит из двух продольных частей - хроматид. Первичная перетяжка (центромера) - наиболее спирализована часть хромосомы, разделяет ее на два плеча. На ней располагаются специальные белки (кинетохора), к которым при распределении генетического материала прикрепляются нити веретена деления. Некоторые хромосомы имеют вторичные перетяжки, часто отделяют участки хромосом, названные спутниками. Такие хромосомы в ядрах клеток могут приближаться друг к другу и образовывать ядрышковые организаторы, содержащие гены рРНК. Концы плеч получили название теломеров. Это генетически неактивные спирализовани участки, препятствующие соединению хромосом между собой или с их фрагментами.

Разновидности . Хромосомы отличаются размерами, формой, расположением перетяжек, степенью спирализации и тому подобное. По размеру и форме хромосомы можно сгруппировать парами, и эти парные хромосомы называют го-

1- центромерных участок хромосомы; 2 - теломерные участок; 3 - дочерние хроматиды; 4 - гетеро- хроматин; 5-эухроматин; 6 - малое плечо, 7 - большое плечо.

мологичнимы, а хромосомы разных пар будут друг относительно друга негомологические. Расположение перетяжек также позволяет разделить хромосомы на группы. Если перетяжка расположена посередине, а плечи имеют одинаковые размеры, то хромосомы называют ривноплечовимы, если же размеры плеч существенно отличные - неривноплечовимы. Хромосомы могут находиться в двух состояниях: в спираль изованому (митоза хромосомы ) и деспирализованому (интерфазного хромосомы ). При сравнении хромосомных наборов мужских и женских особей одного вида наблюдается различие в одной паре хромосом. Эта пара получила название половых хромосом, или гетерохромосом. Остальные пары гомологичных хромосом, одинаковых у обоих полов, имеют общее название аутосомы. Для выяснения работы наследственного аппарата необходимо изучать хромосомы не только во время митоза, но и на стадии интерфазы. В некоторых насекомых и других организмов интерфазного хромосомы гораздо толще и их хорошо видно в световой микроскоп. Политеннихромосомы - хромосомы, которые представляют собой пучок многочисленных (более 1000) растянутых в длину хроматид. Образуются эти хромосомы в результате многократной репликации и нерасхождения дочерних хромосом. Во время эксперимента по специальной окраской в них было обнаружено чередование светлых (деконденсовани участка) и темных (конденсированные участки) полос. Количество, размеры и расположение этих полос являются специфическими для вида. Бывают политенные хромосомы у некоторых насекомых, в эндосперме семян, эмбриональных тканях растений и тому подобное. Изучают политенные хромосомы для: а) выяснение работы генов, которые нужны в данный момент клетке (светлые развернутые полосы ДНК - пуфы - доступны для транскрипции) б) построения генетических карт; в) выявление хромосомных перестроек; г) выявление видовой принадлежности организмов и др.

Организация . Хромосомы имеют несколько уровней организации.

1. Организация хромонем. Молекулы ДНК на этом уровне организации хромосом спирально оплетают извне особые ядерные частицы из молекул гистонов, которые называют нуклеосомами. Каждая нуклеосома содержит в себе 8 белковых молекул. Нити нуклеосом с ДНК попарно закручиваются, образуя хромонемы (ДНК + нуклеосомы = хромонемы).

2. Организация хроматид. Хромонемы спирализуеться с образованием компактных хроматид.

3. Организация хромосом. Хроматиды после самоудвоения и суперспирализации образуют двохроматидни хромосомы.

Биологическое значение хромосом определяется такими их функциями, как: а) сохранение наследственной информации; б) контроль обмена веществ путем регуляции образования необходимых ферментов в) обеспечение роста клеток путем управления синтезом структурных белков; г) обеспечение развития клеток путем контроля за процессами дифференцировки; д) обеспечение условий удвоение ДНК и деления клеток.

Понятие о кариотипе

Кариотип - совокупность признаков хромосомного набора (количество хромосом, форма, размеры ). Каждому виду организмов присущ определенный кариотип. Основными правилами, характеризующих кариотип, являются:

правило специфичности - особенности кариотипа особей того или иного вида зависят от количества, размеров и формы хромосом;

правило стабильности - каждый вид эукариотических организмов имеет определенную и постоянную количество хромосом (например, у дрозофилы - 8 хромосом, у человека - 46);

правило парности- в диплоидному наборе каждая хромосома имеет себе пару, подобную по размерам и форме;

правило индивидуальности - каждая пара гомологичных хромосом характеризуется своими особенностями;

правило преемственности (непрерывности ) - благодаря способности хромосом к авторепродукции во время деления клетки в следующих поколениях клеток одного вида сохраняется не только постоянное число хромосом, но и их индивидуальные особенности.

