>> Давление света

§ 91 ДАВЛЕНИЕ СВЕТА

Максвелл на основе электромагнитной теории света предсказал, что свет должен оказывать давление на препятствия.

Под действием электрического поля волны, падающей на поверхность тела, например металла, свободный электрон движется в сторону, противоположную вектору (рис. 11.7). На движущийся электрон действует сила Лоренца , направленная в сторону распространения волны. Суммарная сила, действующая на электроны поверхности металла , и определяет силу светового давления.

Для доказательства справедливости теории Максвела было важно измерить давление света. Многие ученые пытались это сделать, но безуспешно, так как световое давление очень мало. В яркий солнечный день на поверхности площадью 1м 2 действует сила, равная всего лишь 4 10 -6 Н. Впервые давление света измерил русский физик Петр Николаевич Лебедев в 1900 г.

Лебедев Петр Николаевич (1866-1912) - русский физик, впервые измеривший давление света на твердые тела и газы. Эти работы количественно подтвердили теорию Максвелла. Стремясь найти новые экспериментальные доказательства электромагнитной теории света, получил электромагнитные волны миллиметровой длины волны и исследовал все их свойства. Создал первую в России физическую школу. Его учениками были многие выдающиеся советские ученые. Имя Лебедева носит физический институт АН СССР (ФИАН).

Прибор Лебедева состоял из очень легкого стерженька на тонкой стеклянной нити, но краям которого были приклеены легкие крылыптки (рис. 11.8). Весь прибор помещался в сосуд, откуда был выкачан воздух. Свет падал на крылышки, расположенные по одну сторону от стерженька. О значении давления можно было судить по углу закручивания нити. Трудности точного измерения давления света были связаны с невозможностью выкачать из сосуда весь воздух (движение молекул воздуха , вызванное неодинаковым нагревом крылышек и стенок сосуда, приводит к возникновению дополнительных вращающих моментов). Кроме того, на закручивание нити влияет неодинаковый нагрев сторон крылышек (сторона, обращенная к источнику света, нагревается сильнее, чем противоположная сторона). Молекулы, отражающиеся от более нагретой сторо-ны, передают крылышку больший импульс, чем молекулы, отражающиеся от менее нагретой стороны.

Лебедев сумел преодолеть все эти трудности, несмотря на низкий уровень тогдашней экспериментальной техники, взяв очень большой сосуд и очень тонкие крылышки. В конце концов существование светового давления на твердые тела было доказано, и оно было измерено. Полученное значение совпало с предсказанным Максвеллом. Впоследствии после трех лет работы Лебедеву удалось осуществить еще более тонкий эксперимент: измерить давление света на газы.

Появление квантовой теории света позволило более просто объяснить причину светового давления. Фотоны, подобно частицам вещества, имеющим массу покоя, обладают импульсом. При поглощении их телом они передают ему свой импульс. Согласно закону сохранения импульса импульс тела становится равным импульсу поглощенных фотонов . Поэтому покоящееся тело приходит в движение. Изменение импульса тела означает согласно второму закону Ньютона, что на тело действует сила.

Опыты Лебедева можно рассматривать как экспериментальное доказательство того, что фотоны обладают импульсом.

Хотя световое давление очень мало в обычных условиях, его действие тем не менее может оказаться существенным. Внутри звезд при температуре в несколько десятков миллионов Кельвинов давление электромагнитного излучения должно достигать громадных значений. Силы светового давления наряду с гравитационными силами играют значительную роль во впутризвездных процессах.

Давление света согласно электродинамике Максвелла возникает из-за действия силы Лоренца на электроны среды, колеблющиеся под действием электрического поля электромагнитной волны. С точки зрения квантовой теории давление появляется в результате передачи телу импульсов фотонов при их поглощении.

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Учебники по всему предметам скачать , разработка планов уроков для учителей, Физика и астрономия для 11 класса онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Данный видеоурок посвящён теме «Давление света. Опыты Лебедева». Опыты Лебедева произвели огромное впечатление на ученый мир, поскольку благодаря им впервые было измерено давление света и доказана справедливость теории Максвелла. Как ему это удалось? Ответ на этот и многие другие интересные вопросы, связанные с квантовой теорией света, вы сможете узнать из этого увлекательного урока физики.

Тема: Давление света

Урок: Давление света. Опыты Лебедева

Впервые гипотеза о существовании светового давления была высказана Иоганном Кеплером в XVII веке для объяснения явления хвостов комет при полете их вблизи Солнца.

Максвелл на основе электромагнитной теории света предсказал, что свет должен оказывать давление на препятствие.

