Топливо для жидкостных ракетных двигателей, применяемых в составе космических разгонных блоков и ступеней ракетоносителей, содержит горючее на основе метана и окислитель, при этом в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%. Применение предлагаемого топлива на ракетоносителях среднего класса с общим запасом топлива 300 т позволит снизить массу конструкции ракетоносителя по сравнению с применением топлива метан + кислород на ~2%, что эквивалентно увеличению массы выводимого полезного груза на ~ 6,5%. По сравнению с использованием топлива керосин + кислород масса выводимого полезного груза увеличится на ~ 7,5%.

Предлагаемое топливо предназначено для использования в жидкостных ракетных двигателях (ЖРД), применяемых в составе космических разгонных блоков (РБ) и ступеней ракетоносителей (РН). Аналогом данного топлива является топливо керосин+кислород . Жидкий кислород в настоящее время является одним из наиболее распространенных окислителей в топливах ЖРД. Это связано с тем, что жидкий кислород является экологически безопасным компонентом топлива. При этом он дешев, не токсичен, умеренно пожароопасен и обеспечивает достаточно высокие энергетические характеристики топлив. Например, топливо керосин+кислород при давлении в КС 70 ата и геометрической степени расширения сопла 40 обеспечивает удельный пустотный импульс на ~ 8% больший, чем топливо керосин+AT, где в качестве окислителя используется азотный тетраксид. Керосин представляет собой углеводородное горючее, являющееся смесью природных углеводородов, получаемых при перегонке нефти. Получение керосина из природной нефти обусловливает его относительную дешевизну. Кроме того, керосин является малотоксичным веществом, относящимся к 4-ому (низшему) классу опасности, умеренно пожароопасен и обладает достаточно высокой плотностью, что положительно сказывается на его эксплуатационных достоинствах. В целом топливо керосин+кислород, является эффективным топливом с достаточно высокой плотностью ~ 1000 кг/м 3 и достаточно высоким удельным импульсом истечения продуктов его сгорания, что позволяет достаточно эффективно решать существующие задачи, стоящие перед современными средствами выведения. К недостаткам топлива керосин+кислород относятся: относительно большая разница температур эксплуатации жидкого кислорода (~ 90 К) и керосина (~ 290 К), что требует принятия специальных мер, компенсирующих температурные напряжения, возникающие в баке хранения окислителя при заправке его жидким кислородом, и необходимость использования баков хранения компонентов с раздельными днищами и значительной теплоизоляцией между баками. Это ведет к существенному увеличению массы баков хранения компонентов и к увеличению объема, занимаемого баками хранения компонентов топлива в двигательной установке, что также увеличивает массовые затраты на хранение топлива. Прототипом предлагаемого топлива является топливо метан+кислород . Метан является основной составляющей природных газов, поэтому его производство, по оценкам, будет даже дешевле, чем производство керосина. По энергетическим характеристикам это топливо превосходит топливо керосин+кислород: при указанных выше давлениях в КС и геометрической степени расширения сопла удельный импульс топлива метан+кислород будет выше удельного импульса топлива керосин+кислород на ~ 4%. Однако метан даже при температуре 91 К (температура его плавления 90,66 К) обладает низкой плотностью 455 кг/м 3 , при этом плотность топлива метан+кислород всего 830 кг/м 3 , что приводит к увеличению массовых затрат на его хранение ввиду необходимости увеличения объема баков хранения компонентов. Низкая плотность топлива метан+кислород и невозможность переохлаждения кислорда при использовании баков хранения компонентов топлива с совмещенными днищами ведут к тому, что для космических РБ существенно (на 20% по сравнению с керосин+кислород) снижается время возможного хранения топлива в околоземном пространстве. Поскольку температура плавления метана выше температуры кипения кислорода при давлении 1 ата (т.е. выше 90 К), то использование баков хранения компонентов топлива с совмещенными днищами даже для кипящего при 1 ата кислорода (а тем более при использовании переохлажденного кислорода, который кипит при более низком давлении) невозможно без использования межбаковой теплоизоляции. Кроме того, поскольку бак горючего заправлен криогенным метаном, то его надо теплоизолировать от внешних теплопритоков, что дополнительно увеличивает массовые затраты на хранение топлива. Все это ведет к существенному по сравнению с топливом керосин+кислород увеличению массы и габаритов баков хранения топлива метан+кислород, что значительно, а в некоторых случаях вплоть до нуля, снижает эффект, который можно было бы получить от более высокого удельного импульса прототипа. Задачей изобретения является увеличение плотности топлива и, как следствие, массовых затрат на его хранение в топливных баках. Энергетические характеристики топлива при этом не ухудшаются по сравнению с прототипом. Это достигается при применении топлива, содержащего горючее и окислитель, где в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%. При указанном содержании метана температура затвердевания такого горючего менее 90 К, т.е. при использовании в качестве окислителя, например, кипящего жидкого кислорода баки окислителя и горючего могут иметь общее днище, не покрытое теплоизоляцией. Кроме того, предлагаемое топливо для указанного интервала мольного соотношения метан - этилен будет иметь плотность от 900 до 970 кг/см 3 , что сравнимо с плотностью топлива керосин+кислород, а с учетом большой теплоемкости горючего в предлагаемом топливе возможное время пребывания космических РБ в околоземном пространстве будет таким же, как при использовании топлива керосин+кислород. При этом проведенные термодинамические расчеты показали, что удельный импульс продуктов истечения предлагаемого топлива будет таким же, как для топлива метан+кислород. Применение предлагаемого топлива на РН среднего класса с общим запасом топлива 300 т позволит снизить массу конструкции РН по сравнению с применением топлива метан+кислород на ~ 2%, что эквивалентно увеличению массы выводимого полезного груза на ~ 6,5%. По сравнению с использованием топлива керосин+кислород масса выводимого полезного груза увеличится на ~ 7,5%. Метан, как уже отмечалось выше, является основной составляющей природных газов, а этилен является широко распространенным сырьем для химической промышленности (например, при производстве полиэтилена), поэтому производство горючего для такого топлива не потребует создания новых производств и может быть освоено в достаточно короткие сроки. Стоимость предлагаемого топлива по оценкам будет сравнима со стоимостью топлива керосин+кислород. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Основы теории и расчета жидкостных ракетных двигателей /в 2-х книгах/ под ред. В. М. Кудрявцева, изд. 4-е перераб. и доп. - М. "Высшая школа", 1993. - кн.1, стр.130-134. 2. Паушкин Я. М. Химический состав и свойства реактивных топлив. - М. Издательство академии наук СССР, 1958.- 376 с., ил. стр.302. 3. Синярев Г.Б. Жидкостные ракетные двигатели. - М. Государственное издательство оборонной промышленности. 1955. -488 стр., ил. стр.159 - 161. 4. Справочник по физико-техническим основам криогеники. /М.П.Малков.- 3-е изд., перераб. и доп. - М.:Энергоатомиздат, 1985, -432 с., ил. стр.217. 5. Справочник по разделению газовых смесей методом глубокого охлаждения. /И. И. Гельперин. - 2-е изд., перераб. - М. Государственное научно-техническое издательство химической литературы, 1963. - 512 с., ил. стр.232. 6. Термодинамические и теплофизические свойства продуктов сгорания /в 3-х томах/ под ред. В.П. Глушко, - М. Всезоюзный институт научной и технической информации. 1968, т. 2, стр.177-308.

Формула изобретения

Топливо для жидкостных ракетных двигателей, содержащее горючее на основе метана и окислитель, отличающееся тем, что в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%.

Похожие патенты:

Изобретение относится к способу работы двигателя летательного аппарата, действующего по принципу реактивного движения

Изобретение относится к ракетно-космической технике и касается конструкции жидкостных ракетных двигателей (ЖРД), работающих на криогенном топливе, в частности двигателей ракетных блоков и космических аппаратов, использующих в качестве компонентов топлива криогенный окислитель жидкий кислород и углеводородное горючее

На сегодняшний день ракеты различных классов стали одним из основных вооружений самых различных классов, включая собственный род войск – ракетные войска стратегического назначения, и единственным способом вывода полезной нагрузки и человечества в космическое пространство.

