Общая схема строения бактериальной клетки показана на рисунке 2. Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения.



Клеточная стенка. Клетка бактерий одета плотной оболочкой. Этот поверхностный слой, расположенный снаружи от цитоплазматической мембраны, называют клеточной стенкой (рис. 2, 14). Стенка выполняет защитную и опорную функции, а также придает клетке постоянную, характерную для нее форму (например, форму палочки или кокка) и представляет собой наружный скелет клетки. Эта плотная оболочка роднит бактерии с растительными клетками, что отличает их от животных клеток, имеющих мягкие оболочки. Внутри бактериальной клетки осмотическое давление в несколько раз, а иногда и в десятки раз выше, чем во внешней среде. Поэтому клетка быстро разорвалась бы, если бы она не была защищена такой плотной, жесткой структурой, как клеточная стенка.


Толщина клеточной стенки 0,01-0,04 мкм. Она составляет от 10 до 50% сухой массы бактерий. Количество материала, из которого построена клеточная стенка, изменяется в течение роста бактерий и обычно увеличивается с возрастом.


Основным структурным компонентом стенок, основой их жесткой структуры почти у всех исследованных до настоящего времени бактерий является муреин (гликопептид, мукопептид). Это органическое соединение сложного строения, в состав которого входят сахара, несущие азот,- аминосахара и 4-5 аминокислот. Причем аминокислоты клеточных стенок имеют необычную форму (D-стереоизомеры), которая в природе редко встречается.


,
,


Составные части клеточной стенки, ее компоненты, образуют сложную прочную структуру (рис. 3, 4 и 5).


С помощью способа окраски, впервые предложенного в 1884 г. Кристианом Грамом, бактерии могут быть разделены на две группы: грамположительные и грамотрицательные . Грамположительные организмы способны связывать некоторые анилиновые красители, такие, как кристаллический фиолетовый, и после обработки иодом, а затем спиртом (или ацетоном) сохранять комплекс иод-краситель. Те же бактерии, у которых под влиянием этилового спирта этот комплекс разрушается (клетки обесцвечиваются), относятся к грамотрицательным.


Химический состав клеточных стенок грамположительных и грамотрицательных бактерий различен.


У грамположительных бактерий в состав клеточных стенок входят, кроме мукопептидов, полисахариды (сложные, высокомолекулярные сахара), тейхоевые кислоты (сложные по составу и структуре соединения, состоящие из сахаров, спиртов, аминокислот и фосфорной кислоты). Полисахариды и тейхоевые кислоты связаны с каркасом стенок - муреином. Какую структуру образуют эти составные части клеточной стенки грамположительных бактерий, мы пока еще не знаем. С помощью электронных фотографий тонких срезов (слоистости) в стенках грамположительных бактерий не обнаружено. Вероятно, все эти вещества очень плотно связаны между собой.


Стенки грамотрицательных бактерий более сложные по химическому составу, в них содержится значительное количество липидов (жиров), связанных с белками и сахарами в сложные комплексы - липопротеиды и липополисахариды. Муреина в клеточных стенках грамотрицательных бактерий в целом меньше, чем у грамположительных бактерий. Структура стенки грамотрицательных бактерий также более сложная. С помощью электронного микроскопа было установлено, что стенки этих бактерий многослойные (рис. 6).



Внутренний слой состоит из муреина. Над ним находится более широкий слой из неплотно упакованных молекул белка. Этот слой в свою очередь покрыт слоем липополисахарида. Самый верхний слой состоит из липопротеидов.


Клеточная стенка проницаема: через нее питательные вещества свободно проходят в клетку, а продукты обмена выходят в окружающую среду. Крупные молекулы с большим молекулярным весом не проходят через оболочку.



Капсула. Клеточная стенка многих бактерий сверху окружена слоем слизистого материала - капсулой (рис. 7). Толщина капсулы может во много раз превосходить диаметр самой клетки, а иногда она настолько тонкая, что ее можно увидеть лишь через электронный микроскоп, - микрокапсула.


Капсула не является обязательной частью клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она служит защитным покровом клетки и участвует в водном обмене, предохраняя клетку от высыхания.


По химическому составу капсулы чаще всего представляют собой полисахариды. Иногда они состоят изгликопротеидов (сложные комплексы сахаров и белков) и полипептидов (род Bacillus), в редких случаях - из клетчатки (род Acetobacter).


Слизистые вещества, выделяемые в субстрат некоторыми бактериями, обусловливают, например, слизисто-тягучую консистенцию испорченного молока и пива.


Цитоплазма. Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой. В жидкой, бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества. Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная). С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.


,


Внешний липопротвидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазматической мембраной (рис. 2, 15).


Внутри цитоплазмы находятся все жизненно важные структуры и органеллы.


Цитоплазматическая мембрана выполняет очень важную роль - регулирует поступление веществ в клетку и выделение наружу продуктов обмена.


Через мембрану питательные вещества могут поступать в клетку в результате активного биохимического процесса с участием ферментов. Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы. Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы). Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими. С мембраной связаны рибосомы - структурные частицы, на которых синтезируется белок. Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.


На электронных фотографиях тонких срезов бактерий цитоплазматическая мембрана представляется в виде непрерывного тяжа толщиной около 75A, состоящего из светлого слоя (липиды), заключенного между двумя более темными (белки). Каждый слой имеет ширину 20-30А. Такая мембрана называется элементарной (табл. 30, рис. 8).


,


Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов - мостиков. Цитоплазматическая мембрана часто дает инвагинации - впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названные мезосомами. Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы (рис. 2). Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур - аналоги митохондрий. Другие выполняют функции зндоплазматической сети или аппарата Гольджи. Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий. После впячивания цитоплазмы мембрана продолжает расти и образует стопки (табл. 30), которые по аналогии с гранулами хлоропластов растений называют стопками тилакоидов. В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты (цитохромы), осуществляющие процесс фотосинтеза.


,


В цитоплазме бактерий содержатся рибосомы- белок-синтезирующие частицы диаметром 200А. В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.


Рибосомы являются центрами синтеза белка в клетке. При этом они часто соединяются между собой, образуя агрегаты, называемые полирибосомами или полисомами.


В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды. Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.


У многих бактерий гранулы состоят из крахмала или других полисахаридов - гликогена и гранулезы. У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира. Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы). Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты). Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы. В цитоплазме некоторых серных бактерий находятся капельки серы.


Помимо различных структурных компонентов, цитоплазма состоит из жидкой части - растворимой фракции. В ней содержатся белки, различные ферменты, т-РНК, некоторые пигменты и низкомолекулярные соединения - сахара, аминокислоты.


В результате наличияв цитоплазме низкомолекулярных соединений возникает разность в осмотическом давлении клеточного содержимого и наружной среды, причем у разных микроорганизмов это давление может быть различным. Наибольшее осмотическое давление отмечено у грамположительных бактерий - 30 атм, у грамотрицательных бактерий оно гораздо ниже - 4-8 атм.


Ядерный аппарат. В центральной части клетки локализовано ядерное вещество - дезоксирибонуклеиновая кислот а (ДНК).


,


У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог - «ядерный эквивалент» - нуклеоид (см. рис. 2, 8), который является эволюционно более примитивной формой организации ядерного вещества. Микроорганизмы, не имеющие настоящего ядра, а обладающие его аналогом, относятся к прокариотам. Все бактерии - прокариоты. В клетках большинства бактерий основное количество ДНК сконцентрировано в одном или нескольких местах. В клетках эукариотов ДНК находится в определенной структуре - ядре. Ядро окружено оболочкой- мембраной .


У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками - гистонами - ив нуклеоиде расположена в виде пучка фибрилл.


Жгутики. На поверхности некоторых бактерий имеются придаточные структуры; наиболее широко распространенными из них являются жгутики - органы движения бактерий.


Жгутик закрепляется под цитоплазматической мембраной с помощью двух пар дисков. У бактерий может быть один, два или много жгутиков. Расположение их различно: на одном конце клетки, на двух, по всей поверхности и т. д. (рис. 9). Жгутики бактерий имеют диаметр 0,01-0,03 мкм, длина их может во много раз превосходить длину клетки. Бактериальные жгутики Состоят из белка - флагеллина - и представляют собой скрученные винтообразные нити.



На поверхности некоторых бактериальных клеток имеются тонкие ворсинки - фимбрии .

Жизнь растений: в 6-ти томах. - М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 .


