Рассмотрим основные этапы системного анализа.

  • 1. Диагностика проблемы. Установление проблемы. Точное формулирование проблемы. Анализ логической структуры проблемы. Развитие проблемы в прошлом и будущем. Внешние связи проблемы с другими проблемами. Принципиальная разрешимость проблемы.
  • 2. Определение системы. Описание системы. Определение позиции наблюдателя. Определение объекта. Выделение элементов (определение границ разбиения системы). Определение подсистем. Определение среды.
  • 3. Анализ структуры системы. Определение уровней иерархии. Определение языка. Определение процессов управления и каналов информации. Описание подсистем и их функциональной структуры.
  • 4. Формулирование общей цели и критерия системы. Определение целей - требований надсистемы. Определение целей и ограничений среды. Формулирование общей цели. Определение критерия. Декомпозиция целей и критериев по подсистемам. Композиция общего критерия из критериев подсистем.
  • 5. Декомпозиция цели, выявление потребности в ресурсах и процессах. Формулирование целей верхнего ранга. Формулирование целей текущих процессов. Формулирование целей эффективности. Формулирование целей развития.
  • 6. Выявление ресурсов и процессов, композиция целей. Оценка существующей технологии и мощностей. Оценка современного состояния ресурсов. Оценка реализуемых и запланированных проектов. Оценка возможностей взаимодействия с другими системами. Оценка социальных факторов. Композиция целей.
  • 7. Прогноз и анализ будущих условий. Анализ устойчивых тенденций развития системы. Прогноз развития изменения среды. Предсказание появления новых факторов, оказывающих сильное влияние на развитие системы. Анализ ресурсов будущего. Комплексный анализ взаимодействия факторов будущего развития, анализ возможных сдвигов целей и критериев
  • 8. Оценка целей и средств. Вычисление оценок по критерию. Оценка взаимозависимости целей. Оценка относительной важности целей. Оценка дефицитности и стоимости ресурсов.
  • 9. Отбор вариантов. Анализ целей на совместимость. Проверка целей на полноту. Отсечение избыточных целей. Планирование вариантов достижения отдельных целей. Оценка и сравнение вариантов. Совмещение комплекса взаимосвязанных вариантов.
  • 10. Диагноз существующей системы. Моделирование социально-экономического процесса. Выявление недостатков организации производства и управления. Выявление и анализ мероприятий по совершенствованию структуры и управления организации.
  • 11. Построение комплексной программы развития. Формулирование мероприятий, проектов и программ. Определение очередности целей и мероприятий по их достижению. Распределение сфер деятельности. Распределение сфер компетенции. Разработка комплексного плана мероприятий в рамках ограничений по ресурсам времени. Распределение по ответственным организациям, руководителям и исполнителям.
  • 12. Проектирование организации для достижения целей. Назначение целей организации. Формулирование функций организации. Проектирование организационной структуры. Проектирование информационных технологий. Проектирование режимов работы. Проектирование механизмов материального и морального стимулирования .

Рассмотрим реализацию первого этапа системного анализа - диагностику проблемы.

Проблемой называется критическое рассогласование межу существующим и желаемым (необходимым) значениями эффекта, формируемого системой.

После установления факта существования проблемы наступает этап ее диагностики.

Диагностикой проблемы называется анализ величин и соотношений параметров организационно-производственной системы и внешней среды, с целью установления причин возникновения проблемы. При этом этап диагностики предполагает знания исследователем функциональной агрегатной структуры и значений параметров объекта управления при нормальном его функционировании.

Диагностика проблемы подразумевает ответ на вопросы:

Что действительно происходит в системе управления?

Каковы причины происходящего?

Что за всем этим стоит?

Первая этап в диагностировании сложной проблемы - это осознание и установление признаков нештатного поведения системы управления. Пример: низкие прибыль, сбыт, производство и качество, чрезмерные издержки, многочисленные конфликты в организации, большая текучесть кадров.

На втором этапе диагностирования проблемы оцениваются эффекты взаимодействии внутренних факторов системы и внешних факторов среды. При этом под внутренними факторами понимается величина собственного капитала, изношенность основных фондов, структура организации, квалификация персонала и т. п. Внешними факторами среды являются уровень налогов, структура спроса, цены и т. д.