Одним из наиболее сложных элементов ракет был и остается ракетный двигатель. Появившись более двух тысяч лет назад, ракеты и двигатели, к сегодняшнему дню, эволюционировали, достигнув совершенства, а касательно двигателей, можно сказать, что и теоретического предела.

Жидкостный ракетный двигатель РД-0124

Исторически, первые ракеты использовали простейший пороховой двигатель. В современной терминологии – ракетный двигатель на твёрдом топливе (РДТТ). В течение своего развития такие двигатели получили новые топлива, корпуса из новых материалов, управляемые сопла различных конфигураций, сохранив при этом простоту конструкции и высокую надежность, что предопределило широкое применение этого типа двигателей в технике военного назначения. Основное же достоинство таких двигателей – это постоянная готовность к применению и минимизация операций и времени предстартовой подготовки. При этом, приходится мириться с такими недостатками РДТТ, как сложность организации выключения двигателя, многократность включения и управление тягой.

Основные параметры РДТТ определяются применяемым в нем топливом, возможностью управления вектором тяги, а также конструкцией корпуса. Также, стоит заметить, что рассмотрение твердотопливных двигателей в отрыве от ракет бессмысленно, потому как камера сгорания двигателя, является одновременно и топливным баком и включена в конструкцию ракеты.

Если говорить о сравнении РДТТ отечественных и западных, то тут стоит отметить, что на западе применяются твердые смесевые топлива с более высокой энергетикой, что позволяет создавать двигатели с большим удельным импульсом. В частности, повышается отношение максимальной развиваемой двигателем к массе топлива. Это позволяет снизить стартовые массы ракет. Особенно это заметно при рассмотрении характеристик баллистических ракет.

Первые боевые МБР с РДТТ появились в США в 60-х годах («Поларис» и «Минитмэн»), в СССР же только в 80-х («Тополь» и Р-39).

Поскольку, в таких ракетах основную стартовую массу составляет запас топлива, то сравнивая их и дальности пуска можно судить о эффективности примененных РДТТ.

Для современной американской МБР «Минитмэн-3» стартовая масса и дальность пуска составляют 35400 кг и 11000-13000 км. Для Российской ракеты РС-24 «Ярс» – 46500 – 47200 кг и 11000 км. При забрасываемой массе для обеих ракет в районе 1200 кг, явное преимущество по силовой установке имеет американская ракета. Также, в более лёгких классах РДТТ, включая авиационные ракеты, американцы чаще применяют управление вектором тяги используя отклоняемое сопло. У нас же – это интерцепторы в газовой струе. Последние, снижают КПД двигателя на 5%, отклоняемое сопло – на 2-3%.

С другой стороны, российскими химиками разработана сухая смесь для РДТТ, остатки которой могут быть подорваны. Двигатель с таким топливом применен в ПЗРК «Игла-С», где этот эффект используется для усиления воздействия БЧ. При этом, её американский аналог “Stinger” за счет быстрейшего выгорания топлива развивает большую скорость на активном участке полёта, длительность которого значительно меньше.

Еще одно военное применение РДТТ – в качестве двигателей мягкой посадки на десантируемых платформах. В настоящее время только в России продолжают развиваться десантируемые платформы, обеспечивающие выброску бронетехники с экипажами. Одной из особенностей таких систем является применение тормозных РДТТ. Технология эта позаимствована из космической отрасли, где подобные двигатели применяются для мягкой посадки спускаемых аппаратов.

В мирном космосе РДТТ получили распространение в качестве силовых установок верхних ступеней ракетоносителей и стартовых ускорителей, разгонных блоков космических аппаратов, а также двигателях мягкой посадки. На сегодняшний день одни из мощнейших РДТТ стартовых ускорителей созданы для европейского РН «Ариан».

Также, на западе РДТТ получили распространение в качестве силовых установок РН лёгкого класса, таких как европейская «Вега».

У России сохраняется приоритет в строительстве спускаемых космических аппаратов, оснащенных РДТТ мягкой посадки. На сегодняшний день, спускаемый аппарат корабля «Союз».

РДТТ применяются и для спасения экипажей космических кораблей до старта. Катапультные кресла в авиации, также. Снабжаются РДТТ, и лучшим на сегодняшний день во всем мире признан российский комплекс спасения с креслом К-36.

А вот на разгонных блоках космических аппаратов РДТТ применяются только в США и Европе. Применение же РДТТ в верхних ступенях ракетоносителей гражданского назначения в России характерно для конверсионных РН, созданных на базе МБР.

Стоит, также указать, что NASA отработала технологию многоразовых ТРДД, которые после выгорания топлива можно было заправить и использовать повторно. Речь идёт о стартовых ускорителях космического челнока, и, хотя, эта возможность никогда не использовалась, само её существование говорит о богатом накопленном опыте конструирования и эксплуатации мощных ТРДД. Отставание России в области создания РДТТ большой тяги для космических аппаратов, причиной чего, в основном, является отсутствие наработок в области высокоэнергетического твердого топлива, вызвано историческим упором на ЖРД, как более мощные и обеспечивающие большую топливную эффективность. Так, до сих пор для отечественных твердых и смесевых топлив срок гарантийного хранения составляет 10-15 лет, в то время как в США достигнуты сроки хранения ракет с РДТТ в 15-25 лет. В области же микро- и мини- РДТТ для применения в системах различного военного и гражданского назначения Россия вполне может конкурировать с мировыми образцами, а в некоторых сферах применения обладает уникальными технологиями.

В части же технологий изготовления корпусов, на сегодняшний момент, нельзя выделить чьего-либо однозначного приоритета. Различные методы применяются в зависимости от того, с какой ракетой предстоит увязывать создаваемый РДТТ. Стоит, только указать на то, что в связи с большей энергетикой американских смесевых топлив, корпуса двигателей рассчитаны на более высокую температуру горения.

Появившиеся гораздо позже, жидкостные ракетные двигатели (ЖРД) за более короткий срок своего существования достигли максимально возможного технического совершенства. Возможность многократного включения и плавного регулирования тяги определили применение таких двигателей в космических ракетоносителях и аппаратах. Значительные наработки в области создания двигателей для боевых комплексов были достигнуты в СССР. В частности, ракеты с ЖРД до сих пор стоят на дежурстве в составе РВСН, не смотря на присущие данному типу недостатки. К недостаткам относится, прежде всего, сложность хранения и эксплуатации заправленной ракеты, сложность самой заправки. Тем не менее, советским инженерам удалось создать технологии ампулирования топливных баков, обеспечивающие сохранение высококипящих компонентов топлива в них сроком до 25 лет, в результате чего были созданы самые мощные МБР в мире. Сегодня же, по мере вывода их с боевого дежурства эти МБР применяются для запуска в космическое пространство полезной нагрузки, в том числе, и мирного назначения. По этому рассмотрим их вместе с другими гражданскими РН.

Современные ЖРД можно разделить на несколько классов по различным критериям. Среди них – способ подачи топлива в камеру сгорания (турбонасосный закрытого и открытого типа, вытеснительный), количество камер сгорания двигателя (одно- и многокамерные), и самое главное, компоненты топлива.

Следует сказать, что выбор топлива для двигателя есть вводная для создания двигателя, так как в большей степени тип топлива и окислителя определяется конструкцией и параметрами ракеты.

