Для изучения нанообъектов разрешения оптических микроскопов (даже использующих ультра-фиолет ) явно недостаточно. В связи с этим в 1930х гг. возникла идея использовать вместо све-та электроны, длина волны которых, как мы знаем из квантовой физики, в сотни раз меньше, чем у фотонов.

Как известно, в основе нашего зрения лежит формирование изображения объекта на сетчатке глаза световыми волнами, отраженными от этого объекта. Если, прежде чем попасть в глаз, свет проходит сквозь оптическую систему микроскопа , мы видим увеличенное изображение. При этом ходом световых лучей умело управляют линзы, составляющие объектив и окуляр прибора.

Но как же можно получить изображение объекта, причём с гораздо более высокой разрешающей способностью, используя не световое излучение, а поток электронов? Другими словами, как возможно видение предметов на основе использования не волн, а частиц?

Ответ очень прост. Известно, что на траекторию и скорость электронов существенно влияют внешние электромагнитные поля, с помощью которых можно эффективно управлять движением электронов.

Наука о движении электронов в электромагнитных полях и о расчёте устройств, формирующих нужные поля, называется электронной оптикой .

Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое – оптическими линзами. Поэтому в электронном микроскопе устройства фоку-сировки и рассеивания электронного пучка называют “электронными линзами ”.

Электронная линза. Витки проводов катушки, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок

Магнитное поле катушки действует как собирающая или рассеивающая линза. Чтобы сконцентрировать магнитное поле, катушку закрывают магнитной «броней » из специального ни-кель-кобальтового сплава, оставляя лишь узкий зазор во внутренней части. Создаваемое таким образом магнитное поле может быть в 10–100 тыс. раз сильнее, чем магнитное поле Земли!

К сожалению, наш глаз не может непосредственно воспринимать электронные пучки. Поэтому они используются для “рисования ” изображения на люминесцентных экранах (которые светятся при попадании электронов). Кстати, тот же принцип лежит в основе работы мониторов и осцил-лографов.

Существует большое количество различных типов электронных микроскопов , среди которых наиболее популярен растровый электронный микроскоп (РЭМ). Мы получим его упрощенную схему, если поместим изучаемый объект внутрь электронно-лучевой трубки обыкновенного телевизора между экраном и источником электронов.

В таком микроскопе тонкий луч электронов (диаметр пучка около 10 нм) обегает (как бы сканируя) образец по горизонтальным строчкам, точку за точкой, и синхронно передает сигнал на кинескоп. Весь процесс аналогичен работе телевизора в процессе развертки. Источником электронов служит металл (обычно вольфрам), из которого при нагревании в результате термоэлектронной эмиссии испускаются электроны.

Схема работы растрового электронного микроскопа

Термоэлектронная эмиссия – выход электронов с поверхности проводников. Число вышедших электронов мало при Т=300K и экспоненциально растет с повышением температуры.

При прохождении электронов через образец одни из них рассеиваются из-за столкновений с ядрами атомов образца, другие- изза столкновений с электронами атомов, а третьи проходят сквозь него. В некоторых случаях испускаются вторичные электроны, индуцируется рентгенов-ское излучение и т.п. Все эти процессы регистрируются специальными детекторами и в преобразованном виде выводятся на экран, создавая увеличенную картинку изучаемого объекта.

Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. В связи с тем, что длина волны электрона на порядки меньше, чем фотона, в современных РЭМ это увеличение может достигать 10 миллионов15, соответствуя разрешению в единицы нанометров, что позволяет визуализировать отдельные атомы.

Главный недостаток электронной микроскопии – необходимость работы в полном вакууме, ведь наличие какоголибо газа внутри камеры микроскопа может привести к ионизации его атомов и существенно исказить результаты. Кроме того, электроны оказывают разрушительное воздействие на биологические объекты, что делает их неприменимыми для исследования во многих областях биотехнологии.

История создания электронного микроскопа – замечательный пример достижения, основанного на междисциплинарном подходе, когда самостоятельно развивающиеся области науки и техники, объединившись, создали новый мощный инструмент научных исследований.

Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, электричество и магнетизм как распространение электромагнитных волн. Волновая оптика объяснила явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение в световом микроскопе. Успехам квантовой физики мы обязаны открытием электрона с его специфическими корпускулярноволновыми свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию электронной оптики, одним из важнейших изобретений которой в 1930х годах стал электронный микроскоп.