Строение и химический состав бактериальной
клетки

Общая схема строения бактериальной клетки показана на рисунке 2. Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения.
Клеточная стенка. Клетка бактерий одета плотной оболочкой. Этот поверхностный слой, расположенный снаружи от цитоплазматической мембраны, называют клеточной стенкой (рис. 2, 14). Стенка выполняет защитную и опорную функции, а также придает клетке постоянную, характерную для нее форму (например, форму палочки или кокка) и представляет собой наружный скелет клетки. Эта плотная оболочка роднит бактерии с растительными клетками, что отличает их от животных клеток, имеющих мягкие оболочки.
Внутри бактериальной клетки осмотическое давление в несколько раз, а иногда и в десятки раз выше, чем во внешней среде. Поэтому клетка быстро разорвалась бы, если бы она не была защищена такой плотной, жесткой структурой, как клеточная стенка.
Толщина клеточной стенки 0,01-0,04 мкм. Она составляет от 10 до 50% сухой массы бактерий. Количество материала, из которого построена клеточная стенка, изменяется в течение роста бактерий и обычно увеличивается с возрастом.
Основным структурным компонентом стенок, основой их жесткой структуры почти у всех исследованных до настоящего времени бактерий является муреин (гликопептид,

мукопептид). Это органическое соединение сложного строения, в состав которого входят сахара, несущие азот,- аминосахара и 4-5 аминокислот. Причем аминокислоты клеточных стенок имеют необычную форму (D-стереоизомеры), которая в природе редко встречается.

Составные части клеточной стенки, ее компоненты, образуют сложную прочную структуру (рис. 3, 4 и 5).
С помощью способа окраски, впервые предложенного в 1884 г. Кристианом Грамом, бактерии могут быть разделены на две группы: грамположительные и
грамотрицательные . Грамположительные организмы способны связывать некоторые анилиновые красители, такие, как кристаллический фиолетовый, и после обработки иодом, а затем спиртом (или ацетоном) сохранять комплекс иод-краситель. Те же бактерии, у которых под влиянием этилового спирта этот комплекс разрушается (клетки обесцвечиваются), относятся к грамотрицательным.
Химический состав клеточных стенок грамположительных и грамотрицательных бактерий различен.
У грамположительных бактерий в состав клеточных стенок входят, кроме мукопептидов, полисахариды (сложные, высокомолекулярные сахара), тейхоевые кислоты
(сложные по составу и структуре соединения, состоящие из сахаров, спиртов, аминокислот и фосфорной кислоты). Полисахариды и тейхоевые кислоты связаны с каркасом стенок - муреином. Какую структуру образуют эти составные части клеточной стенки грамположительных бактерий, мы пока еще не знаем. С помощью электронных фотографий тонких срезов (слоистости) в стенках грамположительных бактерий не обнаружено.
Вероятно, все эти вещества очень плотно связаны между собой.
Стенки грамотрицательных бактерий более сложные по химическому составу, в них содержится значительное количество липидов (жиров), связанных с белками и сахарами в сложные комплексы - липопротеиды и липополисахариды. Муреина в клеточных стенках грамотрицательных бактерий в целом меньше, чем у грамположительных бактерий.
Структура стенки грамотрицательных бактерий также более сложная. С помощью электронного микроскопа было установлено, что стенки этих бактерий многослойные (рис.
6).

Внутренний слой состоит из муреина. Над ним находится более широкий слой из неплотно упакованных молекул белка. Этот слой в свою очередь покрыт слоем липополисахарида. Самый верхний слой состоит из липопротеидов.
Клеточная стенка проницаема: через нее питательные вещества свободно проходят в клетку, а продукты обмена выходят в окружающую среду. Крупные молекулы с большим молекулярным весом не проходят через оболочку.
Капсула. Клеточная стенка многих бактерий сверху окружена слоем слизистого материала - капсулой (рис. 7). Толщина капсулы может во много раз превосходить диаметр самой клетки, а иногда она настолько тонкая, что ее можно увидеть лишь через электронный микроскоп, - микрокапсула.
Капсула не является обязательной частью клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она служит защитным покровом клетки и участвует в водном обмене, предохраняя клетку от высыхания.
По химическому составу капсулы чаще всего представляют собой полисахариды.
Иногда они состоят изгликопротеидов (сложные комплексы сахаров и белков) и полипептидов (род Bacillus), в редких случаях - из клетчатки (род Acetobacter).
Слизистые вещества, выделяемые в субстрат некоторыми бактериями, обусловливают, например, слизисто-тягучую консистенцию испорченного молока и пива.
Цитоплазма. Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой. В жидкой, бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества. Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная). С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.

Внешний липопротвидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазматической мембраной (рис.
2, 15).
Внутри цитоплазмы находятся все жизненно важные структуры и органеллы.
Цитоплазматическая мембрана выполняет очень важную роль - регулирует поступление веществ в клетку и выделение наружу продуктов обмена.
Через мембрану питательные вещества могут поступать в клетку в результате активного биохимического процесса с участием ферментов. Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы.
Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы). Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими. С мембраной связаны рибосомы - структурные частицы, на которых синтезируется белок.
Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.
На электронных фотографиях тонких срезов бактерий цитоплазматическая мембрана представляется в виде непрерывного тяжа толщиной около 75A, состоящего из светлого слоя
(липиды), заключенного между двумя более темными (белки). Каждый слой имеет ширину
20-30А. Такая мембрана называется элементарной (табл. 30, рис. 8).

Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов
- мостиков. Цитоплазматическая мембрана часто дает инвагинации - впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названные
мезосомами. Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы (рис. 2). Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур - аналоги митохондрий. Другие выполняют функции зндоплазматической сети или аппарата Гольджи. Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий.
После впячивания цитоплазмы мембрана продолжает расти и образует стопки (табл. 30), которые по аналогии с гранулами хлоропластов растений называют стопками тилакоидов. В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты
(цитохромы), осуществляющие процесс фотосинтеза.

,
В цитоплазме бактерий содержатся рибосомы- белок-синтезирующие частицы диаметром 200А. В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.
Рибосомы являются центрами синтеза белка в клетке. При этом они часто соединяются между собой, образуя агрегаты, называемые полирибосомами или полисомами.

В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров.
Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды. Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.
У многих бактерий гранулы состоят из крахмала или других полисахаридов - гликогена и гранулезы. У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира. Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы). Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты).
Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы. В цитоплазме некоторых серных бактерий находятся капельки серы.
Помимо различных структурных компонентов, цитоплазма состоит из жидкой части - растворимой фракции. В ней содержатся белки, различные ферменты, т-РНК, некоторые пигменты и низкомолекулярные соединения - сахара, аминокислоты.
В результате наличияв цитоплазме низкомолекулярных соединений возникает разность в осмотическом давлении клеточного содержимого и наружной среды, причем у разных микроорганизмов это давление может быть различным. Наибольшее осмотическое давление отмечено у грамположительных бактерий - 30 атм, у грамотрицательных бактерий оно гораздо ниже - 4-8 атм.
Ядерный аппарат. В центральной части клетки локализовано ядерное вещество - дезоксирибонуклеиновая кислот а (ДНК).

,
У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог -
«ядерный эквивалент» - нуклеоид (см. рис. 2, 8), который является эволюционно более примитивной формой организации ядерного вещества. Микроорганизмы, не имеющие настоящего ядра, а обладающие его аналогом, относятся к прокариотам. Все бактерии - прокариоты. В клетках большинства бактерий основное количество ДНК сконцентрировано в одном или нескольких местах. В клетках эукариотов ДНК находится в определенной структуре - ядре. Ядро окружено оболочкой- мембраной .

У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками - гистонами - ив нуклеоиде расположена в виде пучка фибрилл.
Жгутики. На поверхности некоторых бактерий имеются придаточные структуры; наиболее широко распространенными из них являются жгутики - органы движения бактерий.
Жгутик закрепляется под цитоплазматической мембраной с помощью двух пар дисков.
У бактерий может быть один, два или много жгутиков. Расположение их различно: на одном конце клетки, на двух, по всей поверхности и т. д. (рис. 9). Жгутики бактерий имеют диаметр
0,01-0,03 мкм, длина их может во много раз превосходить длину клетки. Бактериальные жгутики Состоят из белка - флагеллина - и представляют собой скрученные винтообразные нити.

На поверхности некоторых бактериальных клеток имеются тонкие ворсинки -
фимбрии .
Жизнь растений: в 6-ти томах. - М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный
редактор чл.-кор. АН СССР, проф. А.А. Федоров. 1974

  • Строение и химический состав бактериальной клетки

Каталог: documents
documents -> Фонограммы как доказательства по гражданским делам
documents -> Примерная программа профессионального модуля
documents -> Умеренные когнитивные нарушения у больных с сосудистым поражением головного мозга 14. 01. 11 нервные болезни
documents -> Учебное пособие для самостоятельной подготовки студентов специальной медицинской группы по освоению теоретического раздела дисциплины «Физическая культура»
documents -> Программа «Счастливое материнство с желанным ребёнком»
documents -> Новая информация из раздела безопасности использования лекарственного средства
documents -> Федеральные клинические рекомендации по диагностике и лечению синдрома зависимости

ЦИТОПЛАЗМА (ЦП)

Участвуют в спорообразовании.