Третий этап диагностирования - связан с принятием решения по устранению проблемы. При этом необходимо четко определить в каких направлениях следует двигаться, так как решение проблемы может существовать в области либо изменения функций, либо структуры, либо параметров работы организационно-производственной системы.

Проблема носит функциональный характер, если она проявляется и, соответственно, может быть решена на уровне функций организационно-производственной системы.

Например, решение проблемы возможно при переходе на выпуск нового товара или услуги; при изменении рыночного сектора; при изменении положения и характера взаимоотношений с поставщиками; при изменении форм собственности; при изменении отраслевой принадлежности и других изменений, затрагивающих основы работы организационно-производственной системы.

Проблема имеет структурный характер и может быть решена при изменении структуры организационно-производственной системы, если ее решение еще не требует изменения функций, но уже не может быть достигнуто путем изменения числовых значений отдельных параметров. Необходимость в структурных изменениях может возникать при изменении маркетинговой стратегии, разработке схожего с производимым в настоящее время нового товара, перехода на новый тип договорных отношений с существующими партнерами.

Проблема носит параметрический характер, если она может быть устранена изменением только параметров организационно-производственной системы.

Структурная схема контроля и диагностики проблемы приведена в Приложении 1.

Таким образом, из приведенных детализированных схем этапов и процедур системного анализа очевидно, что на всех этапах широко используются когнитивные операции, т.е. операции, связанные с познанием предметной области и объекта управления и с созданием их идеальной модели.

Вследствие того же разнообразия задач, решаемых методами системного анализа, и широкой области их применения не существует единого перечня и последовательности этапов исследования, пригодных для всех случаев. В зависимости от класса решаемых проблем, от стадии исследования и сферы их приложения используются различные по содержанию и последовательности этапы исследований.

Но существует некоторый перечень этапов системного анализа, состав и последовательность применения которых почти не зависит от решаемой задачи. Они чаще других применяются на различных этапах системного анализа.

1 этап . Анализ проблемы : Задачи этапа: правильное и точное формулирование проблемы, анализ логической структуры и развития проблемы во времени, определение внешних связей проблемы и оценка принципиальной ее разрешимости.

2 этап . Определение системы, анализ ее структуры. Задачи этапа: выявление специфики задачи; определение позиций наблюдателя и объекта исследования; выделение элементов системы; определение границ декомпозиции системы; определение подсистем и сферы их функционирования.

Кроме того, в зависимости от типа системы, решаются задачи: определение уровня иерархии (в больших системах); определение и спецификация процессов управления и каналов информации (в кибернетических системах) и т.д.

Произвол в выделении подсистем и реализуемых в них процессов обрекает системное исследование на неудачу. Если в технических системах, структура подсистем ясно просматривается, то в системах экономического управления все структурные соотношения весьма сильно скрыты за отношениями административной подчиненности.

При решении текущих задач экономического управления рутинные процедуры заслоняют цели и процессы развития. Выявление целей и процессов развития и отделение их от рутинных требуют от исследователя не только строгости логического мышления, но и умения найти необходимые контакты с работниками управления.

3 этап . Формулирование общей цели и критерия системы , где задачами являются: формулирование целей верхнего уровня; формулирование общих целей исследуемой системы, увязанных с целями системы более верхнего уровня; определение критерия системы; декомпозиция целей по подсистемам; формулирование критериев подсистем и композиция общего критерия системы из критериев подсистем; выявление потребностей в ресурсах и т.д.

В системном анализе ряд социальных, политических, этических и других факторов не поддаются количественной формализации, но они должны учитываться. Для учета этих факторов прибегают к субъективным оценкам экспертов.

4 этап . Выявление ресурсов и процессов, анализ факторов будущего развития, композиция целей . Задачи этапа: оценка существующих технологий и мощностей; оценка современного состояния ресурсов; оценка возможностей взаимодействия с другими системами в части обеспечения ресурсами; анализ ресурсов будущего; комплексный анализ взаимодействия факторов будущего развития.

Т.к. системный анализ имеет дело с перспективой развития, необходимо учесть возможные изменения в перспективе технологий, мощностей, возможные открытия и изобретения, возможную трансформацию целей и критериев.

5 этап . Отбор целей и вариантов решения , где задачами являются: анализ целей на совместимость; проверка целей на полноту и отсечение избыточных целей; планирование альтернативных вариантов достижения целей; оценка и сравнение вариантов по выбранным критериям; совмещение комплексов взаимосвязанных вариантов.