Хромосомный набор бывает диплоидным, гаплоидным, полиплоидный.

Гаплоидный набор - это половинный набор, в котором все хромосомы отличаются друг от друга по строению (его условно обозначают 1п).

Диплоидный набор - это парный набор, в котором каждая хромосома имеет парную хромосому, сходную по строению и размерам (его условно обозначают 2п).

Полиплоидный набор - это набор хромосом, кратный гаплоидному (его условно обозначают 3п, 4п, 5п и т.д.).

БИОЛОГИЯ + Американские ученые Элизабет Блэкберн, Кэрол Грейдер и Джек Шостак выяснили, каким чипом хромосомы сохраняют свою целостность при делении клетки. Они обнаружили, что причина этого - в кончиках хромосом, известных как теломеры (их фермент - теломераза ) . Эти ученые предположили, что раковые клетки используют фермент теломеразу для обеспечения своего неконтролируемого деления. Кроме того, постепенное сокращение размеров теломеров с возрастом считается одним из основных механизмов старения. Дефекты теломеров также с причинами нескольких наследственных болезней кожи и легких. За эти исследования эти ученые стали обладателями Нобелевской премии 2009 года в области медицины и физиологии.

Omnis cellula e cellula

латинская пословица

Понятие о кариотипе человека .

Число, размеры и форма хромосом являются специфическими признаками для каждого вида живых организмов. Так, в клетках рака-отшельника содержится по 254 хромосомы, а у комара – только 6. Соматические клетки человека содержат 46 хромосом.

Совокупность всех структурных и количественных особенностей полного набора хромосом, характерного для клеток конкретного вида живых организмов, называется кариотипом.

Кариотип будущего организма формируется в процессе слияния двух половых клеток (сперматозоида и яйцеклетки). При этом объединяются их хромосомные наборы. Ядро зрелой половой клетки содержит половинный набор хромосом (для человека – 23). Подобный одинарный набор хромосом, аналогичный таковому в половых клетках, называется гаплоидным и обозначается – n . При оплодотворении яйцеклетки сперматозоидом в новом организме воссоздаётся специфический для данного вида кариотип, включающий у человека 46 хромосом. Полный состав хромосом обычной соматической клетки является диплоидным (2 n ) .

В диплоидном наборе каждая хромосома имеет аналогичную по размеру и расположению центромеры другую парную хромосому. Такие хромосомы называются гомологичными . Гомологичные хромосомы не только похожи друг на друга, но и содержат гены, отвечающие за одни и те же признаки.

При анализе соматических клеток женского организма в норме можно четко выделить 23 пары гомологичных хромосом. В то же время в кариотипе мужчины обнаруживается одна пара хромосом, отличающихся друг от друга по размеру и форме. Одна из них – довольно большая субметацентрическая хромосома, которую обозначили Х, другая – маленькая акроцентрическая – Y . Было доказано, что эти хромосомы определяют пол организма и содержат большинство генов, отвечающих за формирование гениталий, поэтому они получили название половых хромосом.

Кариотип женщины в норме содержит две Х-хромосомы, и его можно записать – 46, ХХ.

Кариотип мужчины включает Х- и Y -хромосомы (46, Х Y ).

Все остальные 22 пары хромосом получили название аутосомы. Каждой паре аутосом в порядке убывания их размеров присвоен свой номер от 1 до 22. Самыми длинными являются хромосомы 1-й пары, а самыми короткими – 21-й.

В 1960 году в г. Денвере (США) была принята первая классификация хромосом человека, которая учитывала их размеры и расположение центромеры. Универсальная система регистрации результатов анализа хромосом унифицировала клиническую оценку кариотипа человека независимо от того, в какой цитогенетической лаборатории проводилось исследование. С 1995 года во всем мире применяется Международная система для цитогенетической номенклатуры человека или ISCN (1995), которая опирается на новейшие достижения молекулярно-генетической диагностики.