Под действием электрического поля волны электроны в телах совершают колебания - образуется электрический ток. Этот ток направлен вдоль напряженности электрического поля. На упорядоченно движущиеся электроны действует сила Лоренца со стороны магнитного поля, направленная в сторону распространения волны - это и есть сила светового давления (Рис. 1).

Рис. 1. Опыт Максвелла

Для доказательства теории Максвелла необходимо было измерить давление света. Впервые давление света измерил русский физик Петр Николаевич Лебедев в 1900 году (Рис. 2).

Рис. 2. Петр Николаевич Лебедев

Рис. 3. Прибор Лебедева

Прибор Лебедева (Рис. 3) состоит из легкого стержня на тонкой стеклянной нити, по краям которой прикреплены легкие крылышки. Весь прибор помещался в стеклянный сосуд, откуда был выкачан воздух. Свет падает на крылышки, расположенные по одну сторону стерженька. О значении давления можно судить по углу закручивания нити. Трудность точного измерения давления света была связана с тем, что из сосуда невозможно было выкачать весь воздух. При проведении эксперимента начиналось движение молекул воздуха, вызванное неодинаковым нагревом крылышек и стенок сосуда. Крылышки невозможно повесить абсолютно вертикально. Нагретые потоки воздуха поднимаются наверх, действуют на крылышки, что приводит к возникновению дополнительных вращающих моментов. Также на закручивание нити влияет неоднородный нагрев сторон крылышек. Сторона, обращенная к источнику света, нагревается больше, чем противоположная. Молекулы, отражающиеся от более нагретой стороны, передают крылышку больший импульс.

Рис. 4. Прибор Лебедева

Рис. 5. Прибор Лебедева

Лебедев сумел преодолеть все трудности, несмотря на низкий уровень экспериментальной техники в те времена. Он взял очень большой сосуд и очень тонкие крылышки. Крылышко состояло из двух пар тонких платиновых кружочков. Один из кружочков каждой пары был блестящим с обеих сторон. У других сторон одна сторона была покрыта платиновой чернью. При этом обе пары кружочков различались толщиной.

Для исключения конвекционных потоков, Лебедев направлял пучки света на крылышки то с одной, то с другой стороны. Таким образом, силы, действующие на крылышки, уравновешивались (Рис. 4-5).

Рис. 6. Прибор Лебедева

Рис. 7. Прибор Лебедева

Так давление света на твердые тела было доказано и измерено (Рис. 6-7). Значение этого давление совпало с предсказанным давлением Максвелла.

Через три года Лебедеву удалось совершить еще один эксперимент - измерить давление света на газы (Рис. 8).

Рис. 8. Установка для измерения давления света на газы

Лорд Кельвин: «Вы, может быть, знаете, что я всю жизнь воевал с Максвеллом, не признавая его светового давления, и вот ваш Лебедев заставил меня сдаться перед его опытами».

Появление квантовой теории света позволило более просто объяснить причину давления света.

Фотоны обладают импульсом. При поглощении их телом они передают ему свой импульс. Такое взаимодействие можно рассматривать как абсолютно неупругий удар.

На поверхность со стороны каждого фотона действует сила:

Давление света на поверхность:

Взаимодействие фотона с зеркальной поверхностью

В случае данного взаимодействия получается абсолютно упругое взаимодействие. При падении фотона на поверхность он отражается от нее с той же скоростью и импульсом, с которыми упал на эту поверхность. Изменение импульса будет в два раза больше, чем при падении фотона на черную поверхность, давление света увеличится в два раза.

В природе не существует веществ, поверхность которых полностью бы поглощала или отражала фотоны. Поэтому для расчета давления света на реальные тела необходимо учитывать, что часть фотонов поглотится этим телом, а часть отразится.

Опыты Лебедева можно рассматривать как экспериментальное доказательство того, что фотоны обладают импульсом. Хотя в обычных условиях световое давление очень мало, его действие может оказаться существенным. На основе давления Солнца был разработан парус для космических кораблей, который позволит перемещаться в космосе под давлением света (Рис. 11).

Рис. 11. Парус космического корабля

Давление света, согласно теории Максвелла, возникает в результате действия силы Лоренца на электроны, совершающие колебательные движения под действием электрического поля электромагнитной волны.

С точки зрения квантовой теории давление света возникает в результате взаимодействия фотонов с поверхностью, на которую они падают.

Вычисления, которые были проведены Максвеллом, совпали с теми результатами, которые произвел Лебедев. Это ярко доказывает квантово-волновой дуализм света.

Опыты Крукса

Лебедев впервые обнаружил давление света экспериментально и смог его измерить. Опыт был невероятно сложным, но существует научная игрушка - опыт Крукса (Рис. 12).