Одним из центральных моментов данного этапа является анализ целей на полноту (все ли цели учтены?) и усечение целей – отсечение малозначащих целей и целей, не имеющих средств для достижения тех, а также отбор конкретных вариантов достижения взаимосвязанного комплекса важнейших целей.

Проблемы, решаемые методами системного анализа, чаще всего возникают не на пустом месте, а в реально существующих системах. Задачей системного анализа в связи с этим является не создание новой системы или органа управления, а усовершенствование работы существующих, ориентация их на решение новой проблемы. В этих случаях возникает необходимость в диагностическом анализе элементов системы, направленном на выявление их возможностей, недостатков, переработке информации и в принятии решений с целью устранения этих недостатков и модернизации системы.

6 этап . Выбор метода решения . Первоначально рассматриваются известные методы решения задачи; если эти методы оказываются неадекватными поставленной задаче, то отыскиваются или разрабатываются новые методы решения, или пересматривается сама задача.

С точки зрениятехники решения все методы можно разделить на 3 класса:

- стандартные : методы, в основе которых лежит использование стандартных или заданных инструкциями приемов и процедур; основу этих методов составляет процедурная сторона процесса;

- аналитические : методы решения, в основе которых лежит использование математических моделей; используются для решения широкого класса структурированных проблем; однако применение этих методов затрудняется из-за невозможности формализации ряда факторов, влияющих на решение задачи; наличия неопределенностей в условиях функционирования системы; наличия многокритериальностей; наличия противоречия интересов лиц, участвующих в принятии решений;



- имитационные : методы, в основе которых лежит искусственное воспроизведение исследуемых процессов с применением диалога ЭВМ-человек; применяется в случаях, когда исследуемую задачу нельзя целиком решить одним методом; процесс решения разбивается на этапы, результаты которых анализируются и корректируются человеком, и запускаются в качестве исходного плана следующего этапа.

В зависимостиот принципов отыскания решения методы делятся на 2 класса:

- методы последовательных улучшений решений: задача решается для первоначального набора условий; проводится анализ возможности достижения оптимального решения; выбирается фактор, в наибольшей степени препятствующий развитию системы, т.е. находится проблемное, критическое место в системе, находятся пути решения данной проблемы, затем выбирается другое критическое место и т.д.; Недостаток метода заключается в том, что не учитываются взаимозависимости факторов;

- методы поиска идеала : первоначально рассматриваются предельные (идеальные) уровни по каждому фактору, обеспечивающие наилучший вариант системы вне зависимости от их реализуемости, т.е. разрабатывается идеальное решение; затем по каждому фактору устанавливается достижимый предел с учетом реальных возможностей, т.е. начинается отступление от идеального решения; процесс идет до тех пор, пока не будет найдено такое распределение усилий, при котором отступление от идеала будет минимальным или не будут израсходованы все резервы улучшения данного фактора.

Выбор метода неразрывно связан с постановкой задачи и с условиями принятия решений. При решении задач в условиях определенности могут применяться классические методы оптимизации или методы математического программирования. При решении задач в условиях риска – методы теории вероятностей и математической статистики; в условиях неопределенностей – методы теории игр.

7 этап . Построение комплексной программы развития . Задачи этапа: формулирование мероприятий, проектов и программ; определение очередностей целей и мероприятий по их достижению; разработка комплексных и плановых мероприятий по ресурсам и времени; распределение мероприятий по ответственным организациям и исполнителям.

Результаты предыдущих этапов системного анализа, полученные в рамках системных и математических понятий, нужно перевести на язык технических, социальных, экономических и т.д. категорий, в которых рассматривается исследуемая система. Затем создаются комплексные программы по реализации этих решений с распределением по времени и ответственным исполнителям.

8 этап. Принятие решения : при анализе слабоструктурированных проблем количество вариантов решения может быть неограниченным, и может оказаться, что все возможные альтернативы не могут быть рассмотрены, а оптимальное решение может оказаться недостижимым. В этих случаях выбирается несколько равноценных альтернатив, среди которых отыскивается по возможности лучшее решение и получаются квазиоптимальные решения, т.е. приходим к некоему компромиссу; такая же ситуация возникает в задачах, связанных с многокритериальностью и неопределенностями разного рода.