МЕЗОСОМЫ

При избыточном росте, по сравнению с ростом КС, ЦПМ образует инвагинаты (впячивания) - мезосомы. Мезосомы - центр энергетического метаболизма прокариотической клетки. Мезосомы являются аналогами митохондрий эукариот, но устроены проще.

Хорошо развитые и сложно организованные мезосомы характерны для Грам+ бактерий.

Клеточная стенка бактерий

У Грам- бактерий мезосомы встречаются реже и просто организованы (в форме петли). Полиморфизм мезосом отмечается даже у одного и того же вида бактерий. У риккетсий мезосомы отсутствуют.

Мезосомы различаются по размеру, форме и локализации в клетке.

По форме различают мезосомы:

– — ламеллярные (пластинчатые),

– — везикулярные (имеющие форму пузырьков),

– — тубулярные (трубчатые),

– — смешанные.

По расположению в клетке различают мезосомы:

– — образующиеся в зоне клеточного деления и формирования поперечной перегородки,

– — к которым прикреплен нуклеоид;

– — сформированные в результате инвагинации периферических участков ЦПМ.

Функции мезосом:

1. Усиливают энергетический метаболизм клеток, так как увеличивают общую «рабочую» поверхность мембран.

2. Участвуют в секреторных процессах (у некоторых Грам+ бактерий).

3. Участвуют вклеточном делении. При размножении нуклеоид движется к мезосоме, получает энергию, удваивается и делится амитозом.

Выявление мезосом:

1. Электронная микроскопия.

Строение. Цитоплазма (протоплазма)-содержимое клетки, окруженное ЦПМ и занимающее основной объем бактериальной клетки. ЦП является внутренней средой клетки и представляет собой сложную коллоидную систему, состоящую из воды (около 75%) и различных органических соединений (белков, РНК и ДНК, липидов, углеводов, минеральных веществ).

Располагающийся под ЦПМ слой протоплазмы более плотный, чем остальная масса в центре клетки. Фракция цитоплазмы, имеющая гомогенную консистенцию и содержащая набор растворимых РНК, ферментных белков, продуктов и субстратов метаболических реакций, получила название цитозоля. Другая часть цитоплазмы представлена разнообразными структурными элементами: нуклеоидом, плазмидами, рибосомами и включениями.

Функции цитоплазмы:

1. Содержит клеточные органеллы.

Выявление цитоплазмы:

1. Электронная микроскопия.

Строение. Нуклеоид - эквивалент ядра эукариот, хотя отличается от него по своей структуре и химическо-му составу. Нуклеоид не отделен от ЦП ядерной мембраной, не имеет ядрышек и гистонов, содержит одну хромосому, имеет гаплоидный (одиночный) набор генов, не способен к митотическому делению.

Нуклеоид расположен в центре бактериальной клетки, содержит двунитевую молекулу ДНК, небольшое количество РНК и белков. У большинства бактерий двунитевая молекула ДНК диаметром около 2 нм, длиной около 1 м с молекулярной массой 1–3х109 Да замкнута в кольцо и плотно уложена наподобие клубка. У микоплазм молекулярная масса ДНК наименьшая для клеточных организмов (0,4–0,8×109 Да).

ДНК прокариот построена так же, как и у эукариот (рис. 25).

Рис. 25. Строение ДНК прокариот:

А - фрагмент нити ДНК, образованной чередующимися остатками дезоксирибозы и фосфорной кислоты. К первому углеродному атому дезоксирибозы присоединено азотистое основание: 1 - цитозин; 2 - гуанин.

Б - двойная спираль ДНК: Д - дезоксирибоза; Ф - фосфат; А - аденин; Т - тимин; Г - гуанин; Ц - цитозин

Молекула ДНК несет множество отрицательных зарядов, так как каждый фосфатный остаток содержит ионизированную гидроксильную группу. У эукариот отрицательные заряды нейтрализуются образованием комплекса ДНК с основными белками - гистонами. В клетках прокариот гистонов нет, поэтому нейтрализация зарядов осуществляется взаимодействием ДНК с полиаминами и ионами Mg2+.

По аналогии с хромосомами эукариот бакте-риальная ДНК часто обозначается как хромосома. Она представлена в клетке в единственном числе, поскольку бактерии являются гаплоидными. Однако перед делени-ем клетки число нуклеоидов удваивается, а во время деления уве-личивается до 4 и более. Поэтому термины «нуклеоид» и «хромосома» не всегда совпадают. При действии на клетки определенных факторов (температуры, pH среды, ионизирующего излучения, солей тяжелых металлов, некоторых антибиотиков и др.) происходит образование множества копий хромосомы. При устранении воздействия этих факторов, а также после перехода в стационарную фазу в клетках обнаруживается по одной копии хромосомы.

Длительное время считали, что в распределении нитей ДНК бактериальной хромосомы не прослеживается никакой закономерности. Специальные исследования показали, что хромосомы прокариот - высокоупорядоченная структура. Часть ДНК в этой структуре представлена системой из 20–100 независимо суперспирализованных петель. Суперспирализованные петли соответствуют неактивным в данное время участкам ДНК и находятся в центре нуклеоида. По периферии нуклеоида располагаются деспирализованные участки, на которых происходит синтез информационной РНК (иРНК). Поскольку у бактерий процессы транскрипции и трансляции идут одновременно, одна и та же молекула иРНК может быть одновременно связана с ДНК и рибосомами.

Кроме нуклеоида в цитоплазме бактериальной клетки могут находиться плазмиды - факторы внехромосомной наследственности в виде дополнительных автономных кольцевых молекул двунитевой ДНК с меньшей молекулярной мас-сой. В плазмидах также закодирована наследственная информация, однако она не является жизненно необходимой для бактериальной клетки.

Функции нуклеиода:

1. Хранение и передача наследственной информации, в том числе о синтезе факторов патогенности.

Выявление нуклеоида:

1. Электронная микроскопия: на электронограммах ультратонких срезов нуклеоид имеет вид светлых зон меньшей оптической плотности с фибриллярными, нитевидными структурами ДНК (рис. 26). Несмотря на отсутствие ядерной мембраны, нуклеоид довольно четко отграничен от цитоплазмы.

2. Фазово-контрастная микроскопия нативных препаратов.

3. Световая микроскопия после окраски специфическими для ДНК методами по Фельгену, по Пашкову или по Романовскому-Гимза:

– препарат фиксируют метиловым спиртом;

– на фиксированный препарат наливают краситель Романовского-Гимза (смесь равных частей трех красок - азура, эозина и метиленового синего, растворенных в метаноле) на 24 часа;

– краску сливают, промывают препарат дистиллированной водой, высушивают и микроскопируют: нуклеоид окрашивается в фиолетовый цвет и располагается диффузно в цитоплазме, окрашенной в бледно-розовый цвет.

Читайте также:

Особенности химического состава клеток бактерий

Структура бактериальной клетки. Основные отличия прокариотов и эукариотов. Функции отдельных структурных элементов бактериальной клетки. Особенности химического состава клеточных стенок грамположительных и грамотрицательных бактерий.

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядра, называемого нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.
Отличия по строению клетки
1) У прокариот нет ядра, а у эукариот есть.
2) У прокариот из органоидов имеются только рибосомы (мелкие, 70S), а у эукариот, кроме рибосом (крупных, 80S), имеется множество других органоидов: митохондрии, ЭПС, клеточный центр, и т.д.
3) Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.
1) У прокариот ДНК кольцевая, а у эукариот линейная
2) У прокариот ДНК голая, почти не соединена с белками, а у эукариот ДНК соединена с белками в соотношении 50/50, образуется хромосома
3) У прокариот ДНК лежит в специальной области цитоплазмы, которая называется нуклеоид, а у эукариот ДНК лежит в ядре.
Постоянные компоненты бактериальной клетки.
Нуклеоид – эквивалент ядра прокариот
Клеточная стенка – отличается у Гр+ и Гр – бактерий. Определяет и сохраняет постоянную форму, обеспечивает связь с внешней средой, определяет антигенную специфичность бактерий, обладает важными иммуноспецифическими свойствами; нарушение синтеза клеточной стенки ведет к образованию L-форм бактерий.
Гр+ : такая окраска связана с содержанием в КС тейховыми и дипотейхоевыми кислотами, которые пронизывают его насквозь и закрепляют в цитоплазме. Пептидогликан толстый, состоит плазматической мембраны, связанной бета-гликозидными связями.
Гр -: тонкий слой пептидогликанов, нарудная мембрана представлена липополисахаридными гликокопротеинами, гликолипидами.
ЦПМ – состоит из липопротеинов. Воспринимает всю химическую информацию, поступающую в клетку. Является основным барьером. Участвует процессе репликации нуклеоида и плазмид; содержит большое количество ферментов; Участвует в синтезе компонентов клеточной стенки.
Мезосомы – аналоги митохондрий в бактериальной клетке
Рибосомы 70S - многочисленные мелкие гранулы, располагающиеся в в цитоплазме.
НЕПОСТОЯННЫЕ:
Жгутики: состоят из белка флагеллина, берут начало от ЦПМ, основная функция -двигательная.
Пили: за счет них идет прикрепление к клетке-хозяину
Плазмиды. Капсула, Споры, Включения.