Так как большинство современных ракет с ЖРД применяются исключительно для выведения космических аппаратов, есть возможность проведения длительных предстартовых подготовок. Это дает возможность использовать в них низкокипящие компоненты топлива – то есть такие, температура кипения которых значительно ниже нуля. К таковым относится, в первую очередь, используемый в качестве окислителя жидкий кислород и, в качестве топлива, жидкий водород. Самым мощным кислород-водородным двигателем остается американский двигатель RS-25, созданный по программе многоразового транспортного космического корабля. То есть, кроме того, что это самый мощный двигатель на указанных компонентах топлива, его ресурс составляет 55 полётных циклов (с обязательной переборкой после каждого полёта). Двигатель построен по схеме с дожиганием генераторного газа (закрытого цикла). Тяга данного ЖРД составляла 222 тонн-силы в вакууме и 184 на уровне моря.

Его аналогом в СССР был двигатель для второй ступени РН «Энергия» – РД-0120, но с несколько худшими параметрами, не смотря на большее давление газа в камере сгорания (216 атмосфер против 192), при этом масса его была выше, а тяга меньше.

Современные же кислород-водородные двигатели, такие как «Вулкан» европейского РН «Ариан» созданы с использованием открытого цикла газогенератора (сброс газогенераторного газа), и в результате этого, обладает худшими параметрами.

Другая топливная пара – низкокипящий кислород в качестве окислителя и высококипящий керосин, применяются в самом мощном ЖРД РД-170. Построенный по четырехкамерной схеме (один турбонасосный агрегат обеспечивает подачу топлива в 4 камеры сгорания), с закрытым циклом, двигатель обеспечивает тягу в 806 тонн-сил в вакууме, при этом рассчитан на 10 полётных циклов. Двигатель создавался для первой ступени РН «Энергия» (стартовые ускорители). Сегодня его вариант РД-171, обеспечивающий газодинамическое управление по всем трём осям (РД-170 только по двум) используется на РН «Зенит», являющийся, по-сути, самостоятельным стартовым ускорителем от РН «Энергия». Масштабирование двигателя позволило создать двухкамерный РД-180 и однокамерный РД-191, для американской РН Атлас и российской Ангара соответственно.

Наиболее мощным РН на сегодняшний день, является российский «Протон-М», оснащенный ЖРД на высококипящих компонентах РД-275 (первая ступень), и РД-0210 (вторая ступень). Применение высококипящих компонентов, указывает, на, отчасти, военное прошлое данного РН.

РД-275 выполнен по однокамерной схеме, закрытого цикла. Компоненты топлива – гептил и окислитель – N2O4, являются высокотоксичными. Тяга в пустоте – 187 тонн. По всей видимости, это вершина развития ЖРД на высококипящих компонентах, потому как на перспективных космических РН буду применятся нетоксичные кислород-керосиновые или кислород-водородные двигатели, а на боевых БР, включая МБР применяются РДТТ.

Местом, где сохраняется возможность и перспективы применения ЖРД на токсичных компонентах является открытый космос. То есть применение таких ЖРД возможно на разгонных блоках. Так, на российском РБ «Бриз-М» установлен двигатель С5.98М, работающий на тех же компонентах, что и РД-275.

В целом, стоит отметить, что на сегодняшний день российские ЖРД лидируют на мировом рынке как по количеству выведенной нагрузке, так и по распространению на РН различных государств.

При этом продолжаются работы по созданию новых типов двигателей, таких как трехкомпонентные ЖРД, обеспечивающие универсальность применения в атмосфере и за её пределами. Поскольку созданные двигатели достигли предела технического совершенства превзойти их будет очень сложно, а с учетом необходимых на это финансовых затрат – и вовсе бессмысленно. Таким образом, у нас есть лучшая в мире конструкторская школа в этой области, вопрос только в достаточном финансировании, для ее сохранения и развития.

Худзицкий Михаил , инженер-конструктор систем наведения

Как устроен и работает жидкостно-реактивный двигатель

Жидкостно-реактивные двигатели применяются в настоящее время в качестве двигателей для тяжелых ракетных снарядов противовоздушной обороны, дальних и стратосферных ракет, ракетных самолетов, ракетных авиабомб, воздушных торпед и т. д. Иногда ЖРД применяются и в качестве стартовых двигателей для облегчения взлета самолетов.

Имея в виду основное назначение ЖРД, мы ознакомимся с их устройством и работой на примерах двух двигателей: одного - для дальней или стратосферной ракеты, другого - для ракетного самолета. Эти конкретные двигатели далеко не во всем являются типичными и, конечно, уступают по своим данным новейшим двигателям этого типа, но все же являются во многом характерными и дают довольно ясное представление о современном жидкостно-реактивном двигателе.

ЖРД для дальней или стратосферной ракеты

Ракеты этого типа применялись либо в качестве дальнобойного сверхтяжелого снаряда, либо для исследования стратосферы. Для военных целей они были применены немцами для бомбардировки Лондона в 1944 г. Эти ракеты имели около тонны взрывчатого вещества и дальность полета около 300 км . При исследовании стратосферы головка ракеты вместо взрывчатки несет в себе различную исследовательскую аппаратуру и обычно имеет приспособление для отделения от ракеты и спуска на парашюте. Высота подъема ракеты 150–180 км .

Внешний вид такой ракеты представлен на фиг. 26, а ее разрез на фиг. 27. Фигуры людей, стоящих рядом с ракетой, дают представление о внушительных размерах ракеты: ее общая длина равна 14 м , диаметр около 1,7 м , а по оперению около 3,6 м , вес снаряженной ракеты со взрывчаткой - 12,5 тонны.

Фиг. 26. Подготовка к запуску стратосферной ракеты.

Ракета движется с помощью жидкостно-реактивного двигателя, расположенного в ее задней части. Общий вид двигателя показан на фиг. 28. Двигатель работает на двухкомпонентном топливе - обычном винном (этиловом) спирте 75 %-ной крепости и жидком кислороде, которые хранятся в двух отдельных больших баках, как это показано на фиг. 27. Запас топлива на ракете - около 9 тонн, что составляет почти 3/4 общего веса ракеты, да и по объему топливные баки составляют большую часть всего объема ракеты. Несмотря на такое огромное количество топлива его хватает всего только на 1 минуту работы двигателя, так как двигатель расходует больше 125 кг топлива в секунду.

Фиг. 27. Разрез ракеты дальнего действия.

Количество обоих компонентов топлива, спирта и кислорода, рассчитывается так, чтобы они выгорали одновременно. Так как для сгорания 1 кг спирта в данном случае расходуется около 1,3 кг кислорода, то бак для горючего вмещает примерно 3,8 тонны спирта, а бак для окислителя - около 5 тонн жидкого кислорода. Таким образом даже в случае применения спирта, который требует для сгорания значительно меньше кислорода, чем бензин или керосин, заполнение обоих баков одним только горючим (спиртом) при использовании атмосферного кислорода увеличило бы продолжительность работы двигателя в два-три раза. Вот к чему приводит необходимость иметь окислитель на борту ракеты.

Фиг. 28. Двигатель ракеты.

Невольно возникает вопрос: как же ракета покрывает расстояние в 300 км, если двигатель работает всего только 1 минуту? Объяснение этому дает фиг. 33, на которой представлена траектория полета ракеты, а также указано изменение скорости вдоль траектории.

Запуск ракеты осуществляется после установки ее в вертикальное положение с помощью легкого пускового устройства, как это видно на фиг. 26. После запуска ракета вначале поднимается почти вертикально, а по истечении 10–12 секунд полета начинает отклоняться от вертикали и под действием рулей, управляемых гироскопами, движется по траектории, близкой к дуге окружности. Такой полет длится все время, пока работает двигатель, т. е. примерно в течение 60 сек.

Когда скорость достигает расчетной величины, приборы управления выключают двигатель; к этому моменту в баках ракеты почти не остается топлива. Высота ракеты к моменту окончания работы двигателя равняется 35–37 км , а ось ракеты составляет с горизонтом угол в 45° (этому положению ракеты соответствует точка А на фиг. 29).

Фиг. 29. Траектория полета дальней ракеты.