На этом процесс принятия решения завершается и начинается процесс их реализации, качественно отличающийся от первого тем, что в первом случае основным предметом труда является информация, во втором – материальные, энергетические и финансовые ресурсы.

Рассмотренные этапы являются наиболее распространенными и часто применяемыми этапами системного анализа. Реализация всех этапов в полном объеме чрезвычайно затруднена, поэтому на практике применяется часть этапов, последовательность их применения, глубина анализа, объем задач на каждом этапе зависят от конкретной решаемой задачи, от цели исследования и характера исследуемой проблемы.

Необходимо иметь в виду, что объекты исследования, условия их функционирования, цели и задачи системы в процессе их развития могут изменяться (и в процессе жизненного цикла системы), поэтому системный анализ является итеративным процессом, то есть, часть этапов или весь цикл анализа может циклически повторяться.

При изучении системного подхода прививается такой образ мышления, который, с одной стороны, способствует устранению излишней усложненности, а с другой - помогает руководителю уяснять сущность сложных проблем и принимать решения на основе четкого представления об окружающей обстановке. Важно структурировать задачу, очертить границы системы. Но столь же важно учесть, что системы, с которыми руководителю приходится сталкиваться в процессе своей деятельности, являются частью более крупных систем, возможно, включающих всю отрасль или несколько, порой много, компаний и отраслей промышленности, или даже все общество в целом. Далее следует сказать, что эти системы постоянно.

Изменяются, они создаются, действуют, реорганизуются, и, бывает, ликвидируются.

В большинстве случаев практического применения системного анализа для исследования свойств и последующего оптимального управления системой можно выделить следующие основные этапы :

2. Построение модели изучаемой системы.

3. Отыскание решения задачи с помощью модели.

4. Проверка решения с помощью модели.

5. Подстройка решения под внешние условия.

6. Осуществление решения.

В каждом конкретном случае этапы системного занимают различный "удельный вес" в общем объеме работ по временным, затратным и интеллектуальным показателям. Очень часто трудно провести четкие границы - указать, где оканчивается данный этап и начинается очередной.

Системный анализ не может быть полностью формализован, но можно выбрать некоторый алгоритм его проведения.

Системный анализ может выполняться в следующей последовательности :

1. Постановка проблемы - отправной момент исследования. В исследовании сложной системы ему предшествует работа по структурированию проблемы.

2. Расширение проблемы до проблематики, т.е. нахождение системы проблем, существенно связанных с исследуемой проблемой, без учета которых она не может быть решена.

3. Выявление целей: цели указывают направление, в котором надо двигаться, чтобы поэтапно решить проблему.

4. Формирование критериев. Критерий - это количественное отражение степени достижения системой поставленных перед ней целей. Критерий -это правило выбора предпочтительного варианта решения из ряда альтернативных. Критериев может быть несколько. Многокритериальность является способом повышения адекватности описания цели. Критерии должны описать по возможности все важные аспекты цели, но при этом необходимо минимизировать число необходимых критериев.

5. Агрегирование критериев. Выявленные критерии могут быть объединены либо в группы, либо заменены обобщающим критерием.

6. Генерирование альтернатив и выбор с использованием критериев наилучшей из них. Формирование множества альтернатив является творческим этапом системного анализа.

7. Исследование ресурсных возможностей , включая информационные ресурсы.

8. Выбор формализации (моделей и ограничений) для решения проблемы.

9. Построение системы.

10. Использование результатов проведенного системного исследования.

Схема алгоритма решения задач системного исследования конкретной проблемы представлена на рис. 6.1.

Рис.6.1. Алгоритм решения задач системного исследования конкретной проблемы

Формулирование проблемы. Для традиционных наук постановка задачи является отправным этапом работы. Для исследователей систем - это результат промежуточный, которому предшествует большая аналитическая работа.

Например, в последнее время в организациях остро стоит проблема невыплаты заработной платы. Но невыплата заработной платы - не проблема, а следствие, как правило, некоторой совокупности проблем, которая в каждой организации своя.

Начальная формулировка - лишь приблизительный намек на то, какой в действительности должна быть формулировка проблемы. Выявлением проблемного поля и его обработкой занимаются, как правило, консультанты по управлению и организационному развитию.