Основная статья: Надмембранный комплекс

Надмембранный аппаратбактерий представлены клеточ-ной стенкой, специфика организации которой служит основой для подразделения их на две нетаксономические группы (грамположительные и грамотрицательные формы) и коррелирует с очень большим числом морфофункциональных, метаболических и генетических признаков. Клеточная стенка прокариот явля-ется по существу полифункциональным органоидом, выведен-ным за пределы протопласта и несущим значительную долю метаболической нагрузки клетки.

Клеточная стенка грамположительных бактерий

Строение клеточной стенки

У грамположительных бактерий (рис. 12, А) клеточная стенка устроена в целом более просто. Наружные слои клеточной стенки образованы белком в комплексе с липидами. У некоторых видов бактерий сравнительно недавно обнаружен слой поверхностных белковых глобул, форма, размер и характер расположения которых спе-цифичны для вида. Внутри клеточной стенки, а также непо-средственно на ее поверхности помещаются ферменты, расщеп-ляющие субстраты до низкомолекулярных компонентов, кото-рые в дальнейшем транспортируются через цитоплазматиче-скую мембрану внутрь клетки. Здесь же находятся ферменты, синтезирующие внеклеточные полимеры, например капсульные полисахариды.

Полисахаридная капсула

Полисахаридная капсула, снаружи обволаки-вающая клеточную стенку ряда бактерий, имеет в основном частноприспособительное значение, и ее присутствие не обяза-тельно для сохранения жизнедеятельности клетки. Так, она обеспечивает прикрепление клеток к поверхности плотных суб-стратов, аккумулирует некоторые минеральные вещества и у патогенных форм препятствует их фагоцитированию.

Муреин

Непосредственно к цито-плазматической мембране прилегает жесткий муреиновый слой.

Муреин, или пептидогликан, является сополимером ацетилглюкозамина и ацетилмурамовой кислоты с поперечными олиго- пептидными сшивками. Не исключено, что муреиновый слой представляет собой одну гигантскую молекулу-мешок, обеспе-чивающую ригидность клеточной стенки и ее индивидуальную форму.

Тейхоевые кислоты

В тесном контакте с муреиновым слоем находится вто-рой полимер стенки грамположительных бактерий — тейхоевые кислоты. Им приписывается роль аккумулятора катионов и регулятора ионного обмена между клеткой и окружающей сре-дой.

Клеточная стенка грамотрицательных бактерий

Строение клеточной стенки

По сравнению с грамположительными формам, клеточная стенка грамотрицательных бактерий более сложно устроена и ее физиологическое значение несравненно шире. Помимо муреинового слоя ближе к поверхности располагается вторая белко-во-липидная мембрана (рис. 12,Б,В), в состав которой входят липополисахариды. Она ковалентно связана с муреином сшив-ками из молекул липопротеида. Основная функция этой мем-браны — роль молекулярного сита, кроме того, на ее наруж-ной и внутренней поверхностях находятся ферменты.

3.Строение бактериальной клетки.

Пространство, ограниченное наружной и цитоплазматиче-ской мембранами, носит название периплазматического и яв-ляется уникальной принадлежностью грамотрицательных бак-терий. В его объеме локализуется целый набор ферментов — фосфатаз, гидролаз, нуклеаз и т. д. Они расщепляют сравни-тельно высокомолекулярные питательные субстраты, а также разрушают собственный клеточный материал, выделяемый в окружающую среду из цитоплазмы. В известной степени периплазматическое пространство можно уподобить лизосоме эука-риот. В зоне периплазмы оказывается возможным не только максимально эффективное протекание энзиматических реакций, но и изоляция от цитоплазмы соединений, представляющих угрозу для ее нормального функционирования. Материал с сайта http://wiki-med.com

Функции клеточной стенки бактерий

Как у грамположительных, так и у грамотрицательных форм клеточная стенка играет роль молекулярного сита, изби-рательно осуществляя пассивный транспорт ионов, субстратов и метаболитов. У бактерий, обладающих способностью к актив-ному движению за счет жгутиков, клеточная стенка является компонентом локомоторного механизма. Наконец, отдельные участки клеточной стенки тесно ассоциированы с цитоплазма-тической мембраной в зоне прикрепления нуклеоида и играют важную роль в его репликации и сегрегации.

У одного из видов бактерий процесс разрушения старой клеточной оболочки, происходящий при делении кле-ток, обеспечивается работой по крайней мере четырех систем гидролитических ферментов, присутствующих в клеточной стен-ке в латентном состоянии. При делении клеток осуществляется закономерная и строго последовательная по времени активация этих систем, приводящая к постепенному разрушению и слущиванию старой («материнской») оболочки бактериальной клетки.

Материал с сайта http://Wiki-Med.com

На этой странице материал по темам:

  • .основным компонентом клеточной стенки грамположительных бактерий является

  • клеточных стенок бактерий функции

  • особенности структуры клеточной стенки бактерий

  • клеточная стенка строение

  • характеристика клеточной стенки бактерий

В клеточной стенки грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos - стенка).
В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид (ЛПС). Липополисахарид наружной мембраны состоит из трех фрагментов: липида А — консервативной структуры, практически одинаковой у грамотрицательных бактерий; ядра, или стержневой, коровой части (лат. core - ядро), относительно консервативной олигосахаридной структуры (наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота); высоковариабельнои О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями (О-антиген). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима,
пенициллина, защитных факторов организма образуются клетки с измененной (часто шаровидной) формой: протопласты - бактерии, полностью лишенные клеточной стенки; сферопласты — бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами.
Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.
Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, бета-лактомазы) и компоненты транспортных систем.

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым — промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.

Цитоплазма

Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) — консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК — в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.
В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин).

Клеточная стенка

Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.

Нуклеоид

Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности — плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Капсула, микрокапсула, слизь

Капсула — слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу — слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь — мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков — у грамположительных и 2 пары дисков — у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка — флагеллина (от flagellum — жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Пили

Пили (фимбрии, ворсинки) — нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны — несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры

Споры — своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium — веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное — ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.

Бактерии: места обитания, строение, процессы жизнедеятельности, значение

2. б) Строение бактериальной клетки

Клеточная стенка бактерий определяет их форму и обеспечивает сохранение внутреннего содержимого клетки. По особенностям химического состава и структуры клеточной стенки бактерии дифференцируют с помощью окрашивания по грамму…

Биополимеры бактериальной клеточной стенки

Строение бактериальной клетки

Структуру бактерий изучают с помощью электронной микроскопии целых клеток и их ультрафиолетовых срезов. Основными структурами бактериальной клетки являются: клеточная стенка, цитоплазматическая мембрана, цитоплазма с включениями и ядро…

Гуморальная регуляция организма

3. Особенности строения, свойства и функции клеточных мембран

Многообразие живых клеток

1.1 Общий план строения эукариотических клеток, также характеризующий строение животной клетки

Клетка — структурно-функциональная единица живого. Для всех эукариотических клеток характерно наличие следующих структур: 1) Клеточная мембрана — это органоид, ограничивающий содержимое клетки от окружающей среды…

Многообразие живых клеток

1.2 Особенности строения растительной клетки

В растительных клетках встречаются органоиды, которые характерны и для животных, например, ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи (см. рис 2). В них отсутствует клеточный центр, а функцию лизосом выполняют вакуоли…

Многообразие живых клеток

1.3 Особенности строения грибной клетки

У большинства грибов клетка по своему строению и выполняемым ею функциям в целом аналогична клетке растений. Она состоит из твердой оболочки и внутреннего содержимого, представляющего собой цитоплазматическую систему…

Многообразие живых клеток

1.4 Общий план строения прокариотических клеток, также характеризующий строение бактериальной клетки

Прокариотическая клетка устроена следующим образом. Главная особенность этих клеток — это отсутствие морфологически выраженного ядра, но имеется зона, в которой расположена ДНК (нуклеоид).