Но и на этом ученые не успокоились. Длина волны электрона, ускоренного электрическим полем, составляет несколько нанометров. Это неплохо, если мы хотим увидеть молекулу или даже атомную решетку. Но как заглянуть внутрь атома? На что похожа химическая связь? Как выглядит процесс отдельной химической реакции? Для этого сегодня в разных странах ученые разрабатывают нейтронные микроскопы.

Нейтроны обычно входят в состав атомных ядер наряду с протонами и имеют почти в 2000 раз большую массу, чем электрон. Те, кто не забыл формулу де Бройля из квантовой главы,сразу сообразят, что и длина волны у нейтрона во столько же раз меньше, то есть составляет пикометры тысячные доли нанометра! Тогдато атом и предстанет исследователям не как расплывчатое пятнышко, а во всей своей красе.

Нейтронный микроскоп имеет много плюсов – в частности, нейтроны хорошо отображают атомы водорода и легко проникают в толстые слои образцов. Однако и построить его очень трудно: нейтроны не имеют электрического заряда, поэтому преспокойно игнорируют магнитные и электрические поля и так и норовят ускользнуть от датчиков. К тому же не так-то просто выгнать большие неповоротливые нейтроны из атомов. Поэтому сегодня первые прототипы нейтронного микроскопа еще весьма далеки от совершенства.

Электр о нный микроск о п (англ. - electron microscope)этоприбор для наблюдения и фотографирования многократно (до 1·10 6 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 - 100 кэВ и более) в условиях глубокого вакуума.

Просвечивающий электронный микроскоп (ПЭМ) обладают самой высокой разрешающей способностью, превосходя по этому параметру световые микроскопы в несколько тысяч раз. Так называемый предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2 - 3 A°. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1 A°.

Для определения структуры твердых тел необходимо использование излучения с длиной волны λ, меньшей, чем межатомные расстояния. В электронном микроскопе с этой целью используют электронные волны.

Длина волны де Бройля λ B для электрона, движущегося со скоростью V

где p – его импульс, h - постоянная Планка, m 0 - масса покоя электрона, V – его скорость.

После простых преобразований получаем, что длина волны де Бройля для электрона, движущегося в ускоряющем однородном электрическом поле с разностью потенциалов U , равна

. (1)

В выражениях для λ Б не учитывается релятивистская поправка, существенная лишь при больших скоростях электронов V >1·10 5 В.

Величина λ Б очень мала что позволяет обеспечивать высокую разрешающую способность электронного микроскопа.

Для электронов же с энергиями от 1 эВ до 10 000 эВ длина волны де Бройля лежит в пределах от ~1 нм до 10 −2 нм, то есть в интервале длин волн рентгеновского излучения . Поэтому волновые свойства электронов должны проявляться, например, при их рассеянии на тех же кристаллах, на которых наблюдается дифракция рентгеновских лучей. [

Современные микроскопы имеют разрешающую способность в (0.1 – 1) нм при энергии электронов (1·10 4 – 1·10 5) эВ, что делает возможным наблюдение групп атомов и даже отдельных атомов, точечных дефектов, рельефа поверхности и т.д.

Просвечивающая электронная микроскопия

В электронно-оптическую систему просвечивающего электронного микроскопа (ПЭМ) входят: электронная пушка И и конденсор 1, предназначенные для обеспечения осветительной системы микроскопа; объективная 2, промежуточная 3 и проекционная 4 линзы, осуществляющие отображение; камера наблюдения и фотографирования Э (рис.1).

Рис.1. Ход лучей в ПЭМ в режиме наблюдения изображения

сточником электронов в электронной пушке служит вольфрамовый термоэмиссионный катод. Конденсорная линза позволяет получить на объекте пятно диаметром в несколько мкм. С помощью отображающей системы на экране ПЭМ формируется электронно-микроскопическое изображение объекта.

В плоскости, сопряженной с объектом, объективная линза формирует первое промежуточное изображение объекта. Все электроны, исходящие из одной точки объекта, попадают в одну точку сопряженной плоскости. Затем с помощью промежуточной и проекционной линз получают изображение на флуоресцирующем экране микроскопа или фотопластине. Это изображение передает структурные и морфологические особенности образца.