Такой угол возвышения обеспечивает максимальную дальность в последующем полете, когда ракета движется по инерции, подобно артиллерийскому снаряду, который вылетел бы из орудия, обрез ствола которого находится на высоте 35–37 км . Траектория дальнейшего полета близка к параболе, а общее время полета равно приблизительно 5 мин. Максимальная высота, которой достигает при этом ракета, составляет 95-100 км , стратосферные же ракеты достигают значительно больших высот, более 150 км . На фотографиях, сделанных с этой высоты аппаратом, установленным на ракете, уже отчетливо видна шарообразность земли.

Интересно проследить, как изменяется скорость полета по траектории. К моменту выключения двигателя, т. е. после 60 секунд полета, скорость полета достигает наибольшего значения и равна примерно 5500 км/час , т. е. 1525 м/сек . Именно в этот момент мощность двигателя становится также наибольшей, достигая для некоторых ракет почти 600.000 л. с .! Дальше под воздействием силы тяжести скорость ракеты уменьшается, а после достижения наивысшей точки траектории по той же причине снова начинает расти до тех пор, пока ракета не войдет в плотные слои атмосферы. В течение всего полета, кроме самого начального участка - разгона, - скорость ракеты значительно превышает скорость звука, средняя скорость по всей траектории составляет примерно 3500 км/час и даже на землю ракета падает со скоростью, в два с половиной раза превышающей скорость звука и равной 3000 км/час . Это значит, что мощный звук от полета ракеты доносится лишь после ее падения. Здесь уже не удастся уловить приближение ракеты с помощью звукоулавливателей, обычно применяющихся в авиации или морском флоте, для этого потребуются совсем другие методы. Такие методы основаны на применении вместо звука радиоволн. Ведь радиоволна распространяется со скоростью света - наибольшей скоростью, возможной на земле. Эта скорость, равная 300 000 км/сек, конечно, более чем достаточна, чтобы отметить приближение самой быстролетящей ракеты.

С большой скоростью полета ракет связана еще одна проблема. Дело в том, что при больших скоростях полета в атмосфере, вследствие торможения и сжатия воздуха, набегающего на ракету, температура ее корпуса сильно повышается. Расчет показывает, что температура стенок описанной выше ракеты должна достигать 1000–1100 °C. Испытания показали, правда, что в действительности эта температура значительно меньше из-за охлаждения стенок путем теплопроводности и излучения, но все же она достигает 600–700 °C, т. е. ракета нагревается до красного каления. С увеличением скорости полета ракеты температура ее стенок будет быстро расти и может стать серьезным препятствием для дальнейшего роста скорости полета. Вспомним, что метеориты (небесные камни), врывающиеся с огромной скоростью, до 100 км/сек , в пределы земной атмосферы, как правило, «сгорают», и то, что мы принимаем за падающий метеорит («падающую звезду») есть в действительности только сгусток раскаленных газов и воздуха, образующийся в результате движения метеорита с большой скоростью в атмосфере. Поэтому полеты с весьма большими скоростями возможны лишь в верхних слоях атмосферы, где воздух разрежен, или за ее пределами. Чем ближе к земле, тем меньше допустимые скорости полета.

Фиг. 30. Схема устройства двигателя ракеты.

Схема двигателя ракеты представлена на фиг. 30. Обращает на себя внимание относительная простота этой схемы по сравнению с обычными поршневыми авиационными двигателями; в особенности характерно для ЖРД почти полное отсутствие в силовой схеме двигателя движущихся частей. Основными элементами двигателя являются камера сгорания, реактивное сопло, парогазогенератор и турбонасосный агрегат для подачи топлива и система управления.

В камере сгорания происходит сгорание топлива, т. е. преобразование химической энергии топлива в тепловую, а в сопле - преобразование тепловой энергии продуктов сгорания в скоростную энергию струи газов, вытекающих из двигателя в атмосферу. Как изменяется состояние газов при течении их в двигателе показано на фиг. 31.

Давление в камере сгорания равно 20–21 ата , а температура достигает 2 700 °C. Характерным для камеры сгорания является огромное количество тепла, которое выделяется в ней при сгорании в единицу времени или, как говорят, теплонапряженность камеры. В этом отношении камера сгорания ЖРД значительно превосходит все другие известные в технике топочные устройства (топки котлов, цилиндры двигателей внутреннего сгорания и другие). В данном случае в камере сгорания двигателя в секунду выделяется такое количество тепла, которое достаточно для того, чтобы вскипятить более 1,5 тонны ледяной воды! Чтобы камера сгорания при таком огромном количестве выделяющегося в ней тепла не вышла из строя, необходимо интенсивно охлаждать ее стенки, как, впрочем, и стенки сопла. Для этой цели, как это видно на фиг. 30, камера сгорания и сопло охлаждаются горючим - спиртом, который сначала омывает их стенки, а уже затем, подогретый, поступает в камеру сгорания. Эта система охлаждения, предложенная еще Циолковским, выгодна также и потому, что тепло, отведенное от стенок, не теряется и снова возвращается в камеру (такую систему охлаждения называют поэтому иногда регенеративной). Однако одного только наружного охлаждения стенок двигателя оказывается недостаточно, и для понижения температуры стенок одновременно применяется охлаждение их внутренней поверхности. Для этой цели стенки в ряде мест имеют небольшие сверления, расположенные в нескольких кольцевых поясах, так что через эти отверстия внутрь камеры и сопла поступает спирт (около 1/10 от общего его расхода). Холодная пленка этого спирта, текущего и испаряющегося на стенках, предохраняет их от непосредственного соприкосновения с пламенем факела и тем снижает температуру стенок. Несмотря на то, что температура газов, омывающих изнутри стенки, превышает 2500 °C, температура внутренней поверхности стенок, как показали испытания, не превышает 1 000 °C.

Фиг. 31. Изменение состояния газов в двигателе.

Топливо подается в камеру сгорания через 18 горелок-форкамер, расположенных на ее торцевой стенке. Кислород поступает внутрь форкамер через центральные форсунки, а спирт, выходящий из рубашки охлаждения, - через кольцо маленьких форсунок вокруг каждой форкамеры. Таким образом обеспечивается достаточно хорошее перемешивание топлива, необходимое для осуществления полного сгорания за то очень короткое время пока топливо находится в камере сгорания (сотые доли секунды).

Реактивное сопло двигателя изготовлено из стали. Его форма, как это хорошо видно на фиг. 30 и 31, представляет собой сначала сужающуюся, а потом расширяющуюся трубу (так называемое сопло Лаваля). Как указывалось ранее, такую же форму имеют сопла и пороховых ракетных двигателей. Чем объясняется такая форма сопла? Как известно, задачей сопла является обеспечение полного расширения газа с целью получения наибольшей скорости истечения. Для увеличения скорости течения газа по трубе ее сечение должно вначале постепенно уменьшаться, что имеет место и при течении жидкостей (например, воды). Скорость движения газа будет увеличиваться, однако, только до тех пор, пока она не станет равной скорости распространения звука в газе. Дальнейшее увеличение скорости в отличие от жидкости станет возможным только при расширении трубы; это отличие течения газа от течения жидкости связано с тем, что жидкость несжимаема, а объем газа при расширении сильно увеличивается. В горловине сопла, т. е. в наиболее узкой его части, скорость течения газа всегда равна скорости звука в газе, в нашем случае около 1000 м/сек . Скорость же истечения, т. е. скорость в выходном сечении сопла, равна 2100–2200 м/сек (таким образом удельная тяга составляет примерно, 220 кг сек/кг ).

Подача топлива из баков в камеру сгорания двигателя осуществляется под давлением с помощью насосов, имеющих привод от турбины и скомпонованных вместе с нею в единый турбонасосный агрегат, как это видно на фиг. 30. В некоторых двигателях подача топлива осуществляется под давлением, которое создается в герметических топливных баках с помощью какого-либо инертного газа - например, азота, хранящегося под большим давлением в специальных баллонах. Такая система подачи проще насосной, но, при достаточно большой мощности двигателя, получается более тяжелой. Однако и при насосной подаче топлива в описываемом нами двигателе баки, как кислородный, так и спиртовой, находятся под некоторым избыточным давлением изнутри для облегчения работы насосов и предохранения баков от смятия. Это давление (1,2–1,5 ата ) создается в спиртовом баке воздухом или азотом, в кислородном - парами испаряющегося кислорода.