Структура бактериальной клетки

В цитоплазме расположены рибосомы…

Основы микробиологии

1. Охарактеризуйте строение бактериальной клетки. Зарисуйте органеллы клетки

К бактериям относятся микроскопические растительные организмы. Большинство их — одноклеточные организмы, не содержащие хлорофилла и размножающиеся делением. По форме бактерии бывают шаровидными, палочковидными и извитыми…

Особенности зрительной и слуховой сенсорных систем

13. Простые, сложные и сверхсложные клетки и их функции

"Простые" и "сложные" клетки. Нейроны, отвечающие на простые линейные стимулы (щели, края или темные полосы), получили название "простых", а те, которые отвечают на стимулы сложной конфигурации и на движущиеся стимулы, были названы "сложными"…

Особенности строения клетки

1. Клетка как элементарная структурная единица организма. Основные компоненты клетки

Клетка — основная структурная и функциональная единица жизни, ограниченная полупроницаемой мембраной и способная к самовоспроизведению. В растительной клетке, прежде всего, нужно различать клеточную оболочку и содержимое…

Распространение и динамика численности популяции кабана в Брянской области

1.1 Особенности строения

Кабан (Sus scrofa L.) — массивное животное на невысоких, относительно нетолстых ногах. Туловище сравнительно короткое, передняя часть очень массивная, задняя области лопаток сильно приподнята, шея толстая, короткая, почти неподвижная…

Строение, свойства и функции белков

2. Функции органоидов клетки

Органоиды клетки и их функции: 1. Клеточная оболочка — состоит из 3 слоев: 1. жесткая клеточная стенка; 2. тонкий слой пектиновых веществ; 3. тонкая цитоплазматическая нить. Клеточная оболочка обеспечивает механическую опору и защиту…

4.1 Особенности строения

Таллом представляет собой плазмодий, способный к амебообразным движениям по поверхности или внутри субстрата. При половом размножении плазмодии превращаются в плодовые тела, называемые спорокарпами…

Таксономическая группа слизевиков

5.1 Особенности строения

Вегетативное тело в виде многоядерного протопласта, не способного к самостоятельному движению и находящегося внутри клетки растенияхозяина. Специальные спороношения не образуются. Зимующая стадия представлена спорами…

Энергетическая система клетки. Классификация мышечной ткани. Строение сперматозоида

Энергетическая система клетки. Общий план строения митохондрий и пластид, их функции. Гипотеза о симбиотическом происхождении митохондрий и хлоропластов

В эукариотических клетках есть уникальная органелла, митохондрия, в которой в процессе окислительного фосфорилирования образуются молекулы АТФ. Часто говорят, что митохондрии являются энергетическими станциями клетки (рисунок 1)…

Современная наука достигла фантастического прогресса за последние столетия. Однако, некоторые загадки до сих пор будоражат умы выдающихся ученых.

В наши дни так и не найден ответ на актуальный вопрос – сколько же разновидностей бактерий существует на нашей огромной планете?

Бактерия – организм с уникальной внутренней организацией, которому свойственны все процессы, характерные живым организмам. Бактериальная клетка имеет множество удивительных особенностей, одна из которых – разнообразие форм.

Клетка бактерии может обладать сферической, палочковидной, кубической или звездчатой формой. Кроме того, бактерии бывают немного согнуты или формируют разнообразные завитки.

Форма клетки играет важную роль для правильного функционирования микроорганизма, так как она может влиять на возможность бактерии прикрепляться к другим поверхностям, получать необходимые вещества и передвигаться.

Минимальный клеточный размер обычно составляет 0,5 мкм, однако в исключительных случаях величина бактерии может достигать 5,0 мкм.

Строение клетки любой бактерии строго упорядочено. Ее структура значительно отличается от структуры остальных клеток, например растений и животных. Клетки всех видов бактерий не имеют такие элементы, как: дифференцированное ядро, внутриклеточные мембраны, митохондрии, лизосомы.

У бактерий имеются специфические структурные компоненты – постоянные и непостоянные.

К постоянным компонентам относятся: цитоплазматическая мембрана (плазмолемма), клеточная стенка, нуклеоид, цитоплазма. Непостоянными структурами являются: капсула, жгутики, плазмиды, пили, ворсинки, фимбрии, споры.

Цитоплазматическая мембрана


Любую бактерию обволакивает цитоплазматическая мембрана (плазмолемма), которая включает в себя 3 слоя. Мембрана содержит глобулины, отвечающие за выборочную транспортировку разнообразных субстанций в клетку.

Плазмолемма выполняет также следующие важные функции:

  • механическая – обеспечивает автономное функционирование бактерии и всех структурных элементов;
  • рецепторная – белки, находящиеся в плазмолемме, выступают в качестве рецепторов, то есть помогают клетке воспринимать различные сигналы;
  • энергетическая – некоторые белки отвечают за функцию переноса энергии.

Нарушение функционирования плазмолеммы ведет к тому, что бактерия разрушается и погибает.

Клеточная стенка


Структурный компонент, присущий только бактериальным клеткам – клеточная стенка. Это жесткая проницаемая оболочка, которая выступает в роли важней составляющей структурного скелета клетки. Располагается она с внешней стороны от цитоплазматической мембраны.

Клеточная стенка реализует функцию защиты, а кроме того придает клетке постоянную форму. Ее поверхность покрывают многочисленные споры, которые пропускают внутрь необходимые вещества и выводят из микроорганизма продукты распада.

Защита внутренних составляющих от осмотического и механического воздействия – еще одна функция стенки. Она играет незаменимую роль в контроле деления клетки и распределении в ней наследственных признаков. В ее составе содержится пептидогликан, именно он наделяет клетку ценными иммунобиологическими характеристиками.

Толщина клеточной стенки колеблется от 0,01 до 0,04 мкм. С возрастом происходит рост бактерии и количество материала, из которого она построена, соответственно, увеличивается.

Нуклеоид


Нуклеоид – это прокариот, в котором хранится вся наследственная информация бактериальной клетки. Нуклеоид располагается в центральной части бактерии. По своим свойствам он эквивалентен ядру.

Нуклеоид – это одна, замкнутая в кольцо, молекула ДНК. Длина молекулы составляет 1 мм, а объем информации – около 1000 признаков.

Нуклеоид является главным носителем материала о свойствах бактерии и основным фактором передачи этих свойств потомству. Нуклеоид в клетках бактерий не имеет ядрышка, мембраны и основных белков.

Цитоплазма


Цитоплазма – водный раствор, включающий следующие компоненты: минеральные соединения, питательные вещества, белки, углеводы и липиды. Соотношение данных веществ зависит от возраста и типа бактерий.

В цитоплазму входят различные структурные компоненты : рибосомы, гранулы и мезосомы.

  • Рибосомы отвечают за синтез белка. Их химический состав включает молекулы РНК и белок.
  • Мезосомы участвуют в образовании спор и размножении клеток. Могут иметь форму пузырька, петли, трубочки.
  • Гранулы служат дополнительным ресурсом энергии для бактериальных клеток. Эти элементы бывают разнообразных форм. В их составе представлены полисахариды, крахмал, капельки жира.

Капсула


Капсула – это слизистая структура, крепко связанная с клеточной стенкой. Исследуя ее под световым микроскопом, можно заметить, что капсула обволакивает клетку и ее внешние границы имеют четко очерченный контур. В бактериальной клетке капсула служит защитным барьером от фагов (вирусов).

Бактерии формируют капсулу, когда условия внешней среды становятся агрессивными. Капсула включает в свой состав в основном полисахариды, а также в определенных случаях в ней может содержаться клетчатка, гликопротеины, полипептиды.

Основные функции капсулы:

    • адгезия с клетками в организме человека. Например, стрептококки слипаются с эмалью зубов и в союзе с другими микробами провоцируют появление кариеса;
    • защита от негативных условий окружающей среды: токсических веществ, механических повреждений, повышенного уровня кислорода;
    • участие в водном обмене (защита клетки от высыхания);
    • создание дополнительной осмотической преграды.

Капсула формирует 2 слоя:

  • внутренний – часть слоя цитоплазмы;
  • наружный – результат выделительной функции бактерии.

В основу классификации легли особенности строения капсул. Они бывают:

  • нормальные;
  • сложные капсулы;
  • с поперечно-полосатыми фибриллами;
  • прерывистые капсулы.