Далее выявляются цели, являющиеся антиподами проблем. Проблемы - это то, что не нравится, а цели - то, что мы хотим. В итоге проблемы приводятся к таком виду, когда они становятся задачами выбора подходящих средств, необходимых для достижения заданных целей.

При формулировании целей следует придерживаться следующих правил:

  • включать в список цели, противоположные заявленным;
  • выявлять не только желаемые, но и нежелаемые по последствиям цели;
  • допускать существование вообще всяких целей.

Изменение целей во времени может быть как по форме, так

Формирование критериев. Критерии - это количественные модели качественных целей; подобие цели, ее аппроксимация, модель.

Например, студент ставит себе цель: успешно сдать зимнюю сессию. Критерием в этом случае может быть такая количественная модель - получить две пятерки и две четверки.

Решение может состоять не только в поиске более адекватного варианта (может случиться так, что его и не существует), но и в использовании нескольких критериев, описывающих одну и ту же цель с разных позиций и тем самым дополняющих друг друга.

Например, цель - улучшить уборку мусора в городе. Критерии оценки могут быть следующие.

Первая группа критериев".

  • расходы по уборке мусора в расчете на одну квартиру;
  • количество мусора в расчете на человека в день;
  • общий вес вывозимого мусора.

Вторая группа критериев".

  • процент жилых кварталов с низким уровнем заболеваемости населения;
  • снижение числа пожаров;
  • сокращение количества жалоб жителей.

Генерирование альтернатив и выбор варианта решения проблем.

При наличии целей и критериев их достижения встают вопросы,

что оценивать этими критериями, из чего выбирать. Многие проблемы, требующие решения, не поддаются количественной оценке, поэтому используются экспертные технологии. Словом, нужны эксперты и варианты решений. Структурная схема экспертных методов выработки решений приведена на рис. 5.2.

(оценка сравнительной предпочтительности)

Генерирование альтернатив

(поиск нестандартных решений)

Экспертная классификация

(определение принадлежности элементов исследуемого множества каким-либо классам)

Экспертный прогноз

(оценка тенденций ожидаемого развития) Индивидуальные

_/экспертные/_

Коллективные «Мозговой атаки»

(последовательный поиск нетривиального решения, в котором запрещена критика идей)

Дельфи

(анонимное согласование индивидуальных мнений, проводимое в несколько туров)

Сценариев

(определение тенденций возможного развития: выдвижение гипотез)

Суда

(обсуждение альтернатив: сторонниками, противниками и «судьями»)

Комиссий

(регулярная выработка согласованных мнений на собраниях)

Рис. 5.2. Структурная схема экспертных методов выработки решений

Рассмотрим подробнее методы активизации творческого мышления.

Метод «мозговой атаки». Суть метода: каждому участнику группы предоставляется право высказывать самые различные идеи по поводу вариантов решения проблемы вне зависимости от их обоснованности, осуществимости и логичности. Чем больше разных предложений - тем лучше. Руководит «атакой» ведущий. С информацией о характере проблемы участники групповой работы знакомятся заранее. Все предложения выслушиваются без критики и оценки (за этим следит ведущий), а их анализ производится централизованно после завершения процесса высказывания идеи на основе записей, производимых секретариатом. В результате формируется список, в котором все представленные предложения структурируются по определенным параметрам (критериям), а также по их результативности в части решения обсуждаемой проблемы.

Метод Дельфи. Этот метод часто используют в тех случаях, когда сбор группы невозможен. В соответствии с процедурой членам группы не разрешается встречаться и обмениваться мнениями по поводу решаемой проблемы; этим обеспечивается независимость мнений. Процедура заключается в следующем (проходит этапы):

  • 1) членам группы предлагается ответить на перечень вопросов, детально сформулированных по рассматриваемой проблеме;
  • 2) каждый участник отвечает на вопросы анонимно;
  • 3) результаты ответов собираются в центре, и по результатам обработки ответов составляется интегральный документ, содержащий все предлагаемые варианты решений;
  • 4) каждый член группы получает копию интегрального документа;
  • 5) ознакомление с указанным документом (анализ предложений других участников группы) может изменить мнение некоторых участников группы в отношении возможных вариантов решений;
  • 6) этапы с 3-го по 5-й повторяют столько раз, сколько необходимо для достижения согласованного решения.