Оба насоса - центробежного типа. Турбина, приводящая насосы, работает на парогазовой смеси, получающейся в результате разложения перекиси водорода в специальном парогазогенераторе. В этот парогазогенератор из особого бачка подается перманганат натрия, который является катализатором, ускоряющим разложение перекиси водорода. При запуске ракеты перекись водорода под давлением азота поступает в парогазогенератор, в котором начинается бурная реакция разложения перекиси с выделением паров воды и газообразного кислорода (это так называемая «холодная реакция», применяющаяся иногда и для создания тяги, в частности, в стартовых ЖРД). Парогазовая смесь, имеющая температуру около 400 °C и давление свыше 20 ата , поступает на колесо турбины и затем выбрасывается в атмосферу. Мощность турбины затрачивается полностью на привод обоих топливных насосов. Эта мощность не так уже мала - при 4000 об/мин колеса турбины она достигает почти 500 л. с .

Так как смесь кислорода со спиртом не является самореагирующим топливом, то для начала горения необходимо предусмотреть какую-либо систему зажигания. В двигателе воспламенение осуществляется с помощью специального запала, образующего факел пламени. Для этой цели применялся обычно пиротехнический запал (твердый воспламенитель типа пороха), реже использовался жидкий воспламенитель.

Запуск ракеты осуществляется следующим образом. Когда запальный факел поджигается, то открывают главные клапаны, через которые в камеру сгорания поступают самотеком из баков спирт и кислород. Управление всеми клапанами в двигателе осуществляется с помощью сжатого азота, хранящегося на ракете в батарее баллонов высокого давления. Когда начинается горение топлива, то находящийся на расстоянии наблюдатель с помощью электрического контакта включает подачу перекиси водорода в парогазогенератор. Начинает работать турбина, которая приводит насосы, подающие спирт и кислород в камеру сгорания. Тяга растет и когда она становится больше веса ракеты (12–13 тонн), то ракета взлетает. От момента зажигания запального факела до того, как двигатель разовьет полную тягу, проходит всего 7-10 секунд.

При запуске очень важно обеспечить строгий порядок поступления в камеру сгорания обоих компонентов топлива. В этом заключается одна из важных задач системы управления и регулирования двигателя. Если в камере сгорания накапливается один из компонентов (поскольку задерживается поступление другого), то обычно вслед за этим происходит взрыв, при котором двигатель часто выходит из строя. Это, наряду со случайными перерывами в горении, является одной из наиболее частых причин катастроф при испытаниях ЖРД.

Обращает на себя внимание ничтожный вес двигателя по сравнению с развиваемой им тягой. При весе двигателя меньше 1000 кг тяга составляет 25 тонн, так что удельный вес двигателя, т. е. вес, приходящийся на единицу тяги, равен всего только

Для сравнения укажем, что обычный поршневой авиационный двигатель, работающий на винт, имеет удельный вес 1–2 кг/кг , т. е. в несколько десятков раз больше. Важно также то, что удельный вес ЖРД не изменяется при изменении скорости полета, тогда как удельный вес поршневого двигателя быстро растет с ростом скорости.

ЖРД для ракетного самолета

Фиг. 32. Проект ЖРД с регулируемой тягой.

1 - передвижная игла; 2 - механизм передвижения иглы; 3 - подача горючего; 4 - подача окислителя.

Основное требование, предъявляемое к авиационному жидкостно-реактивному двигателю - возможность изменять развиваемую им тягу в соответствии с режимами полета самолета, вплоть до остановки и повторного запуска двигателя в полете. Наиболее простой и распространенный способ изменения тяги двигателя заключается в регулировании подачи топлива в камеру сгорания, вследствие чего изменяется давление в камере и тяга. Однако этот способ невыгоден, так как при уменьшении давления в камере сгорания, понижаемого в целях уменьшения тяги, уменьшается доля тепловой энергии топлива, переходящая в скоростную энергию струи. Это приводит к увеличению расхода топлива на 1 кг тяги, а следовательно, и на 1 л. с . мощности, т. е. двигатель при этом начинает работать менее экономично. Для уменьшения этого недостатка авиационные ЖРД часто имеют вместо одной от двух до четырех камер сгорания, что позволяет при работе на пониженной мощности выключать одну или несколько камер. Регулирование тяги изменением давления в камере, т. е. подачей топлива, сохраняется и в этом случае, но используется лишь в небольшом диапазоне до половины тяги отключаемой камеры. Наиболее выгодным способом регулирования тяги ЖРД было бы изменение проходного сечения его сопла при одновременном уменьшении подачи топлива, так как при этом уменьшение секундного количества вытекающих газов достигалось бы при сохранении неизменным давления в камере сгорания, а, значит, и скорости истечения. Такое регулирование проходного сечения сопла можно было бы осуществить, например, с помощью передвижной иглы специального профиля, как это показано на фиг. 32, изображающей проект ЖРД с регулируемой таким способом тягой.

На фиг. 33 представлен однокамерный авиационный ЖРД, а на фиг. 34 - такой же ЖРД, но с добавочной небольшой камерой, которая используется на крейсерском режиме полета, когда требуется небольшая тяга; основная камера при этом отключается совсем. На максимальном режиме работают обе камеры, причем большая развивает тягу в 1700 кг, а малая - 300 кг , так что общая тяга составляет 2000 кг . В остальном двигатели по конструкции аналогичны.

Двигатели, изображенные на фиг. 33 и 34, работают на самовоспламеняющемся топливе. Это топливо состоит из перекиси водорода в качестве окислителя и гидразин-гидрата в качестве горючего, в весовом соотношении 3:1. Точнее, горючее представляет собой сложный состав, состоящий из гидразин-гидрата, метилового спирта и солей меди в качестве катализатора, обеспечивающего быстрое протекание реакции (применяются и другие катализаторы). Недостатком этого топлива является то, что оно вызывает коррозию частей двигателя.

Вес однокамерного двигателя составляет 160 кг , удельный вес равен

На килограмм тяги. Длина двигателя - 2,2 м . Давление в камере сгорания - около 20 ата . При работе на минимальной подаче топлива для получения наименьшей тяги, которая равна 100 кг , давление в камере сгорания уменьшается до 3 ата . Температура в камере сгорания достигает 2500 °C, скорость истечения газов около 2100 м/сек . Расход топлива равен 8 кг/сек , а удельный расход топлива составляет 15,3 кг топлива на 1 кг тяги в час.

Фиг. 33. Однокамерный ЖРД для ракетного самолета

Фиг. 34. Двухкамерный авиационный ЖРД.

Фиг. 35. Схема подачи топлива в авиационном ЖРД.

Схема подачи топлива в двигатель представлена на фиг. 35. Как и в двигателе ракеты, подача горючего и окислителя, хранящихся в отдельных баках, производится под давлением около 40 ата насосами, имеющими привод от турбинки. Общий вид турбонасосного агрегата показан на фиг. 36. Турбинка работает на паро-газовой смеси, которая, как и раньше, получается в результате разложения перекиси водорода в парогазогенераторе, который в этом случае наполнен твердым катализатором. Горючее до поступления в камеру сгорания охлаждает стенки сопла и камеры сгорания, циркулируя, в специальной охлаждающей рубашке. Изменение подачи топлива, необходимое для регулирования тяги двигателя в процессе полета, достигается изменением подачи перекиси водорода в парогазогенератор, что вызывает изменение оборотов турбинки. Максимальное число оборотов турбинки равно 17 200 об/мин. Запуск двигателя осуществляется с помощью электромотора, приводящего во вращение турбонасосный агрегат.

Фиг. 36. Турбонасосный агрегат авиационного ЖРД.