Некоторые бактерии образуют также микрокапсулу, которая представляет собой слизистое образование. Выявить микрокапсулу можно только под электронным микроскопом, поскольку толщина этого элемента всего 0,2 мкм или даже меньше.

Жгутики


Большинство бактерий имеют поверхностные структуры клетки, которые обеспечивают ее подвижность и передвижение – жгутики. Это длинные отростки в форме левозакрученной спирали, построенные из флагеллина (сократительный белок).

Основная функция жгутиков заключается в том, что они позволяют бактерии передвигаться в жидкой среде в поисках более благоприятных условий. Количество жгутиков в одной клетке может варьироваться: от одного до нескольких жгутиков, жгутиков на всей поверхности клетки или только на одном из ее полюсов.

Существует несколько разновидностей бактерий в зависимости от количества в них жгутиков:

  • Монотрихи – у них имеется только один жгутик.
  • Лофотрихи – имеют определенное количество жгутиков на одном конце бактерии.
  • Амфитрихи – характеризуются наличием жгутиков на полярно противоположных полюсах.
  • Перитрихи – жгутики располагаются по всей поверхности бактерии, им характерно медленно и плавное движение.
  • Атрихи – жгутики отсутствуют.

Жгутики совершают двигательную активность, совершая вращательные движения. Если у бактерий нет жгутиков – она все равно в состоянии перемещаться, а точнее скользить при помощи слизи на поверхности клетки.

Плазмиды


Плазмиды представляют собой небольшие мобильные молекулы ДНК, отдельные от хромосомных факторов наследственности. Эти компоненты обычно содержат генетический материал, повышающий невосприимчивость бактерии к антибиотикам.

Могут передавать свои свойства от одного микроорганизма к другим. Несмотря на все свои особенности, плазмиды не выступают в качестве важных элементов для жизнедеятельности бактериальной клетки.

Пили, ворсинки, фимбрии


Эти структуры локализуются на поверхностях бактерий. Насчитывают от двух единиц до нескольких тысяч на одну клетку. Эти структурные элементы имеет как бактериальная подвижная клетка, так и неподвижная, поскольку они не оказывают никакого влияния на способность передвигаться.

В количественном отношении, пили достигают несколько сотен на одну бактерию. Существуют пили, которые отвечают за питание, водно-солевой обмен, а также конъюгационные (половые) пили.

Ворсинкам характерна полая цилиндрическая форма. Именно через эти структуры в бактерию проникают вирусы.

Ворсинки не считаются обязательными компонентами бактерии, так как и без них может успешно совершаться процесс деления и роста.

Фимбрии располагаются, как правило, на одном конце клетки. Эти структуры позволяют микроорганизму фиксироваться в тканях организма. Некоторые фимбрии имеют особые белки, контактирующие с рецепторными окончаниями клеток.

Фимбрии отличаются от жгутиков тем, что они толще и короче, а также не реализуют функцию движения.

Споры


Споры образуются в случае негативных физических или химических манипуляций над бактерией (в результате высушивания или нехватки питательных веществ). Они разнообразны по размеру спор, так как у различных клеток они могут быть совершенно разным. Различается также и форма спор – они бывают овальными или шаровидными.

По местоположению в клетке споры подразделяются на:

  • центральные – их положение в самом центре, как например, у сибиреязвенной палочки;
  • субтерминальные – располагаются на конце палочки, придавая форму булавы (у возбудителя газовой гангрены).

В благоприятной среде жизненный цикл спор включает следующие этапы:

  • подготовительный этап;
  • этап активации;
  • этап инициации;
  • этап прорастания.

Споры отличаются особой живучестью, которая достигается благодаря своей оболочке. Она многослойна и состоит преимущественно из белка. Повышенная невосприимчивость спор к негативным условиям и внешним воздействиям обеспечивается именно благодаря белкам.



Добавить свою цену в базу

Комментарий

С точки зрения современной науки прокариоты имеют примитивное строение. Но именно эта «незатейливость» помогает выживать им в самых неожиданных условиях. Например, в сероводородных источниках или на атомных полигонах. Ученые подсчитали, что общая масса всех земных микроорганизмов составляет 550 миллиардов тонн.

Бактерии имеют одноклеточное строение . Но это не значит, что бактериальные клетки пасуют перед клетками животных или растений. Микробиология уже располагает знаниями о сотнях тысяч видов микроорганизмов. Тем не менее, представители науки ежедневно открывают новые их виды и особенности.

Немудрено, что для полного освоения поверхности Земли микроорганизмам приходится принимать разнообразные формы:

  • кокки – шарики;
  • стрептококки – цепочки;
  • бациллы – палочки;
  • вибрионы – изогнутые запятые;
  • спириллы – спиральки.

Размер бактерий измеряют в нанометрах и микрометрах. Их средняя величина составляет 0,8 мкм. Но среди них имеются прокариоты-гиганты, достигающие 125 мкм и больше. Настоящими великанами среди лилипутов являются спирохеты длиной в 250 мкм. Сравните теперь с ними размер самой мелкой прокариотической клеточки: микоплазмы «вырастают» совсем чуть-чуть и достигают 0,1-0,15 мкм в диаметре.

Стоит сказать, что великанам-бактериям не так легко выжить в окружающей среде. Им сложно найти себе достаточно питательных веществ для успешного выполнения своей функции. Но зато они не являются легкой добычей для бактерий-хищников, которые питаются своими собратьями – одноклеточными микроорганизмами, «обтекая» и поедая их.

Внешнее строение бактерий

Клеточная стенка

  • Клеточная стенка бактериальной клетки является для нее защитой и опорой. Она придает микроорганизму свою, специфическую форму.
  • Клеточная стенка проницаема. Через нее проходят питательные вещества внутрь и продукты обмена (метаболизма) наружу.
  • Некоторые виды бактерий вырабатывают специальную слизь, которая напоминает капсулу, предохраняющую их от высыхания.
  • У некоторых клеток имеются жгутики (один или несколько) или ворсинки, которые помогают им передвигаться.
  • У бактериальных клеток, которые при окрашивании по Граму приобретают розовую окраску (грамотрицательные ), клеточная стенка более тонкая, многослойная. Ферменты, благодаря которым происходит расщепление питательных веществ, выделяются наружу.
  • У бактерий, которые при окрашивании по Граму приобретают фиолетовую окраску (грамположительные ), клеточная стенка толстая. Питательные вещества, которые поступают в клетку, расщепляются в периплазматическом пространстве (пространство между клеточной стенкой и мембраной цитоплазмы) гидролитическими ферментами.
  • На поверхности клеточной стенки имеются многочисленные рецепторы. К ним прикрепляются убийцы клеток – фаги, колицины и химические соединения.
  • Липопротеиды стенки у некоторых видов бактерий являются антигенами, которые называются токсинами.
  • При длительном лечении антибиотиками и по ряду других причин некоторые клетки теряют оболочку, но сохраняют способность к размножению. Они приобретают округлую форму – L-форму и могут длительно сохраняться в организме человека (кокки или палочки туберкулеза). Нестабильные L-формы обладают способностью принимать первоначальный вид (реверсия).

Капсула

При неблагоприятных условиях внешней среды бактерии образуют капсулу. Микрокапсула плотно прилегает к стенке. Ее можно увидеть только в электронном микроскопе. Макрокапсулу часто образуют патогенные микробы (пневмококки). У клебсиеллы пневмонии макрокапсула обнаруживаются всегда.

Капсулоподобная оболочка

Капсулоподобная оболочка представляет собой образование, непрочно связанное с клеточной стенкой. Благодаря бактериальным ферментам капсулоподобная оболочка покрывается углеводами (экзополисахаридами) внешней среды, благодаря чему обеспечивается слипание бактерий с разными поверхностями, даже совершенно гладкими. Например, стрептококки, попадая в организм человека, способны слипаться с зубами и сердечными клапанами.

Функции капсулы многообразны:

  • защита от агрессивных условий внешней среды,
  • обеспечение адгезии (слипанию) с клетками человека,
  • обладая антигенными свойствами, капсула оказывает токсический эффект при внедрении в живой организм.

Жгутики

  • У некоторых бактериальных клеток имеются жгутики (один или несколько) или ворсинки, которые помогают передвигаться. В составе жгутиков находится сократительный белок флагелин.
  • Количество жгутиков может быть разным – один, пучок жгутиков, жгутики на разных концах клетки или по всей поверхности.
  • Движение (беспорядочное или вращательное) осуществляется в результате вращательного движения жгутиков.
  • Антигенные свойства жгутиков оказывают токсический эффект при заболевании.
  • Бактерии, не имеющие жгутиков, покрываясь слизью, способны скользить. У водных бактерий содержатся вакуоли в количестве 40 – 60, наполненные азотом.