Все аутосомы разделены на 7 групп, которые обозначили латинскими буквами. В группу А входят 3 пары самых длинных хромосом (1, 2, 3-я); группа В объединяет 2 пары крупных субметацентрических хромосом (4 и

5-я). Самой многочисленной является группа С, включающая 7 пар средних субметацентрических аутосом (с 6-й по 12-ю). По морфологическим особенностям хромосому Х трудно отличить от этой группы. Средние акроцентрические хромосомы 13, 14 и 15-й пар входят в группу D . Три пары мелких субметацентрических хромосом составляют группу Е (16, 17 и 18-я). Самые маленькие метацентрические хромосомы (19 и 20) составляют группу F . 21 и 22-я пары коротких акроцентрических хромосом включены в группу G . Y -хромосома морфологически очень похожа на аутосомы этой группы.

Термин хромосома был предложен в 1888г. немецким морфологом В.Вальдейром. Работы Д Моргана и его сотрудников установили линейность расположения генов по длине хромосомы.

Согласно хромосомной теории наследственности, совокупность генов, входящих в состав одной хромосомы, образует группу сцепления.

Хромосомы состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс. Белки составляют значительную часть вещества хромосом. На их долю приходится около 65 % массы этих структур. Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки. РНК хромосом представлена в основном продуктами транскрипции, еще не покинувшим место синтеза.

Регуляторная роль компонентов хромосом заключается в «запрещении» или «разрешении» считывания информации с молекулы ДНК.

В первой половине митоза хромосомы состоят из двух хроматид. соединенных между собой в области первичной перетяжки (центромеры ) особым образом организованного участка хромосомы, общего для обеих сестринских хроматид. Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками.

Кариотип - диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецефическим признаком и характеризующийся определённым числом и строением хромосом. Если число хромосом в гаплоидном наборе половых клеток обозначить п , то общая формула кариотипа будет выглядеть как 2п , где число п различно для разных видов.

Хромосомы — структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре.

ДНК в хромосомах упакована таким образом, что умещается в ядре, диаметр которого обычно не превышает 5 мкм (5-10- 4 см). Упаковка ДНК приобретает вид петельной структуры, похожей на хромосомы типаламповых щеток амфибий или политенных хромосом насекомых. Петли поддерживаются с помощью белков, которые узнают определенные последовательности нуклеотидов и сближают их. Строение хромосомы лучше всего видно в метафазе митоза.

Хромосома представляет собой палочковидную структуру и состоит из двух сестринских хроматид, которые удерживаются центромерой в области первичной перетяжки. Каждая хроматид а построена из хроматиновых петель. Хроматин не реплицируется. Реплицируется только ДНК.

С началом репликации ДНК синтез РНК прекращается. Хромосомы могут находиться в двух состояниях: конденсированном (неактивном) и деконденсированном (активном).

Диплоидный набор хромосом организма называют ка-риотипом. Современные методы исследования позволяют определить каждую хромосому в кариотипе. Для этого учитывают распределение видимых под микроскопом светлых и темных полос (чередование AT и ГЦ-пар) в хромосомах, обработанных специальными красителями. Поперечной исчер-ченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, очень сходный характер чередования полос в хромосомах.

Каждый вид организмов обладает постоянным числом, формой и составом хромосом. В кариотипе человека 46 хромосом — 44 аутосомы и 2 половые хромосомы. Мужчины ге-терогаметны (ХУ), а женщины гомогаметны (XX). У-хромосо-ма отличается от Х-хромосомы отсутствием некоторых аллелей (например, аллеля свертываемости крови). Хромосомы одной пары называют гомологичными. Гомологичные хромосомы в одинаковых локусах несут аллельные гены.

Кариотип человека является комплексом признаков целого набора хромосом, который присущ всем клеткам человека. Изучение кариотипа - актуальная проблема для будущих родителей, которые хотят выявить вероятность хромосомных заболеваний у их ребенка. Особенно это актуально, когда у кого-либо из родственников есть синдром Дауна или синдром Патау.

Довольно часто генетический анализ проводится родителями при не вынашивании предыдущих беременностей и бесплодии. В некоторых случаях в целях исключения хромосомной патологии проводят исследование кариотипа плода. С этой же целью дополнительно проводят УЗИ ТВП, когда исследуется воротниковый участок. Его увеличенный размер, свидетельствует о наличии патологического процесса.

Что такое кариотип

Понятие о кариотипе получило распространение на этапе исследования в медицине генетических заболеваний, когда стали активно изучать строение и функции хромосом. Получили открытие синдром Эдвардса, синдром Клайнфельтера. Кариотип, представляющий собой клеточный хромосомный комплекс, является постоянным. У человека нормой является наличие хромосом, количество которых равно 46. Из них 22 пары являются аутосомами и две - это половые хромосомы.