1 - шестерня привода от пускового электромотора; 2 - насос для окислителя; 3 - турбина; 4 - насос для горючего; 5 - выхлопной патрубок турбины.

На фиг. 37 показана схема установки однокамерного ЖРД в хвостовой части фюзеляжа одного из опытных ракетных самолетов.

Назначение самолетов с жидкостно-реактивными двигателями определяется свойствами ЖРД - большой тягой и, соответственно, большой мощностью на больших скоростях полета и больших высотах и малой экономичностью, т. е. большим расходом топлива. Поэтому ЖРД обычно устанавливаются на военных самолетах - истребителях-перехватчиках. Задача такого самолета - при получении сигнала о приближении самолетов противника быстро взлететь и набрать большую высоту, на которой обычно летят эти самолеты, а затем, используя свое преимущество в скорости полета, навязать противнику воздушный бой. Общая продолжительность полета самолета с жидкостно-реактивным двигателем определяется запасом топлива на самолете и составляет 10–15 минут, поэтому эти самолеты обычно могут совершать боевые операции лишь в районе своего аэродрома.

Фиг. 37. Схема установки ЖРД на самолете.

Фиг. 38. Ракетный истребитель (вид в трех проекциях)

На фиг. 38 показан истребитель-перехватчик с описанным выше ЖРД. Размеры этого самолета, как и других самолетов этого типа, обычно невелики. Полный вес самолета с топливом составляет 5100 кг ; запаса топлива (свыше 2,5 тонны) хватает только на 4,5 минуты работы двигателя на полной мощности. Максимальная скорость полета - свыше 950 км/час ; потолок самолета, т. е. максимальная высота, которой он может достигнуть, - 16 000 м . Скороподъемность самолета характеризуется тем, что за 1 минуту он может подняться с 6 до 12 км .

Фиг. 39. Устройство ракетного самолета.

На фиг. 39 показано устройство другого самолета с ЖРД; это - опытный самолет, построенный для достижения скорости полета, превышающей скорость звука (т. е. 1200 км/час у земли). На самолете, в задней части фюзеляжа, установлен ЖРД, имеющий четыре одинаковых камеры с общей тягой 2720 кг . Длина двигателя 1400 мм , максимальный диаметр 480 мм , вес 100 кг . Запас топлива на самолете, в качестве которого используются спирт и жидкий кислород, составляет 2360 л .

Фиг. 40. Четырехкамерный авиационный ЖРД.

Внешний вид этого двигателя показан на фиг. 40.

Другие области применения ЖРД

Наряду с основным применением ЖРД в качестве двигателей для дальних ракет и ракетных самолетов они применяются в настоящее время и в ряде других случаев.

Довольно широкое применение получили ЖРД в качестве двигателей тяжелых ракетных снарядов, подобных представленному на фиг. 41. Двигатель этого снаряда может служить примером простейшего ЖРД. Подача топлива (бензин и жидкий кислород) в камеру сгорания этого двигателя производится под давлением нейтрального газа (азота). На фиг. 42 показана схема тяжелой ракеты, применявшейся в качестве мощного зенитного снаряда; на схеме приведены габаритные размеры ракеты.

Применяются ЖРД и в качестве стартовых авиационных двигателей. В этом случае иногда используется низкотемпературная реакция разложения перекиси водорода, отчего такие двигатели называют «холодными».

Имеются случаи применения ЖРД в качестве ускорителей для самолетов, в частности, самолетов с турбореактивными двигателями. Насосы подачи топлива з этом случае приводятся иногда от вала турбореактивного двигателя.

ЖРД применяются наряду с пороховыми двигателями также для старта и разгона летающих аппаратов (или их моделей) с прямоточными воздушно-реактивными двигателями. Как известно, эти двигатели развивают очень большую тягу при высоких скоростях полета, больших скорости звука, но вовсе не развивают тяги при взлете.

Наконец, следует упомянуть еще об одном применении ЖРД, имеющем место в последнее время. Для изучения поведения самолета при большой скорости полета, приближающейся к скорости звука и превышающей ее, требуется проведение серьезной и дорогостоящей исследовательской работы. В частности, требуется определение сопротивления крыльев самолета (профилей), которое обычно производится в специальных аэродинамических трубах. Для создания в таких трубах условий, соответствующих полету самолета на большой скорости, приходится иметь силовые установки очень большой мощности для привода вентиляторов, создающих поток в трубе. Вследствие этого сооружение и эксплоатация труб для проведения испытания при сверхзвуковых скоростях требуют огромных затрат.

В последнее время, наряду со строительством сверхзвуковых труб, задача исследования различных профилей крыльев скоростных самолетов, как, кстати сказать, и испытания прямоточных ВРД, решается также с помощью жидкостно-реактивных

Фиг. 41. Ракетный снаряд с ЖРД.

двигателей. По одному из этих способов исследуемый профиль устанавливается на дальней ракете с ЖРД, подобной описанной выше, и все показания приборов, измеряющих сопротивление профиля в полете, передаются на землю с помощью радио-телеметрических устройств.

Фиг. 42. Схема устройства мощного зенитного снаряда с ЖРД.

7 - боевая головка; 2 - баллон со сжатым азотом; 3 - бак с окислителем; 4 - бак с горючим; 5 - жидкостно-реактивный двигатель.

По другому способу сооружается специальная ракетная тележка, передвигающаяся по рельсам с помощью ЖРД. Результаты испытания профиля, установленного на такой тележке в особом весовом механизме, записываются специальными автоматическими приборами, расположенными также на тележке. Такая ракетная тележка показана на фиг. 43. Длина рельсового пути может достигать 2–3 км .

Фиг. 43. Ракетная тележка для испытания профилей крыльев самолета.

Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий Владимир

Двигатель работает неустойчиво на всех режимах Неисправности системы зажигания Износ и повреждения контактного уголька, зависание его в крышке распределителя зажигания. Утечка тока на «массу» через нагар или влагу на внутренней поверхности крышки. Заменить контактный

Из книги Броненосец " ПЕТР ВЕЛИКИЙ" автора

Двигатель работает неустойчиво при малой частоте вращения коленчатого вала или глохнет на холостом ходу Неисправности карбюратора Низкий или высокий уровень топлива в поплавковой камере. Низкий уровень – хлопки в карбюраторе, высокий – хлопки в глушителе. На выхлопе

Из книги Броненосец "Наварин" автора Арбузов Владимир Васильевич

Двигатель работает нормально на холостом ходу, но автомобиль разгоняется медленно и с «провалами»; плохая приемистость двигателя Неисправности системы зажигания Не отрегулирован зазор между контактами прерывателя. Отрегулировать угол замкнутого состояния контактов

Из книги Самолеты мира 2000 02 автора Автор неизвестен

Двигатель «троит» – не работает один или два цилиндра Неисправности системы зажигания Неустойчивая работа двигателя на малых и средних оборотах. Повышенный расход топлива. Выхлоп дыма синий. Несколько приглушены периодически издаваемые звуки, которые особенно хорошо

Из книги Мир Авиации 1996 02 автора Автор неизвестен

При резком открывании дроссельных заслонок двигатель работает с перебоями Неисправности механизма газораспределения Не отрегулированы зазоры в клапанах. Через каждые 10 тыс. км пробега (для ВАЗ-2108, -2109 через 30 тыс. км) отрегулировать зазоры клапанов. При уменьшенном

Из книги Обслуживаем и ремонтируем Волга ГАЗ-3110 автора Золотницкий Владимир Алексеевич

Двигатель неравномерно и неустойчиво работает на средних и больших частотах вращения коленчатого вала Неисправности системы зажигания Разрегулировок зазор контактов прерывателя. Для точной регулировки зазора между контактами измерять не сам зазор, да еще дедовским