Они обеспечивают погружение и всплытие. В почве бактериальная клетка передвигается по почвенным каналам.

Пили

  • Пили (ворсинки, фимбрии) покрывают поверхность бактериальных клеток. Ворсинка представляет собой винтообразно скрученную тонкую полую нить белковой природы.
  • Пили общего типа обеспечивают адгезию (слипание) с клетками хозяина. Их количество огромно и составляет от нескольких сотен до нескольких тысяч. С момента прикрепления начинается любой инфекционный процесс.
  • Половые пили способствуют переносу генетического материала от донора реципиенту. Их количество от 1 до 4-х на одну клетку.

Цитоплазматическая мембрана

  • Цитоплазматическая мембрана располагается под клеточной стенкой и представляет собой липопротеин (до 30% липидов и до 70% протеинов).
  • У разных бактериальных клеток разный липидный состав мембран.
  • Мембранные белки выполняют множество функций. Функциональные белки представляют собой ферменты, благодаря которым на цитоплазматической мембране происходит синтез разных ее компонентов и др.
  • Цитоплазматическая мембрана состоит из 3-х слоев. Двойной фосфолипидный слой пронизан глобулинами, которые обеспечивают транспорт веществ в бактериальную клетку. При нарушении ее работы клетка погибает.
  • Цитоплазматическая мембрана принимает участие в спорообразовании.

Внутреннее строение бактерий

Цитоплазма

Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой. В жидкой, бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества. Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная). С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.

Внешний липопротвидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазматической мембраной. Внутри цитоплазмы находятся все жизненно важные структуры и органеллы. Цитоплазматическая мембрана выполняет очень важную роль – регулирует поступление веществ в клетку и выделение наружу продуктов обмена. Через мембрану питательные вещества могут поступать в клетку в результате к активного биохимического процесса с участием ферментов.

Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы. Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы). Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими. С мембраной связаны рибосомы – структурные частицы, на которых синтезируется белок. Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.

На электронных фотографиях тонких срезов бактерий цитоплазматическая мембрана представляется в виде непрерывного тяжа толщиной около 75A, состоящего из светлого слоя (липиды), заключенного между двумя более темными (белки). Каждый слой имеет ширину 20–30А. Такая мембрана называется элементарной.

Гранулы

В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды.

Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.

У многих бактерий гранулы состоят из крахмала или других полисахаридов – гликогена и гранулезы. У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира. Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы). Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты). Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы. В цитоплазме некоторых серных бактерий находятся капельки серы.

Мезосомы

Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов – мостиков. Цитоплазматическая мембрана часто дает инвагинации – впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названные мезосомами.

Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы. Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур – аналоги митохондрий.

Другие выполняют функции зндоплазматической сети или апарата Гольджи. Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий. После впячивания цитоплазмы мембрана продолжает расти и образует стопки, которые по аналогии с гранулами хлоропластов растений называют стопками тилакоидов. В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты (цитохромы), осуществляющие процесс фотосинтеза.

Нуклеоид

У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог – «ядерный эквивалент» – нуклеоид, который является эволюционно более примитивной формой организации ядерного вещества. Он состоит из одной замкнутой в кольцо двухспиральной нити ДНК длиной 1,1 –1,6 нм, которую рассматривают как одиночную бактериальную хромосому, или генофор. Нуклеоид у прокариот не отграничен от остальной части клетки мембраной – у него отсутствует ядерная оболочка.

В состав структур нуклеоида входят РНК-полимераза, основные белки и отсутствуют гистоны; хромосома закрепляется на цитоплазматической мембране, а у грамположительных бактерий – на мезосомс. Бактериальная хромосома реплицируется поликонсервативным способом: родительская двойная спираль ДНК раскручивается и на матрице каждой полинуклеотидной цепи собирается новая комплементарная цепочка. Нуклеоид не имеет митотического аппарата, и расхождение дочерних ядер обеспечивается ростом цитоплазматической мембраны.

Бактериальное ядро – дифференцированная структура. В зависимости от стадии развития клетки нуклеоид может быть дискретным (прерывистым) и состоять из отдельных фрагментов. Это связано с тем, что деление бактериальной клетки во времени осуществляется после завершения цикла репликации молекулы ДНК и оформления дочерних хромосом.

В нуклеоиде сосредоточен основной объем генетической информации бактериальной клетки. Кроме нуклеоида в клетках многих бактерий обнаружены внехромосомные генетические элементы – плазмиды, представленные небольшими кольцевыми молекулами ДНК, способными к автономной репликации.

Плазмиды

Плазмиды представляют собой автономные молекулы, свернутые в кольцо, двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рибосомы

В цитоплазме бактерий содержатся рибосомы – белок-синтезирующие частицы диаметром 200А. В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.

Рибосомы являются центрами синтеза белка в клетке. При этом они часто соединяются между собой, образуя агрегаты, называемые полирибосомами или полисомами.

Включения

Включения – продукты метаболизма ядерных и безъядерных клеток. Представляют собой запас питательных веществ: гликоген, крахмал, сера, полифосфат (валютин) и др. Включения часто при окраске приобретают иной вид, чем цвет красителя. По валютину можно диагностировать дифтерийную палочку.

Что же отсутствует в клетках бактерий?

Так как бактерия – это прокариотический микроорганизм, в клетках бактерий всегда отсутствуют множество органоидов, которые присущи эукариотическим организмам:

  • аппарат Гольджи, который помогает клетке тем, что накапливает ненужные вещества, а в последствии выводит их из клетки;
  • пластиды, содержащиеся только в клетках растений, обуславливают их окраску, а также играют значимую роль в фотосинтезе;
  • лизосомы, обладающие особыми ферментами и помогающие расщеплению белков;
  • митохондрии обеспечивают клетки необходимой энергией, а также участвуют в размножении;
  • эндоплазматическая сеть, обеспечивающая транспорт в цитоплазму определённых веществ;
  • клеточный центр.

Также стоит помнить, что у бактерий отсутствует клеточная стенка, посему процессы, такие как пиноцитоз и фагоцитоз не могут протекать.

Особенности процессов бактерий

Являясь особыми микроорганизмами, бактерии приспособлены к существованию в таких условиях, когда кислород может отсутствовать. А само же дыхание у них происходит за счёт мезосом. Также очень интересно то, что зелёные организмы способны точно также фотосинтезировать, как и растения. Но важно учитывать то, что у растений процесс фотозинтеза происходит в хлоропластах, а у бактерий же на мембранах.

Размножение в бактериальной клетке происходит примитивнейшим путём. Созревшая клетка делится надвое, они через некоторое время достигают зрелости, и этот процесс повторяется. В благоприятных условиях за сутки может произойти смена 70-80 поколений. Важно помнить, что бактериям из-за своего строения не доступны такие способы размножения, как митоз и мейоз. Они присущи только эукариотическим клеткам.

Известно, что образование споров – это один из нескольких способов размножения грибов и растений. Но бактерии также умеют образовывать споры, что присуще немногим из их видов. Они обладают данной способностью для того, чтобы переживать особо неблагоприятные условия, которые могут быть опасными для их жизни.

Известны такие виды, которые способны выжить даже в условиях космоса. Такое не могут повторить никакие живые организмы. Бактерии стали прародителями жизни на Земле благодаря простоте их строения. Но то, что они существуют и по сей день, показывает насколько они важны для окружающего нас мира. С их помощью люди могут максимально приблизиться к ответу на вопрос о происхождении жизни на Земле, постоянно изучая, бактерии и узнавая что-то новое.

Самые интересные и увлекательные факты о бактериях

Бактерии стафилококка жаждут человеческой крови

Золотистый стафилококк (Staphylococcus aureus) является распространенным видом бактерий, который поражает около 30 процентов всех людей. У некоторых людей он является частью микробиома (микрофлоры), и встречается как внутри организма, так и на коже или в полости рта. В то время как есть безвредные штаммы стафилококка, другие, такие как метициллинрезистентный золотистый стафилококк (Methicillin-resistant Staphylococcus aureus), создают серьезные проблемы для здоровья, включая инфекции кожи, сердечно-сосудистые заболевания, менингит и болезни пищеварительной системы.

Исследователи Университета Вандербильта обнаружили, что бактерии стафилококка предпочитают кровь человека по сравнению с кровью животных. Эти бактерии неравнодушны к железу, которое содержится в гемоглобине, обнаруженном в эритроцитах. Золотистый стафилококк разрывает клетки крови, чтобы добраться до железа внутри них. Считается, что генетические вариации гемоглобина могут сделать одних людей более желанным для бактерий стафилококка, чем других.