Рис. 12. Опыт Крукса

Маленький пропеллер, состоящий из четырех лепестков, расположен на игле, которая накрыта стеклянным колпаком. Если осветить этот пропеллер светом, то он начинает вращаться. Если посмотреть на этот пропеллер в открытом воздухе, когда на него дует ветер, его вращение никого бы не удивило, но в данном случае стеклянный колпак не позволяет потокам воздуха действовать на пропеллер. Поэтому причиной его движения является свет.

Английский физик Уильям Крукс случайно создал первую световую вертушку .

В 1873 году Крукс решил определить атомный вес элемента Таллия и взвесить его на очень точных весах. Чтобы случайные воздушные потоки не исказили картины взвешивания, Крукс решил подвесить коромысла в вакууме. Сделал и поразился, так как его тончайшие весы были чувствительны к теплу. Если источник тепла находился под предметом, он уменьшал его вес, если над - увеличивал.

Усовершенствовав этот свой нечаянный опыт, Крукс придумал игрушку - радиометр (световая мельничка). Радиометр Крукса - это четырехлопастная крыльчатка, уравновешенная на игле внутри стеклянной колбы с небольшим разряжением. При попадании на лопасть светового луча, крыльчатка начинает вращаться, что иногда неправильно объясняют давлением света. На самом деле причиной кручения служит радиометрический эффект. Возникновение силы отталкивания за счет разницы кинетических энергий молекул газа, налетающих на освященную (нагретую) сторону лопасти и на противоположную неосвещенную (более холодную).

  1. Давление света и давление обстоятельств ().
  2. Пётр Николаевич Лебедев ().
  3. Радиометр Крукса ().

«Давление 7 класс» - Актуализация знаний учащихся. Способы увеличения и уменьшения давление. Посмотрите в окно вдаль 1 минуту. Пора садиться на диету! Закладка фундамента здания. Увеличение давления в природе. Вес тела. Зубы у крокодила. Железная дорога. Повторите 5 раз. Что ответит зайчик лошадке? Сила упругости. Прежде, чем приступить к решению задач, проведем "Гимнастику для глаз".

Объясните, почему зубную пасту легко выдавить из тюбика? 1. Актуализация опорных знаний. Тема: Решение задач по теме: «Давление твердых тел, жидкостей и газов». Содействовать воспитанию мировоззренческой идеи познаваемости явлений и свойств окружающего мира. Дать определение давления в твердых телах.

«Световые явления» - Лунное затмение. Как распространяется свет в однородной среде? Как называется линия, по которой движется тело? Почему понятия «покой» и «движение» относительны? На сколько цветов разлагается белый свет? А – полное солнечное затмение. Рассвет и закат – световые явления. Что такое отражение? Назовите световые явления.

«Световое давление» - , Действующие на ток. – Коэффициент отражения от данной поверхности. Конец лекции по данной теме. Импульс, сообщаемый 1 м2 абсолютно поглощающей поверхности за 1 с, равен. Векторы. Под действием силы. Начало XVII в. Ряды приходят в направленное движение вдоль поверхности, образуя поверхностный ток I.

«Объяснение электрических явлений» - Эбонит. Мини – конференцию по защите проектов. Атомов. Если заряжен, какой знак имеет шарик? Тела состоят. Диэлектрики. Ответ обоснуйте. Основная задача урока. Электрон. Почему электроны переходят с шерсти на эбонит, а не наоборот? Объяснение электрических явлений. Итоги урока. Протон. Т е л о. Шерсть.

«Световые явления в физике» - Полное солнечное затмение собирает множество учёных и туристов. 1704 год: «Оптика». Свет – поток частиц. Затмение можно наблюдать только в определённых точках земной поверхности. Спектр можно увидеть и на обычном лазерном диске. В презентации использованы личные фотографии. Источники света могут быть естественными и искусственными.

Квантовая теория света объясняет световое давление как результат передачи фотонами своего импульса атомам или молекулам вещества.

Пусть на поверхность площади S нормально к ней ежесекундно падает

N фотонов частоты v . Каждый фотон обладает импульсом hv/c . Если

р - коэффициент отражения поверхности, то pN фотонов отразится от поверхности, (1-р) N фотонов поглотится.

Каждый поглощенный квант света передаст поверхности импульс hv/c , а каждый отраженный - импульс [(hv/c) - (-hv/c)] = 2hv/c , так как при отражении направление импульса фотона изменяется на противоположное и импульс, передаваемый им частицам вещества, составляет 2hv/c . Полный импульс, получаемый поверхностью тела, составит

Вычислим световое давление. Для этого (20.18) разделим на площе S «крылышка»: (20.19)

Если учесть, что hvN/S = Ee, то формула (20.19) примет вид

(20.20)

Выражения (20.17) и (20.20), выведенные в рамках электромагнитной и квантовой теорий, совпадают.