Из книги Ракетные двигатели автора Гильзин Карл Александрович

Приложения КАК БЫЛ УСТРОЕН "ПЕТР ВЕЛИКИЙ" 1 . Мореходные и маневренные качестваВесь комплекс проведенных в 1876 году испытаний выявил следующие мореходные качества. Безопасность океанского плавания "Петра Великого" не внушала опасений, а его причисление к классу мониторов

Из книги Воздушно-реактивные двигатели автора Гильзин Карл Александрович

Как был устроен броненосец "Наварин" Корпус броненосца имел наибольшую длину 107 м (длина между перпендикулярами 105,9 м). ширину 20,42, проектную осадку 7,62 м носом и 8,4 кормой и набирался из 93 шпангоутов (шпация 1,2 метра). Шпангоуты обеспечивали продольную прочность и полные

Из книги История электротехники автора Коллектив авторов

Су-10 – первый реактивный бомбардировщик ОКБ П.О. Сухого Николай ГОРДЮКОВПосле второй мировой войны началась эпоха реактивной авиации. Очень быстро проходило переоснащение советских и зарубежных ВВС на истребители с турбореактивными двигателями. Однако создание

Из книги автора

Из книги автора

Двигатель работает неустойчиво при малой частоте вращения коленчатого вала или глохнет на холостом ходу Рис. 9. Регулировочные винты карбюратора: 1 – винт эксплуатационной регулировки (винт количества); 2 – винт состава смеси, (винт качества) с ограничительным

Из книги автора

Двигатель работает неустойчиво на всех режимах

Из книги автора

Как устроен и работает пороховой ракетный двигатель Основными конструктивными элементами порохового, как и любого другого ракетного двигателя, являются камера сгорания и сопло (фиг. 16).Благодаря тому, что подача пороха, как и вообще всякого твердого топлива, в камеру

Из книги автора

Топливо для жидкостно-реактивного двигателя Важнейшие свойства и характеристики жидкостно-реактивного двигателя, да и сама конструкция его, прежде всего зависят от топлива, которое применяется в двигателе.Основным требованием, которое предъявляется к топливу для ЖРД,

Из книги автора

Глава пятая Пульсирующий воздушно-реактивный двигатель На первый взгляд возможность значительного упрощения двигателя при переходе к большим скоростям полета кажется странной, пожалуй, даже невероятной. Вся история авиации до сих пор говорит о противоположном: борьба

Из книги автора

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ - ДВИГАТЕЛЬ (ТП - Д) И ИСТОЧНИК ТОКА - ДВИГАТЕЛЬ (ИТ - Д) В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие

В общем случае нагрев рабочего тела присутствует как составляющая рабочего процесса теплового ракетного двигателя. Причем наличие источника теплоты - нагревателя формально обязательно (в частном случае его тепловая мощность может равняться нулю). Тип его можно характеризовать видом энергии, переходящей в теплоту. Таким образом получаем признак классификации, по которому тепловые ракетные двигатели по виду энергии, преобразуемой в тепловую энергию рабочего тела, делятся на электрические, ядерные (рис.10.1.) и химические (рис 13.1, уровень 2).

Схема, конструкция и достижимые параметры ракетного двигателя на химическом топливе во многом определяются агрегатным состоянием ракетного топлива. Ракетные двигатели на химическом топливе (в зарубежной литературе иногда называемые химическими ракетными двигателями) по этому признаку делятся на:

жидкостные ракетные двигатели - ЖРД, компоненты топлива которых в состоянии хранения на борту - жидкость (рис. 13.1, уровень 3; фото, фото),

ракетные двигатели твердого топлива - РДТТ (рис. 1.7, 9.4, фото, фото),

гибридные ракетные двигатели - ГРД, компоненты топлива которых находятся на борту в разных агрегатных состояниях (рис. 11.2).

Очевидным признаком классификации двигателей на химическом топливе является число компонентов ракетного топлива.

Например, ЖРД на однокомпонентном или на двухкомпонентном топливе, ГРД на трехкомпонентном топливе (по зарубежной терминологии - на трибридном топливе) (рис. 13.1, уровень 4).

По конструктивным признакам возможна классификация ракетных двигателей с выделением десятков рубрик, но основные отличия в выполнении целевой функции определяются схемой подачи компонентов в камеру сгорания. Наиболее характерна классификация по этому признаку ЖРД.

Классификация ракетных топлив.

РТ подразделяются на твердые и жидкие. Твердые ракетные топлива имеют ряд преимуществ перед жидкими, они длительно хранятся, не воздействуют на оболочку ракеты, не представляют опасности для работающего с ним персонала в связи с низкой токсичности.

Однако взрывной характер их горения создает трудности в их применении.

К твердым ракетным топливам относятся баллистные и кордитные пороха на основе нитроцеллюлозы.

Жидкостный реактивный двигатель, идея создания которого принадлежит К.Э.Циолковскому, наиболее распространен в космонавтике.

Жидкие РТ могут быть однокомпонентными и двухкомпонентными (окислитель и горючие).

К окислителям относятся: азотная кислота и окислы азота (двуокись, четырехокись), перекись водорода, жидкий кислород, фтор и его соединения.

В качестве горючего используется керосины, жидкий водород, гидразины. Наиболее широко используется гидразин и несимметричный диметилгидразин (НДМГ).

Вещества, входящие в состав жидких РТ обладают высокой агрессивностью и токсичностью к человеку. Поэтому перед медицинской службой стоит проблема проведения профилактических мероприятий по защите личного состава от острых и хронических отравлений КРТ, организации оказания неотложной помощи при поражениях.

В связи с этим и изучаются патогенез, клиника поражений, разрабатываются средства оказания неотложной помощи и лечения пораженных, создаются средства защиты кожи и органов дыхания, устанавливаются ПДК различных КРТ и необходимые гигиенические нормы.

Ракеты-носители и двигательные установки различных космических аппаратов являются преимущественной областью применения ЖРД.

К преимуществам ЖРД можно отнести следующие:

Самый высокий удельный импульс в классе химических ракетных двигателей (свыше 4 500 м/с для пары кислород-водород, для керосин-кислород - 3 500 м/с).

Управляемость по тяге: регулируя расход топлива, можно изменять величину тяги в большом диапазоне и полностью прекращать работу двигателя с последующим повторным запуском. Это необходимо при маневрировании аппарата в космическом пространстве.

При создании больших ракет, например, носителей, выводящих на околоземную орбиту многотонные грузы, использование ЖРД позволяет добиться весового преимущества по сравнению с твёрдотопливными двигателями (РДТТ). Во-первых, за счёт более высокого удельного импульса, а во-вторых за счёт того, что жидкое топливо на ракете содержится в отдельных баках, из которых оно подается в камеру сгорания с помощью насосов. За счет этого давление в баках существенно (в десятки раз) ниже, чем в камере сгорания, а сами баки выполняются тонкостенными и относительно лёгкими. В РДТТ контейнер топлива является одновременно и камерой сгорания, и должен выдерживать высокое давление (десятки атмосфер), а это влечёт за собой увеличение его веса. Чем больше объём топлива на ракете, тем больше размер контейнеров для его хранения, и тем больше сказывается весовое преимущество ЖРД по сравнению с РДТТ, и наоборот: для малых ракет наличие турбонасосного агрегата сводит на нет это преимущество.

Недостатки ЖРД:

ЖРД и ракета на его основе значительно более сложно устроены, и более дорогостоящи, чем эквивалентные по возможностям твёрдотопливные (несмотря на то, что 1 кг жидкого топлива в несколько раз дешевле твёрдого). Транспортировать жидкостную ракету необходимо с бо́льшими предосторожностями, а технология подготовки её к пуску более сложна, трудоемка и требует больше времени (особенно при использовании сжиженных газов в качестве компонентов топлива), поэтому для ракет военного назначения предпочтение в настоящее время оказывается твёрдотопливным двигателям, ввиду их более высокой надёжности, мобильности и боеготовности.

Компоненты жидкого топлива в невесомости неуправляемо перемещаются в пространстве баков. Для их осаждения необходимо применять специальные меры, например, включать вспомогательные двигатели, работающие на твёрдом топливе или на газе.