У представительниц женского пола они обозначаются как ХХ, у представителей мужского пола - ХУ. Главная особенность хромосомного набора - это видовая специфичность кариотипа. Функции хромосом заключаются в том, что каждая из них является носительницей генов, которые отвечают на наследственность.

Нормальный мужской кариотип - это кариотип 46, ХУ. Нормальный женский кариотип выглядит как кариотип 46, ХХ. Набор хромосом остается неизменным на протяжении всей жизни. Поэтому сдать кариотип достаточно один раз в жизни.

Методы изучения кариотипа

Определение кариотипа имеет некоторые особенности. Проводится оно на одной из стадий клеточного цикла. Это связано с тем, что в процессе других стадий развития клетки, хромосомы труднодоступны для изучения.

Для процедуры кариотипирования используют любые клетки в процессе деления.

Нормальный кариотип человека изучается двумя способами:

  • с использованием одноядерных лейкоцитов, которые извлекаются из проб крови (их деление провоцируют с применением митогенов);
  • с использованием клеток, которые интенсивно делятся в нормальном состоянии, например, клетки кожи.

Суть процедуры заключается в том, что клетки фиксируются на этапе метафазы, затем подвергаются окрашиванию и фотографированию. Из комплекса сделанных снимков генетик составляет систематизированный кариотип, который по-другому называется идеограмма (кариограмма). Она представляет собой нумерованный комплекс аутосомных пар. Хромосомные изображения расположены вертикально. Короткие плечи находятся в верхней части. Присваивание номеров осуществляется по убыванию размеров. В конце располагается пара половых хромосом.

Показания для процедуры

Кариотипирование супругов - это важный этап в процессе планирования семьи и детей. Польза процедуры однозначна, даже при отсутствии явных показаний. Ведь в некоторых случаях человек может просто не знать о наличии у его дальних родственников различных наследственных патологий, среди которых распространены синдром Дауна, синдром Эдвардса, синдром Клайнфельтера. При определении кариотипа специалист выявит аномальную хромосому и подсчитает процент вероятности рождения малыша с генетическими заболеваниями, которые могут бывать разными.

Среди показаний к исследованию выделяют:

  • возрастную категорию;
  • отсутствие детей, когда причина не ясна;
  • ранее сделанные процедуры эко, закончившиеся безрезультатно;
  • наличие в анамнезе хромосомной патологии у мужчины или женщины (синдром Дауна, синдром Эдвардса, синдром Клайнфельтера);
  • гормональный дисбаланс (при исследовании кариотипа у женщины);
  • взаимодействие с различными реагентами химической природы, облучением;
  • вредные привычки будущей мамы или употребление ею некоторых лекарственных препаратов;
  • присутствие в анамнезе женщины ситуаций самопроизвольного прерывания процесса вынашивания ребенка;
  • брак между близкими родственниками;
  • рождение ребенка с наследственными болезнями.

Кариотип супружеской пары обычно исследуют до беременности. Однако возможно проведение процедуры в процессе вынашивания ребенка. Часто женщины желают исключить синдром Дауна. Структура наследственного материала может изучаться у плода. Этот анализ получил название пренатального кариотипирования.

Кроме того, вероятность развития хромосомного заболевания определяют посредством ультразвукового исследования зоны ТВП, когда изучают воротниковое пространство. Аббревиатура ТВП подразумевает толщину соответствующей области. Если его размер повышен, необходимы дополнительные исследования плода с целью подтверждения диагноза о наличии патологии.

Особенности подготовки к исследованию

Расшифровка кариотипа осуществляется генетиком. О том, как сдавать анализ, какие существуют правила подготовки, особенности самой процедуры расскажет специалист, выдающий направление. Исследование для кариотипа проводится посредством взятия клеток крови. Перед анализом, чтобы не было ошибки, необходимо исключить влияние тех факторов, которые могут изменить данные. Подготовка начинается за две недели. Изменить показатели могут следующие моменты:

  • острая форма любого заболевания или период обострения хронической болезни;
  • применение медикаментозных препаратов;
  • употребление алкогольных напитков или курение.