Экспериментально справедливость этих результатов была доказана опытами П.Н. Лебедева.

Давление естественного света очень мало. Если коэффициент поглощения поверхности близок к единице, то давление, оказываемое солнечными лучами на такие поверхности, находящиеся на Земле, составляет примерно

5 10 Па (т. е. 3,7 10 мм рт. ст.) . Это давление на десять порядков меньше атмосферного давления у поверхности Земли.

Измерить столь малое давление П. Н. Лебедев смог лишь проявив исключительную изобретательность и мастерство в постановке и проведении эксперимента.

Световое давление не играет никакой роли в явлениях, с которыми мы сталкиваемся в жизни. Но в космических и микроскопических системах его роль существенна.

В микромире давление света проявляется в световой отдаче, которую испытывает возбужденный атом при излучении им света. Гравитационное притяжение внешних слоев звездного вещества к ее центру уравновешивается силой, значительный вклад в которую вносит давление света, идущего из глубины звезды наружу.

Химическое действие света

В результате действия света в некоторых веществах происходят химические превращения - фотохимические реакции . Фотохимические превращения весьма разнообразны. Под действием света сложные молекулы могут разлагаться на составные части (например, бромистое серебро - на серебро и бром) или. наоборот, образовываться сложные молекулы (например, если осветить смесь хлора и водорода, то реакция образования хлористого водорода протекает настолько бурно, что сопровождается взрывом).

Многие из фотохимических реакций играют большую роль в природе и технике. Главная из них - фотохимическое разложение углекислоты , происходящее под действием света в зеленых частях растений. Эта реакция имеет огромное значение, ибо она обеспечивает круговорот углерода, без которого невозможно длительное существование органической жизни на Земле. В результате жизнедеятельности животных и растений (дыхание) идет непрерывный процесс окисления углерода (образование СО2 ). Обратный процесс восстановления углерода происходит под влиянием света в зеленых частях растений. Эта реакция протекает по схеме 2СО2 2СО + О2

Фотохимическая реакция разложения бромистого серебра лежит в основе фотографии и всех ее научных и технических применений, явление выцветания красок, сводящееся главным образом к фотохимическому окислению этих красок, имеет очень большое значение для понимания процессов, происходящих в глазе человека и животного и лежащих в основе зрительного восприятия. Очень многие фотохимические реакции в наше время используются в химическом производстве и приобретают, таким образом, непосредственное промышленное значение.

Сегодня посвятим разговор такому явлению, как давление света. Рассмотрим предпосылки открытия и следствия для науки.

Свет и цвет

Загадка человеческих способностей волновала людей с древних времен. Как видит глаз? Почему существуют цвета? В чем причина того, что мир такой, каким мы его ощущаем? Насколько далеко способен видеть человек? Опыты с разложением солнечного луча в спектр производил еще Ньютон в 17 веке. Он же заложил строгую математическую основу в ряд разрозненных фактов, которые на тот момент были известны о свете. И ньютоновская теория предсказала немало: например, открытия, которые объяснила только квантовая физика (отклонение света в поле тяготения). Но точную природу света физика того времени не знала и не понимала.

Волна или частица

С тех пор как ученые всего мира стали проникать в суть света, велся спор: что такое излучение, волна или частица (корпускула)? Одни факты (преломление, отражение и поляризация) подтверждали первую теорию. Другие (прямолинейное распространение в отсутствии препятствий, давление света) - вторую. Однако только квантовая физика смогла утихомирить этот спор, объединив две версии в одну общую. утверждает, что любая микрочастица, в том числе фотон, обладает как свойствами волны, так и частицы. То есть квант света имеет такие характеристики, как частота, амплитуда и длина волны, а также импульс и масса. Сразу оговоримся: у фотонов масса покоя отсутствует. Будучи квантом электромагнитного поля, они несут энергию и массу только в процессе движения. Такова сущность понятия «свет». Физика в наши дни объяснила его достаточно подробно.

Длина волны и энергия

Чуть выше упоминалось понятие «энергия волны». Эйнштейн убедительно доказал, что энергия и масса - идентичные понятия. Если фотон несет энергию, он должен обладать массой. Однако квант света - частица «хитрая»: когда фотон сталкивается с препятствием, он полностью отдает свою энергию веществу, становится им и теряет свою индивидуальную сущность. При этом определенные обстоятельства (сильное нагревание, например) могут заставить до того темные и спокойные недра металлов и газов излучать свет. Импульс фотона, непосредственное следствие наличия массы, можно определить с помощью давления света. исследователя из России, убедительно доказали этот удивительный факт.