В ПЭМ используют магнитные линзы. Линза состоит из обмотки, ярма и полюсного наконечника, концентрирующего магнитное поле в малом объеме и повышающего тем самым оптическую силу линзы.

ПЭМ обладают самой высокой разрешающей способностью (PC), превосходя по этому параметру световые микроскопы в несколько тысяч раз. Так называемый предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2 – 3 A°. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы.При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1 A°. Столь высокие разрешения достигаются благодаря чрезвычайно малой длине волны де Бройля электронов. Оптимальным диафрагмированием удаётся снизить сферическую аберрацию объектива, влияющую на PC ПЭМ, при достаточно малой дифракционной ошибке. Эффективных методов коррекции аберраций в не найдено. Поэтому в ПЭМ магнитныеэлектронные линзы(ЭЛ), обладающие меньшими аберрациями, полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их можно разделить на 3 группы:

    упрощённые ПЭМ,

    ПЭМ высокого разрешения,

    ПЭМ с повышенным ускоряющим напряжением.

1. Упрощённые ПЭМ предназначены для исследований, в которых не требуется высокая PC. Они более просты по конструкции (включающей 1 конденсор и 2 – 3 линзы для увеличения изображения объекта), их отличают меньшее (обычно 60 – 80 кВ) ускоряющее напряжение и более низкая его стабильность. PC этих приборов – от 6 до 15. Другие применения - предварительный просмотр объектов, рутинные исследования, учебные цели. Толщина объекта, которую можно «просветить» электронным пучком, зависит от ускоряющего напряжения. В ПЭМ с ускоряющим напряжением 100 кВ изучают объекты толщиной от 10 до нескольких тыс. A°.

2. ПЭМ с высокой разрешающей способностью (2 – 3 Å) – как правило, универсальные приборы многоцелевого назначения (рис.2, а). С помощью дополнительных устройств и приставок в них можно наклонять объект в разных плоскостях на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять рентгеновский структурный анализ, исследования методами электронографии и пр. Ускоряющее электроны напряжение достигает 100 – 125 кВ, регулируется ступенчато и отличается высокой стабильностью: за 1 – 3 мин оно изменяется не более чем на 1 – 2 миллионные доли от исходного значения. В его оптической системе (колонне) создаётся глубокий вакуум (давление до 1·10 -6 мм рт. ст.). Схема оптической системы ПЭМ – на рис.2, б. Пучок электронов, источником которых служит термокатод, формируется в электронной пушке и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно», диаметр которого пятна можно изменять от 1 до 20 мкм. После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Не рассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов

Рис. 2 а. ПЭМ: 1 – электронная пушка; 2 – конденсорные линзы; 3 – объектив; 4 – проекционные линзы; 5 – световой микроскоп, дополнительно увеличивающий изображение, наблюдаемое на экране: 6 – тубус со смотровыми окнами, через которые можно наблюдать изображение; 7 – вы-соковольтный кабель; 8 – ваку-умная система; 9 – пульт управ-ления; 10 – стенд; 11 – высоко-вольтный источник питания; 12 – источник питания линз.

Рис. 2 б. Оптическая схема ПЭМ. 1 – катод V-образной формы из вольф-рамовой проволоки (разогревается проходящим по нему током до 2800 К); 2 – фокусирующий цилиндр; 3 – анод; 4 – первый (короткофокусный) конденсор, создающий уменьшенное изображение источника электронов; 5 – второй (длиннофокусный) кон-денсор, который переносит умень-шенное изображение источника элек-тронов на объект; 6 – объект; 7 – апертурная диафрагма; 8 – объектив; 9, 10, 11 – система проекционных линз; 12 – катодолюминесцентный экран, на котором формируется конечное изображение.

Увеличение ПЭМ равно произведению увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, так как толщина, плотность и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в световой контраст на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется изменением тока, возбуждающего магнитное поле объектива. Токи других линз регулируют для изменения увеличения ПЭМ.

3. ПЭМ с повышенным ускоряющим напряжением (до 200 кВ) предназначены для исследования более толстых объектов (в 2 – 3 раза толще), чем обычные ПЭМ. Их разрешающая способность достигает 3 – 5 Å. Эти приборы отличаются конструкцией электронной пушки: в ней для обеспечения электрической прочности и стабильности имеются два анода, на один из которых подаётся промежуточный потенциал, составляющий половину ускоряющего напряжения. Магнитодвижущая сила линз больше, чем в ПЭМ с ускоряющим напряжением 100 кВ, а сами линзы имеют увеличенные габариты и вес.