Особенности проведения манипуляции

Для изучения кариотипа у супругов производится забор венозной крови. В лаборатории из крови выделяют те лимфоциты, для которых актуальна фаза деления. На протяжении трех дней они изучаются. Методы исследования включают обработку клеток специальным веществом - митогеном. Его предназначение заключается в том, чтобы повысить скорость деления клетки. В ходе этого процесса лаборант может наблюдать хромосомы, однако его останавливают с помощью специального воздействия.

Структурная организация хромосомы лучше видна после окрашивания. Это позволяет увидеть особенности строения каждой хромосомы. После процедуры окрашивания анализируются выполненные мазки: определяют число и структуру.

Цитогенетическое исследование считается завершенные после того, как полученные результаты соотнесутся с нормальными показателями.

Кариотип и идиограмма - обязательные оставляющие исследования наследственного материала. Для изучения достаточно взятие не менее 12 клеток. В некоторых случаях изучают кариотип с аберрациями, когда проводят расширенное обследование 100 клеток.

Какие патологии выявляются

Кариотип у человека в норме представлен 46 хромосомами и обозначается как как 46ХХ или 46ХУ. При выявлении отклонений результат выглядит иначе. Примером может стать определение у женщины третьей лишней 21 хромосомы, что будет обозначаться как 46ХХ21+.

Изучение наследственного материала позволяет выявить следующие отклонения от нормы:

  1. Наличие третьей хромосомы в комплексе, что получило название трисомии (развивается синдром Дауна, при котором увеличен показатель ТВП). При наличии трисомии по 13 хромосоме возникает синдром Патау. При увеличении количества по 18-ой хромосоме - синдром Эдвардса. Появление лишней Х хромосомы (47 xxy или 48х xxy) в кариотипе у мужчины дает синдром Клайнфельтера (мозаичный кариотип).
  2. Уменьшение числа хромосом в кариотипе, то есть отсутствие одной хромосомы в паре - моносомия;
  3. Недостаток участка хромосомы, что называется делецией;
  4. Удвоение отдельной области хромосомы, то есть дупликация;
  5. Разворот хромосомного участка, получивший название инверсии;
  6. Перемещение хромосомных участков - транслокация;

Не всегда люди придают значение исследованиям наследственности. Своевременное проведение кариотипирования поможет оценить состояние генов до планирования детей. Кариотип для генотипа представляет внешнее оформление заложенных признаков. Процедура исследования наследственного материала помогает выявить патологию вовремя. Геном для кариотипа несет половину важной информации. Ее знание необходимо многим парам, которые страдают бесплодием, либо имеют в анамнезе детей, страдающих генетическими аномалиями.

Исследования кариотипа позволяют выявить следующие отклонения в состоянии генов:

  • мутации, являющиеся причинами тромбообразования и прерывания беременности;
  • изменения У-хромосомы;
  • изменения генов, приводящие к детоксикации, когда организм не в состоянии обезвреживать токсические агенты;
  • Изменения, приводящие к развитию муковисцидоза.

Помимо этого, в кариотипе человека заложена информация о предрасположенности к различным заболеваниям (инфаркт сердечной мышцы, сахарный диабет, гипертония). Исследование наследственного материала позволит вовремя начать профилактику данных болезней и сохранить высокое качество жизни на долгие годы.

Если выявлены отклонения

При выявлении отклонений в кариотипе (например, таких синдромов, как синдром Эдвардса, синдром Клайнфельтера) врач обязан разъяснить особенности возникшей патологии и ее влияния на вероятность рождения ребенка с различными генетическими заболеваниями. При этом генетик акцентирует внимание на неизлечимости хромосомных и генных аномалий. Решение о рождении ребенка при выявлении патологии кариотипа на этапе вынашивания принимают сами родители.

Врач только предоставляет всю необходимую информацию, рассказывая, что такое численность хромосом и постоянство их состава. Обнаружение аномалий у развивающегося плода - одно из медицинских показаний к прерыванию беременности. Однако окончательное решение принимает женщина.

К сожалению, патологии кариотипа не лечатся. Потому его своевременное определение поможет избежать множества проблем с планированием детей. Следует помнить, что генетики тоже могут ошибаться. Поэтому получив положительные результаты о наличии аномалии не следует опускать руки. Сдать анализ всегда можно повторно. Во время беременности дополнительно проводят УЗИ и исследование ТВП. Если же результаты подтвердились во второй раз, стоит подумать об альтернативных способах воспитания ребенка. Для многих они становятся способами реализации себя как родителя.

Вконтакте