Этот метод применим, когда нет ограничений по времени выработки решения и решения принимаются экспертами. При выработке решений для конкретной организации с целью последующего внедрения целесообразно использовать иные методы групповой работы, позволяющие находить консенсус, а в процессе поиска решений из членов группы (руководства организации) может формироваться команда единомышленников.

Метод экспертных оценок. Основа этого метода заключается в использовании различных форм экспертного опроса с последующей оценкой и выбором предпочтительного варианта. Объективность экспертных оценок базируется на том, что неизвестная характеристика исследуемого явления трактуется как случайная величина, отражением закона распределения которой является индивидуальная оценка эксперта о достоверности и значимости того или иного события. Истинное значение исследуемой характеристики находится внутри диапазона оценок, полученных от экспертов.

Метод «дерева целей» разработан на основе системного анализа проблемных ситуаций и предполагает использование иерархической структуры, полученной путем разделения общей цели на подцели. «Дерево целей» создается для анализа проблемной ситуации и наглядного представления результатов такого анализа. Идея разработки «дерева целей» принадлежит американскому исследователю Черчмену, применившему такой подход к исследованию проблем развития промышленности. В данном случае «дерево целей» представляет собой связанный граф без циклов. Таким образом, «дерево целей» - это граф, выражающий соподчинение и взаимосвязи элементов, которыми являются цели и ресурсы.

При построении «дерева целей» тенденции ожидаемого развития событий устанавливаются экспертными прогнозами. Определение основных факторов, влияющих на развитие ситуации, производится методом разработки сценариев. Сценариями называют гипотетические альтернативные описания того, что может произойти в будущем. Сценарии - это не просто плод фантазии, а логически обоснованные модели будущего, своеобразный рассказ о том, «что случится, если...». Обычно разрабатывают несколько сценариев: оптимистический, пессимистический и промежуточный. Перед разработкой сценария составляют перечни факторов, влияющих на ход событий и наличные ресурсы.

Поиск нестандартных решений вновь возникшей проблемы осуществляется методами генерирования альтернатив. Сравнительная предпочтительность различных альтернатив оценивается методом определения рейтингов или методами формирования оценочных систем. В их состав входят критерии оценки, шкалы измерения критериев, правила выбора наиболее предпочтительной альтернативы. Этот метод применяется в том случае, когда цель неясна, а есть только исходное состояние системы.

События нижнего уровня декомпозиции ранжируются по предпочтительности и вероятности наступления (рис. 5.3).

Наиболее предпочтительный вариант и является целью системы.

Методы морфологического анализа основаны на комбинировании выделенных элементов или их признаков в процессе поиска решения проблем. В рамках этого метода определяются все возможные элементы, от которых может зависеть решение проблемы, перечисляются возможные значения этих элементов, а затем наступает процесс генерирования альтернатив путем перебора всех возможных сочетаний этих значений.

Рис.

Метод отрицания и конструирования. Осуществляется формулировка некоторых предположений и замена их на противоположные с последующим анализом возникающих несоответствий.

Метод систематического покрытия поля заключается в выделении опорных пунктов знаний в исследуемой области, которые используются для заполнения поля некоторых сформулированных принципов мышления.

Метод синектики предназначен для генерирования альтернатив путем ассоциативного мышления, поиска аналогий поставленной задаче. Он заключается в следующем:

  • 1) формируется группа из 5-7 человек, имеющих гибкое мышление, опыт, психологическую совместимость, общительность и подвижность;
  • 2) вырабатываются навыки совместной групповой работы;
  • 3) перебираются не только известные подобные решения, но и все возможные и невозможные (фантастические) решения;
  • 4) запрещается обсуждать достоинства и недостатки членов группы;
  • 5) разрешается каждому прекратить работу в любой момент без объяснения причин;
  • 6) роль ведущего периодически переходит к другим членам группы.

В отличие от метода «мозговой атаки» здесь требуется специальная и длительная подготовка группы.

Деловые игры представляют собой имитационное моделирование реальных ситуаций, но при этом «игроки» ведут себя так, как если бы это происходило в реальной жизни. Данная ситуация снимает барьеры, имеющие место в реальной действительности: робость перед начальством и коллегами, запрет должностных инструкций, отсутствие необходимой информации, возможность использовать любые фантазии (например, деловая игра «маркетинг»).