4. Сверхвысоковольтные электронные микроскопы (СВЭМ) – крупногабаритные приборы (рис.3) высотой от 5 до 15 м, с ускоряющим напряжением 0,50 – 0,65; 1 – 1,5 и 3.5 МВ.

Для них строят специальные помещения. СВЭМ предназначены для исследования объектов толщиной от 1·до·10 мкм. Электроны ускоряются в электростатическом ускорителе (так называемом ускорителе прямого действия), расположенном в баке, заполненном электроизоляционным газом под давлением. В том же или в дополнительном баке находится высоковольтный стабилизированный источник питания. В перспективе – созданию ПЭМ с линейным ускорителем, в котором электроны ускоряются до энергий 5 – 10 МэВ. При изучении тонких объектов PC СВЭМ ниже, чем у ПЭМ. В случае толстых объектов PC СВЭМ в 10 – 20 раз превосходит PC ПЭМ с ускоряющим напряжением 100 кВ. Если же образец аморфный, то контраст электронного изображения определяется толщиной и коэффициентом поглощения материала образца, что наблюдается, например, при изучении морфологии поверхности с помощью пластиковых или углеродных реплик. В кристаллах, кроме того, имеет место дифракция электронов, что позволяет определять структуру кристалла.

В

Рис.4. Положение диафрагмы Д при светлопольном (а ) и темнопольном (б ) изображениях: П - прошедший луч; D - дифрагированный луч; Обр - образец; И - электронная пушка

ПЭМ можно реализовать следующие режимы работы:

    изображение формируется прошедшим пучком П, дифрагированный пучок D отсекается апертурной диафрагмой Д (рис.4, а ), это - светлопольное изображение;

    апертурная диафрагма Д пропускает дифрагированный D пучок, отсекая прошедший П, это - темнопольное изображение (рис.4, б );

    для получения дифракционной картины задняя фокальная плоскость объективной линзы фокусируется на экране микроскопа (рис.4). Тогда на экране наблюдается дифракционная картина от просвечиваемого участка образца.

Для наблюдения изображения в задней фокальной плоскости объектива устанавливается апертурная диафрагма, в результате уменьшается апертура лучей, формирующих изображение, и повышается разрешение. Эта же диафрагма используется для выбора режима наблюдения (см. рис.2 и 5).

Рис.5. Ход лучей в ПЭМ в режиме микродифракции Д - диафрагма; И - источник электронов; Обр - образец; Э – экран; 1 - конденсорная, 2 - объективная, 3 - промежуточная, 4 -проекционная линзы

лина волны при напряжениях, используемых в ПЭМ, составляет около порядка 1∙10 –3 нм, то есть много меньше постоянной решетки кристаллов а , поэтому дифрагированный луч может распространяться лишь под малыми углами θ к проходящему лучу (
). Дифракционная картина от кристалла представляет собой набор отдельных точек (рефлексов). В ПЭМ в отличие от электронографа можно получить дифракционную картину с малого участка объекта, используя диафрагму в плоскости, сопряженной с объектом. Размер области может составлять около (1×1) мкм 2 . От режима наблюдения изображения к режиму дифракции можно переходить, изменяя оптическую силу промежуточной линзы.

История создания электронного микроскопа

В 1931 году Р. Руденберг получил патент на просвечивающий электронный микроскоп , а в 1932 году М. Кнолль и Э. Руска построили первый прототип современного прибора. Эта работа Э. Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру . Использование просвечивающего электронного микроскопа для научных исследований было начато в конце 1930-х годов и тогда же появился первый коммерческий прибор, построенный фирмой Siemens .

В конце 1930-х - начале 1940-х годов появились первые растровые электронные микроскопы, формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-х годах, когда они достигли значительного технического совершенства.

Значительным скачком (в 70-х гг) в развитии было использование вместо термоэмиссионных катодов - катодов Шоттки и катодов с холодной автоэмиссией, однако их применение требует значительно большего вакуума.

В конце 90х - начале 2000х компьютеризация и использование CCD-детекторов значительным образом увеличили стабильность и (относительно) простоту использования.