Опыт Лебедева

Российский ученый Петр Николаевич Лебедев в 1899 году произвел следующий опыт. На тонкой серебряной нити он подвесил перекладину. К концам перекладины ученый прикрепил две пластины одинакового вещества. Это были и серебряная фольга, и золото, и даже слюда. Таким образом были созданы своеобразные весы. Только они измеряли вес не груза, который давит сверху, а груза, который давит сбоку на каждую из пластин. Всю эту конструкцию Лебедев поместил под стеклянную крышку, чтобы ветер и случайные колебания плотности воздуха не могли на нее повлиять. Далее, хотелось бы написать, что под крышкой он создал вакуум. Но в то время даже среднего вакуума добиться было невозможно. Так что мы скажем, что он создал под стеклянной крышкой сильно И попеременно освещал одну пластину, оставляя другую в тени. Количество света, направленного на поверхности, было задано заранее. По углу отклонения Лебедев определил, какой импульс передал свет пластинкам.

Формулы для определения давления электромагнитного излучения при нормальном падении пучка

Поясним для начала, что такое «нормальное падение»? Свет падает на поверхность нормально, если он направлен строго перпендикулярно поверхности. Это накладывает ограничения на задачу: поверхность должна быть идеально гладкой, а пучок излучения направлен очень точно. В этом случае вычисляется давление :

k - коэффициент пропускания, ρ - коэффициент отражения, I - интенсивность падающего пучка света, c - скорость света в вакууме.

Но, наверное, читатель уже догадался, что такого идеального сочетания факторов не существует. Даже если не принимать в расчет идеальность поверхности, падение света строго перпендикулярно организовать довольно сложно.

Формулы для определения давления электромагнитного излучения при его падении под углом

Давление света на зеркальную поверхность под углом рассчитывается по другой формуле, которая уже содержит элементы векторов:

p= ω ((1-k)i+ρi’)cos ϴ

Величины p, i, i’ - это векторы. При этом k и ρ, как и в предыдущей формуле, - коэффициенты пропускания и отражения соответственно. Новые величины обозначают следующее:

  • ω - объемная плотность энергии излучения;
  • i и i’ - единичные векторы, которые показывают направление падающего и отраженного пучка света (они задают направления, по которым следует складывать действующие силы);
  • ϴ - угол к нормали, под которым падает луч света (и соответственно, отражается, так как поверхность зеркальная).

Напомним читателю, что нормаль перпендикулярна к поверхности, так что если в задаче дается угол падения света к поверхности, то ϴ - это 90 градусов минус заданная величина.

Применение явления давления электромагнитного излучения

Школьнику, который изучает физику, многие формулы, понятия и явления кажутся скучными. Потому что, как правило, учитель рассказывает теоретические аспекты, но редко может привести примеры пользы тех или иных феноменов. Не будем винить в этом школьных наставников: они сильно ограничены программой, за время урока надо рассказать обширный материал и еще успеть проверить знания учеников.

Тем не менее у объекта нашего исследования много интересных приложений:

  1. Сейчас почти каждый школьник в лаборатории своего учебного заведения может повторить опыт Лебедева. Но тогда совпадение экспериментальных данных с теоретическими выкладками было настоящим прорывом. Сделанный впервые с 20-процентной погрешностью опыт позволил ученым всего мира развивать новый раздел физики - квантовую оптику.
  2. Получение протонов с высокой энергией (например, для облучения разных веществ) путем ускорения тонких пленок лазерным импульсом.
  3. Учет давления электромагнитного излучения Солнца на поверхность околоземных объектов, в том числе спутников и космических станций, позволяет корректировать их орбиту с большей точностью и не дает этим устройствам падать на Землю.

Приведенные выше применения существуют сейчас в реальном мире. Но есть и потенциальные возможности, которые еще не реализованы, потому что техника человечества пока не достигла нужного уровня. Среди них:

  1. С его помощью можно было бы передвигать в околоземном и даже околосолнечном пространстве достаточно большие грузы. Свет дает небольшой импульс, но при нужном положении поверхности паруса ускорение было бы постоянным. При отсутствии трения его достаточно для набора скорости и доставки грузов в нужную точку Солнечной системы.
  2. Фотонный двигатель. Эта технология, возможно, позволит человеку преодолеть притяжение родной звезды и полететь к другим мирам. Отличие от солнечного паруса в том, что генерировать солнечные импульсы будет искусственно созданное устройство, например, термоядерный двигатель.