Окончательное решение и выбор варианта из предлагаемых альтернатив производится, как правило, экспертным путем. Однако и здесь возникают вопросы. Даже обработанные соответствующими методами результаты экспертных оценок не гарантируют того, что будет принят лучший вариант решения. Кроме того, решение, принятое без участия лиц, которым предстоит внедрять его в жизнь, обычно реализуется с трудом. Задача состоит в том, чтобы эксперты и лица, внедряющие данное решение, стали единомышленниками.


2014

Дидактическое содержание курса:

информационное обеспечение, информационные системы, базы данных, системы управления базами данных; жизненный цикл информационной системы; внешнее проектирование, основные этапы проектирования информационных систем, структурная методология, функциональное проектирование SADT – технологии; основные требования к организации диалога и представлению данных; концептуальное, логическое и физическое проектирование баз данных; модель данных «сущности-связи», реляционная система, сетевая и иерархическая модели данных; языки описания данных и языки манипулирования данными в системах управления базами данных; физическая организация данных, методы доступа; многозадачные и многопользовательские информационные системы; расписания и протоколы; защита и секретность данных.


Основные понятия теории систем

Под термином система будем понимать множество элементов, находящихся в отношениях и связях между собой, которое образует определенную целостность, единство.

Множество существующих вне системы элементов, которые оказывают влияние на систему, или, наоборот, на которые воздействует система, называют внешней средой системы.

Если элементы какой-либо системы сами являются системами, то их обычно называют подсистемами данной системы.

Любая система, в свою очередь, может являться элементом другой системы более высокого уровня (надсистемы).

Характеристики и свойства систем

Природа систем может быть самой разнообразной. Существуют системы материальные, абстрактные (понятия, гипотезы, теории…), социальные, технические, информационные, биологические, педагогические и т.п. Но у всех систем единый набор характеристик, хотя значения самих характеристик разные.

Любая система имеет:

1. Цели создания (существования) системы;

2. Совокупность связей и отношений между частями целого, необходимых для достижения цели (структуру);

3. Внешние связи (с другими системами);

4. Ресурсы, потребляемые системой (входы) - информационные, материальные, энергетические;

5. Продукты, вырабатываемые системой (выходы);

6. Функционирование системы (поведение).

Принято делить системы на сложные и простые. Следует отметить, что понятие сложности системы окончательно еще не сформулировано, Отличительными чертами внутренней сложности организации системы считаются сложность структуры и множество внутренних состояний, потенциально оцениваемых по проявлениям системы, а также сложность управления в системе. Внешняя сложность организации системы характеризуется сложностью взаимоотношений с окружающей средой. Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов или процессов, от аспекта их рассмотрения, цели создания. При этом по мере развития исследований или в ходе проектирования структура системы может измениться

Выделим важные свойства систем:

ü Согласно определению, главным свойством системы является ее целостность, то есть появление таких новых свойств, которых нет у каждой ее части в отдельности.

ü Основное свойство сложных систем – это наличие цели.
Любая система создается для достижения каких-то целей. Большие системы, как правило, многоцелевые. Под влиянием внешних условий и с течением времени цели могут меняться.

ü Каждая система создается в интересах системы более высокого уровня.

ü Важнейшим свойством сложных систем является их способность к управлению и самоуправлению. Управление нужно для более эффективного выполнения целей.

ü Системы могут обмениваться материей, энергией и информацией.

ü Для сложных систем характерна неоднородность частей, например, по составу и функциям.

ü В процессе своей жизни системы проходят 4 значимых этапа: зарождение, развитие, старение, гибель.


Структуры систем

Структуры систем бывают разной топологии (или же пространственной структуры). Рассмотрим основные топологии структур систем. Соответствующие схемы приведены на рисунках ниже.

Линейная структура:

Иерархическая (древовидная) структура:


Сетевая структура:

Матричная структура (табличная):


Кроме указанных основных типов структур используются и другие, образующиеся с помощью их корректных комбинаций - соединений и вложений.

Например, «вложение друг в друга» плоскостных матричных структур может привести к более сложной структуре - структуре пространственной матричной (например, вещества кристаллической структуры

Структура типа кристаллической (пространственно-матричной):

Этапы проведения системного анализа

Системный анализ - система понятий, методов и технологий для изучения, описания, реализации систем различной природы и характера, междисциплинарных проблем; это система общих законов, методов, приемов исследования таких систем.