В последнее десятилетие в современных передовых просвечивающих электронных микроскопах используются корректоры сферических и хроматических аберраций (что вносят основное искажение в получаемое изображение), однако их применение порой значительно усложняет использование прибора.

Виды электронных микроскопов

Просвечивающая электронная микроскопия

Шаблон:Заготовка роздела

Первоначальная вид электронного микроскопа. В просвечивающем электронном микроскопе используется высокоэнергетический электронный пучок для формирования изображения. Электронный пучок создается посредством катода (вольфрамового, LaB 6 , Шоттки или холодной полевой эмиссии). Полученный электронный пучок ускоряется обычно до +200 кэВ (используются различные напряжения от 20кэВ до 1мэВ), фокусируется системой электростатических линз, проходит через образец так, что часть его проходит рассеиваясь на образце, а часть - нет. Таким образом, прошедший через образец электронный пучок несет информацию о структуре образца. Далее пучок проходит через систему увеличивающих линз и формирует изображение на люминесцентном экране (как правило, из сульфида цинка), фото-пластинке или CCD-камере.

Разрешение ПЭМ лимитируется в основном сферической аберрацией . Некоторые современные ПЭМ имеют корректоры сферической аберрации.

Основными недостатками ПЭМ являются необходимость в очень тонком образце (порядка 100нм) и неустойчивость(разложение) образцов под пучком.ааааа

Просвечивающая растровая(сканирующая) электронная микроскопия (ПРЭМ)

Основная статья: Просвечивающий растровый электронный микроскоп

Один из типов просвечивающей электронной микроскопии (ПЭМ), однако есть приборы работающие исключительно в режиме ПРЭМ. Пучок электронов пропускается через относительно тонкий образец, но, в отличие от обычной просвечивающей электронной микроскопии, электронный пучок фокусируется в точку, которая перемещается по образцу по растру.

Растровая (сканирующая) электронная микроскопия

В основе лежит телевизионный принцип развертки тонкого пучка электронов по поверхности образца.

Низковольтная электронная микроскопия

Сферы применения электронных микроскопов

Полупроводники и хранение данных

  • Редактирование схем
  • Метрология 3D
  • Анализ дефектов
  • Анализ неисправностей

Биология и биологические науки

  • Криобиология
  • Локализация белков
  • Электронная томография
  • Клеточная томография
  • Крио-электронная микроскопия
  • Токсикология
  • Биологическое производство и мониторинг загрузки вирусов
  • Анализ частиц
  • Фармацевтический контроль качества
  • 3D изображения тканей
  • Вирусология
  • Стеклование

Научные исследования

  • Квалификация материалов
  • Подготовка материалов и образцов
  • Создание нанопрототипов
  • Нанометрология
  • Тестирование и снятие характеристик устройств
  • Исследования микроструктуры металлов

Промышленность

  • Создание изображений высокого разрешения
  • Снятие микрохарактеристик 2D и 3D
  • Макрообразцы для нанометрической метрологии
  • Обнаружение и снятие параметров частиц
  • Конструирование прямого пучка
  • Эксперименты с динамическими материалами
  • Подготовка образцов
  • Судебная экспертиза
  • Добыча и анализ полезных ископаемых
  • Химия/Нефтехимия

Основные мировые производители электронных микроскопов

См. также

Примечания

Ссылки

  • 15 лучших изображений 2011 года, сделанных электронными микроскопами Изображения на рекомендованном сайте являются произвольно раскрашенными, и имеют скорее художественную, чем научную ценность (электронные микроскопы выдают черно-белые а не цветные изображения).

Wikimedia Foundation . 2010 .

Оглавление темы "Электронная микроскопия. Мембрана.":









Электронные микроскопы появились в 1930-х годах и вошли в повсеместное употребление в 1950-х.

На рисунке изображен современный трансмиссионный (просвечивающий) электронный микроскоп , а на рисунке показан путь электронного пучка в этом микроскопе. В трансмиссионном электронном микроскопе электроны, прежде чем сформируется изображение, проходят сквозь образец. Такой электронный микроскоп был сконструирован первым.

Электронный микроскоп перевернут «вверх дном» по сравнению со световым микроскопом. Излучение подается на образец сверху, а изображение формируется внизу. Принцип действия электронного микроскопа в сущности тот же, что и светового микроскопа. Электронный пучок направляется конденсорными линзами на образец, а полученное изображение затем увеличивается с помощью других линз.