В настоящее время для химических ракетных двигателей (в том числе и для ЖРД) достигнут предел энергетических возможностей топлива, и поэтому теоретически не предвидится возможность существенного увеличения их удельного импульса, а это ограничивает возможности ракетной техники, базирующейся на использовании химических двигателей, уже освоенными двумя направлениями:

Космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные).

Исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов (Вояджер, Галилео).

омпоненты топлива

Выбор компонентов топлива является одним из важнейших решений при проектировании ЖРД, предопределяющий многие детали конструкции двигателя и последующие технические решения. Поэтому выбор топлива для ЖРД выполняется при всестороннем рассмотрении назначения двигателя и ракеты, на которой он устанавливается, условий их функционирования, технологии производства, хранения, транспортировки к месту старта и т. п.

Одним из важнейших показателей, характеризующих сочетание компонентов является удельный импульс, который имеет особенно важное значение при проектировании ракет-носителей космических аппаратов, так как от него в сильнейшей степени зависит соотношение массы топлива и полезного груза, а следовательно, размеры и масса всей ракеты (см. Формула Циолковского), которые при недостаточно высоком значении удельного импульса могут оказаться нереальными. В таблице 1 приведены основные характеристики некоторых сочетаний компонентов жидкого топлива.

Помимо удельного импульса при выборе компонентов топлива, решающую роль могут сыграть и другие показатели свойств топлива, в том числе:

Плотность, влияющая на размеры баков компонентов. Как следует из табл. 1, водород является горючим, с самым большим удельным импульсом (при любом окислителе), однако он обладает крайне низкой плотностью. Поэтому первые (самые большие) ступени ракет-носителей обычно используют другие (менее эффективные, но более плотные) виды горючего, например, керосин, что позволяет уменьшить размеры первой ступени до приемлемых. Примерами такой «тактики» служат ракета Сатурн-5, первая ступень которой использует компоненты кислород/керосин, а 2-я и 3-я ступени - кислород/водород, и система Спейс Шаттл, в которой в качестве первой ступени использованы твёрдотопливные ускорители.

Температура кипения, которая может накладывать серьёзные ограничения на условия эксплуатации ракеты. По этому показателю компоненты жидкого топлива подразделяют на криогенные - охлаждённые до крайне низких температур сжиженные газы, и высококипящие - жидкости имеющие температуру кипения выше 0 °C.

Криогенные компоненты не могут долго храниться, и транспортироваться на большие расстояния, поэтому они должны изготовляться (по крайней мере сжижаться) на специальных энергоёмких производствах, находящихся в непосредственной близости от места старта, что делает пусковую установку совершенно немобильной. Помимо этого, криогенные компоненты обладают и другими физическими свойствами, предъявляющими дополнительные требования к их использованию. Например, наличие даже незначительного количества воды или водяного пара в ёмкостях со сжиженными газами приводит к образованию очень твёрдых кристаллов льда, которые при попадании в топливную систему ракеты воздействуют на её части как абразивный материал и могут стать причиной тяжёлой аварии. За время многочасовой подготовки ракеты к старту на ней намерзает большое количество инея, превращающегося в лёд, и падение его кусков с большой высоты представляет опасность для персонала, занятого в подготовке, а также для самой ракеты и стартового оборудования. Сжиженные газы после заправки ими ракеты начинают испаряться, и до момента старта их нужно непрерывно пополнять через специальную систему подпитки. Избыток газа, образующегося при испарении компонентов, необходимо отводить таким образом, чтобы окислитель не смешивался с горючим, образуя взрывчатую смесь.

Высококипящие компоненты гораздо более удобны при транспортировке, хранении и оперировании с ними, поэтому в 50е годы ХХ в они вытеснили криогенные компоненты из области военного ракетостроения. В дальнейшем эта область всё в большей степени стала заниматься твёрдым топливом. Но при создании космических носителей криогенные топлива пока сохраняют своё положение за счёт высокой энергетической эффективности, а для выполнения маневров в космическом пространстве, когда топливо должно сохраняться в баках месяцами, а то и годами, наиболее приемлемыми являются высококипящие компоненты. Иллюстрацией такого «разделения труда» могут служить ЖРД, задействованные в проекте Аполлон: все три ступени ракеты-носителя Сатурн-5 используют криогенные компоненты, а двигатели лунного корабля, предназначенные для коррекции траектории и для маневров на окололунной орбите, - высококипящие несимметричный диметилгидразин и тетраоксид диазота.

Химическая агрессивность. Этим качеством обладают все окислители. Поэтому наличие в баках, предназначенных для окислителя, даже незначительных количеств органических веществ (например, жировых пятен, оставленных человеческими пальцами) может вызвать возгорание, вследствие которого может загореться материал самого бака (алюминий, магний, титан и железо очень энергично горят в среде ракетного окислителя). Из-за агрессивности окислители, как правило, не используются в качестве теплоносителей в системах охлаждения ЖРД, а в газогенераторах ТНА, для снижения тепловой нагрузки на турбину рабочее тело перенасыщается горючим, а не окислителем. При низких температурах жидкий кислород является, пожалуй, самым безопасным окислителем, потому, что альтернативные окислители, такие как тетраоксид диазота или концентрированная азотная кислота вступают в реакцию с металлами, и хотя они являются высококипящими окислителями, которые могут подолгу храниться при нормальной температуре, время службы баков, в которых они находятся, ограничено.

Токсичность компонентов топлива и продуктов их горения является серьёзным ограничителем их использования. Например, фтор, как следует из табл.1., как окислитель, более эффективен, чем кислород, однако в паре с водородом он образует фтороводород - вещество крайне токсичное и агрессивное, и выброс нескольких сотен, тем более, тысяч тонн такого продукта сгорания в атмосферу при запуске большой ракеты, сам по себе является крупной техногенной катастрофой, даже при удачном запуске. А в случае аварии, и разлива такого количества этого вещества, ущерб не поддаётся учёту. Поэтому фтор не используется в качестве компонента топлива. Токсичными являются и тетраоксид азота, азотная кислота и несимметричный диметилгидразин. В настоящее время предпочитаемым (с экологической точки зрения) окислителем является кислород, а горючим - водород, за которым следует керосин.

Что первое приходит на ум при словосочетании «ракетные двигатели»? Конечно же, загадочный космос, межпланетные полеты, открытие новых галактик и манящее сияние далеких звезд. Во все времена небо притягивало к себе человека, оставаясь при этом неразгаданной тайной, но создание первой космической ракеты и ее запуск открыли человечеству новые горизонты исследований.

Ракетные двигатели по своей сути – это обычные реактивные двигатели с одной немаловажной особенностью: для создания реактивной тяги в них не используется атмосферный кислород в качестве окислителя топлива. Все, что нужно для его работы, находится либо непосредственно в его корпусе, либо в системах подачи окислителя и топлива. Именно эта особенность и дает возможность использовать ракетные двигатели в открытом космосе.

Видов ракетных двигателей очень много и все они разительно отличаются между собой не только особенностями конструкции, но и принципом работы. Именно поэтому каждый вид нужно рассматривать отдельно.

Среди основных рабочих характеристик ракетных двигателей особое внимание уделяется удельному импульсу – отношению величины реактивной тяги к массе расходуемого за единицу времени рабочего тела. Значение удельного импульса отображает эффективность и экономичность двигателя.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты. В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу. Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу. Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР. Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет. В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания. Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу. Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Плюсы и минусы химических РД, их сфера применения

Достоинствами твердотопливных РД являются:

  • простота конструкции;
  • сравнительная безопасность в плане экологии;
  • невысокая цена;
  • надежность.

Недостатки РДТТ:

  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении. Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:

  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.

Недостатки ЖРД:

  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Электрические ракетные двигатели (ЭРД)

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.

Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Преимущества и недостатки ЭРД, сфера использования

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.