Основы системного анализа заложил русский ученый, философ, экономист и врач Александр Александрович Богданов (1873-1928).

Он предположил, что в вопросах организации различных больших систем в природе, обществе, технике есть много общего, и самые разные системы окружающего мира можно изучать одинаковыми методами.

В основе системного анализа лежит системный подход к изучению объектов, в основе которого лежит рассмотрение любых объектов как систем.

Обобщая исследования ученых в области системного анализа, можно выделить следующие этапы системного анализа различных объектов как систем:

1. формулировка целей, их приоритетов и проблем исследования;

2. определение и уточнение ресурсов исследования;

3. выделение системы (от окружающей среды) с помощью ресурсов;

4. определение и описание подсистем;

5. определение и описание целостности (связей) подсистем и их элементов;

6. анализ взаимосвязей подсистем;

7. построение структуры системы;

8. установление функций системы и её подсистем;

9. согласование целей системы с целями подсистем;

10. анализ (испытание) целостности системы;

11. анализ и оценка системного эффекта.

Системы управления

В 1948 году американский ученый Норберт Винер (1894-1964) сформулировал основные положения новой науки, названной им кибернетикой. Он ввел в рассмотрение новую категорию - «управление».

Совокупность управляющих воздействий, направлен­ных на достижение поставленной цели, называется управлением. Таким образом, управление предполагает, что существует некоторый орган, вырабатывающий управляющие воздействия. Такой управляющий орган принято называть системой управления. Объект управления, на изменение состояния которого направлены управляющие воздействия, называют управляемой системой.

Чтобы цель управления была достигнута, в систему управления должна поступать информация о состоянии управляемой системы. Информация о состоянии управляемой системы позволяет скорректировать управляющие воздействия.

Информационные системы

Информационная система (в контексте управления) представляет собой коммуникационную систему по сбору, передаче, хранению и переработке информации об объекте управления.

Информационная система (ИС), как правило, включает следующие компоненты:

1. функциональные компоненты;

2. компоненты системы обработки данных;

3. организационные компоненты.

Под функциональными компонентами понимается система функций управления – полный набор взаимосвязанных во времени и пространстве работ по управлению, необходимых для достижения поставленных перед управляемой системой.

Системы обработки данных предназначены для информационного обслуживания специалистов системы управления, принимающих управленческие решения. Компонентами этой системы являются: информационное обеспечение , программное обеспечение, техническое обеспечение, правовое обеспечение, лингвистическое обеспечение.

Выделение организационной компоненты обусловлено особой значимостью человеческого фактора.

Жизненный цикл информационной системы состоит из нескольких этапов: анализ, проектирование, реализация, внедрение, сопровождение. Рассмотрим две модели ЖЦ – каскадную и спиральную:

Положительные стороны применения каскадного подхода заключаются в следующем:

ü на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;

ü выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Однако, в процессе использования каскадного подхода обнаруживается ряд его недостатков, вызванных прежде всего тем, что реальный процесс создания информационной системы никогда полностью не укладывается в такую жесткую схему. В процессе создания системы постоянно возникает потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений. Для преодоления перечисленных проблем была предложена спиральная модель жизненного цикла, делающая упор на начальные этапы ЖЦ : анализ и проектирование.

На этих этапах реализуемость технических решений проверяется путем создания прототипов . Каждый виток спирали соответствует созданию фрагмента или версии системы, на нем уточняются цели и характеристики проекта, определяется его качество, и планируются работы следующего витка спирали. Таким образом, углубляются и последовательно конкретизируются детали проекта, и в результате выбирается обоснованный вариант, который доводится до реализации.

Первым видом прототипов является модель системы в графическом виде (ниже будут рассмотрены SADT –модели), доступном для понимания пользователями. Из таких диаграмм становится понятна общая архитектура системы.

Вторым видом прототипов являются макеты экранных форм , позволяющие согласовать поля базы данных и функции конкретных пользователей.

Третьим видом прототипов являются работающие экранные формы , т.е. уже частично запрограммированные. Это позволяет опробовать программу в действии. Как правило, это вызывает новый поток замечаний и предложений.

В соответствии с этапами ЖЦ информационной системы можно выделить несколько категорий специалистов, обеспечивающих этот ЖЦ: системные аналитики, программисты, пользователи-специалисты в конкретной предметной области.