В таблице суммированы некоторые сходства и различия между световым и электронным микроскопами . В верхней части колонны электронного микроскопа находится источник электронов - вольфрамовая нить накала, сходная с той, какая имеется в обычной электрической лампочке. На нее подается высокое напряжение (например, 50 000 В), и нить накала излучает поток электронов. Электромагниты фокусируют электронный пучок.

Внутри колонны создается глубокий вакуум. Это необходимо для того, чтобы сократить до минимума рассеивание электронов из-за столкновения их с частицами воздуха. Для изучения в электронном микроскопе можно использовать только очень тонкие срезы или частицы, так как более крупными объектами электронный пучок почти полностью поглощается. Части объекта, отличающиеся относительно более высокой плотностью, поглощают электроны и потому на сформировавшемся изображении кажутся более темными. Для окрашивания образца с целью увеличения контраста используют тяжелые металлы, такие как свинец и уран.

Электроны невидимы для человеческого глаза, поэтому они направляются на флуоресцирующий , который воспроизводит видимое (черно-белое) изображение. Чтобы получить фотоснимок, экран убирают и направляют электроны непосредственно на фотопленку. Полученный в электронном микроскопе фотоснимок называется электронной микрофотографией.

Преимущество электронного микроскопа :
1) высокое разрешение (0,5 нм на практике)


Недостатки электронного микроскопа :
1) подготовленный к исследованию материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме;
2) трудно быть уверенным, что объект воспроизводит живую клетку во всех ее деталях, поскольку фиксация и окрашивание исследуемого материала могут изменить или повредить ее структуру;
3) дорого стоит и сам электронный микроскоп и его обслуживание;
4) подготовка материала для работы с микроскопом отнимает много времени и требует высокой квалификации персонала;
5) исследуемые образцы под действием пучка электронов постепенно разрушаются. Поэтому, если требуется детальное изучение образца, необходимо его фотографировать.

Как же устроен электронный микроскоп? В чём его отличие от оптического микроскопа, существует ли между ними какая-нибудь аналогия?

В основе работы электронного микроскопа лежит свойство неоднородных электрических и магнитных полей, обладающих вращательной симметрией, оказывать на электронные пучки фокусирующее действие. Таким образом, роль линз в электронном микроскопе играет совокупность соответствующим образом рассчитанных электрических и магнитных полей; соответствующие устройства, создающие эти поля, называют «электронными линзами».

В зависимости от вида электронных линз электронные микроскопы делятся на магнитные, электростатические и комбинированные.

Какого же типа объекты могут быть исследованы с помощью электронного микроскопа?

Так же как и в случае оптического микроскопа объекты, во-первых, могут быть «самосветящимися», т. е. служить источником электронов. Это, например, накаленный катод или освещаемый фотоэлектронный катод. Во-вторых, могут быть использованы объекты, «прозрачные» для электронов, обладающих определённой скоростью. Иными словами, при работе на просвет объекты должны быть достаточно тонкими, а электроны достаточно быстрыми, чтобы они проходили сквозь объекты и поступали в систему электронных линз. Кроме того, путём использования отражённых электронных лучей могут быть изучены поверхности массивных объектов (в основном металлов и металлизированных образцов). Такой способ наблюдения аналогичен методам отражательной оптической микроскопии.

По характеру исследования объектов электронные микроскопы разделяют на просвечивающие, отражательные, эмиссионные, растровые, теневые и зеркальные.

Наиболее распространёнными в настоящее время являются электромагнитные микроскопы просвечивающего типа, в которых изображение создаётся электронами, проходящими сквозь объект наблюдения. Он состоит из следующих основных узлов: осветительной системы, камеры объекта, фокусирующей системы и блока регистрации конечного изображения, состоящего из фотокамеры и флуоресцирующего экрана. Все эти узлы соединены друг с другом, образуя так называемую колонну микроскопа, внутри которой поддерживается давление. Осветительная система обычно состоит из трёхэлектродной электронной пушки (катод, фокусирующий электрод, анод) и конденсорной линзы (речь идёт об электронных линзах). Она формирует пучок быстрых электронов нужного сечения и интенсивности и направляет его на исследуемый объект, находящийся в камере объектов. Пучок электронов, прошедший сквозь объект, поступает в фокусирующую (проекционную) систему, состоящую из объективной линзы и одной или нескольких проекционных линз.