Бактерии вызывают дождь

Исследователи обнаружили, что бактерии в атмосфере могут играть определенную роль в производстве дождя и других форм осадков. Этот процесс начинается, когда бактерии с растений переносятся ветром в атмосферу. На высоте, вокруг них образуется лед, и они начинают расти. Как только замороженные бактерии достигают определенного порога роста, лед начинает таять и возвращается на землю в виде дождя. Бактерии вида Psuedomonas syringae даже были обнаружены в центре крупных частиц града. Они продуцируют особый белок в клеточных мембранах, позволяющий связывать воду уникальным образом, способствуя образованию льда.

Борьба с бактериями, провоцирующими акне

Исследователи выявили, что некоторые штаммы бактерий, вызывающих акне могут фактически помочь предотвратить прыщи. Бактерия, которая вызывает акне – Propionibacterium acnes, обитает в порах нашей кожи. Когда эти бактерии провоцируют иммунный ответ, область на коже набухает, и образуются прыщи.

Однако было обнаружено, что некоторые штаммы бактерий реже вызывают акне. Эти штаммы могут быть причиной того, что у людей со здоровой кожей редко появляются прыщи. Изучая гены штаммов Propionibacterium acnes, собранные у людей с акне и здоровой кожей, исследователи определили штаммп, который был распространен на чистой коже и редко встречался на коже с акне. Будущие исследования будут включать в себя попытки разработать препарат, убивающий только вызывающие угри штаммы бактерии Propionibacterium acnes.

Бактерии на деснах могут привести к сердечно-сосудистым заболеванием

Кто бы мог подумать, что регулярная чистка зубов способна помочь предотвратить заболевания сердца? Ранее исследования выявили связь между болезнью десен и сердечно-сосудистыми заболеваниями. Теперь ученые нашли конкретную связь между этими заболеваниями.

Предполагается, что и бактерии, и люди производят определенные типы белков, называемые стрессовыми белками. Эти белки образуются, когда клетки испытывают различные типы стрессовых состояний. Когда у человека есть инфекция десен, клетки иммунной системы начинают атаковать бактерии. Бактерии производят стресс-белки при атаке, а белые кровяные клетки также атакуют стресс-белки.

Проблема заключается в том, что белые кровяные клетки не могут различать стресс-белки, продуцируемые бактериями, и те, которые продуцируются организмом. В результате клетки иммунной системы также атакуют стрессовые белки, вырабатываемые организмом, что вызывает накопление лейкоцитов в артериях и приводит к атеросклерозу. Кальцинированное сердце является основной причиной сердечно-сосудистых заболеваний.

Почвенные бактерии улучшают обучаемость

Вы знали, что время, проведенное в саду или работа в огороде, может помочь вам лучше учиться? По мнению исследователей, почвенная бактерия Mycobacterium vaccae способна улучшать обучаемость у млекопитающих.

Вероятно, эти бактерии попадают в наш организм путем проглатывания или через дыхание. По предположению ученых, бактерия Mycobacterium vaccae улучшает обучаемость, стимулируя рост нейронов головного мозга, что приводит к увеличению уровня серотонина и снижению беспокойства.

Исследование проводили с использованием мышей, которых кормили живыми бактериями Mycobacterium vaccae. Результаты показали, что мыши, употребляющие бактерии, передвигались лабиринтом гораздо быстрее и с меньшим уровнем беспокойства, чем мыши, которые не питались бактериями. Ученые предполагает, что Mycobacterium vaccae играет определенную роль в улучшении решения новых задач и уменьшении уровня стресса.

Бактериальные силовые машины

Исследователи из Аргоннской национальной лаборатории обнаружили, что бактерия Bacillus subtilis обладают способностью вращать очень маленькие шестерни. Эти бактерии являются аэробными, то есть нуждаются в кислороде для роста и развития. Когда их помещают в раствор с микропузырьками воздуха, бактерии плавают в зубьях шестерни и заставляют ее поворачиваться в определенном направлении.

Требуется несколько сотен бактерий, работающих в унисон, чтобы начать вращение шестерни. Было также обнаружено, что бактерии могут поворачивать несколько соединенных между собой шестеренок. Исследователи смогли контролировать скорость, с которой бактерии крутили шестерни, регулируя количество кислорода в растворе. Уменьшение количества кислорода привело к замедлению бактерий. Удаление кислорода заставляет их полностью прекратить движение.

Клетка прокариотических организмов имеет сложное строго упорядоченное строение и обладает принципиальными особенностями ультраструктурной организации и химического состава.

Структурные компоненты бактериальной клетки делят на основные и временные (рис. 2). Основными структурами являются: клеточная стенка, цитоплазматическая мембрана с ее производными, цитоплазма с рибосомами и различными включениями, нуклеоид; временные — капсула, слизистый чехол, жгутики, ворсинки, эндоспоры, образующиеся лишь на определенных этапах жизненного цикла бактерий, у некоторых видов они отсутствуют полностью.

У прокариотической клетки структуры, расположенные снаружи от цитоплазматической мембраны, называют поверхностными (клеточная стенка, капсула, жгутики, ворсинки).

Термин «оболочка» в настоящее время используется для обозначения клеточной стенки и капсулы бактерий или только клеточной стенки, цитоплазматическая мембрана не входит в состав оболочки и относится к протопласту.

Клеточная стенка — важный структурный элемент бактериальной клетки, располагающийся между цитоплазматической мембраной и капсулой; у бескапсульных бактерий — это внешняя оболочка клетки. Она обязательна для всех прокариот, за исключением микоплазм и L-форм бактерий. Выполняет ряд функций: защищает бактерии от осмотического шока и других повреждающих факторов, определяет их форму, участвует в метаболизме; у многих видов патогенных бактерий токсична, содержит поверхностные антигены, а также несет на поверхности специфические рецепторы для фагов. В клеточной стенке бактерий имеются поры, которые участвуют в транспорте экзотоксинов и других экзобелков бактерий. Толщина клеточной стенки 10—100 нм, и на ее долю приходится от 5 до 50 % сухих веществ клетки.

Основным компонентом клеточной стенки бактерий является пептидогликан, или муреин (лат. murus — стенка), — опорный полимер, имеющий сетчатую структуру и образующий ригидный (жесткий) наружный каркас бактериальной клетки. Пептидогликан имеет основную цепь (остов), состоящую из чередующихся остатков N-ацстил-М-глюкозамина и N-ацетилмурамовой кислоты, соединенных 1,4-гликозидными связями, идентичные тетрапептидные боковые цепочки, прикрепляющиеся к молекулам N-ацстилмурамовой кислоты, и короткие поперечные пептидные мостики, связывающие полисахаридные цепи. Два типа связей (гликозидные и пептидные), которые соединяют субъединицы пептидогликана, придают этому гетерополимеру структуру молекулярной сети. Остов пептидогликанового слоя у всех видов бактерий одинаков; тетрапептидные белковые цепочки и пептидные (поперечные) у неодинаковых видов различны.

По тинкториальным свойствам все бактерии подразделяются на две группы: грамположительные и грамотрицателъные. В 1884 г. X. Грам предложил метод окраски, который был использован для дифференцирования бактерий. Сущность метода состоит в том, что грамположительные бактерии прочно фиксируют комплекс генцианвиолета и йода, не подвергаются обесцвечиванию этанолом и поэтому не воспринимают дополнительный краситель фуксин, оставаясь окрашенными в фиолетовый цвет. У грамотрицательных бактерий этот комплекс легко вымывается из клетки этанолом, и они при дополнительном нанесении фуксина окрашиваются в красный цвет. У некоторых бактерий положительная окраска по Граму наблюдается только в стадии активного роста. Способность прокариот окрашиваться по методу Грама или обесцвечиваться этанолом определяется спецификой химического состава и ультраструктуры их клеточной стенки. Пептидогликан у грамположительных бактерий — основной компонент клеточной стенки и составляет от 50 до 90 %, у грамотрицательных — 1 —10 %. Структурные микрофибриллы пептидогликана грамотрицательных бактерий сшиты менее компактно, поэтому поры в их пептидогликановом слое значительно шире, чем в молекулярном каркасе грамположитсльных бактерий. При такой структурной организации пептидогликана фиолетовый комплекс генцианвиолета и йода у грамотрицательных бактерий будет вымываться быстрее.

Клеточная стенка грамположительных бактерий плотно прилегает к цитоплазматической мембране, массивна, се толщина находится в пределах 20—100 нм. Для нее характерно наличие тейхоевых кислот, они связаны с пептидогликаном и представляют собой полимеры трехатомного спирта — глицерина или пятиатомного спирта — рибита, остатки которых соединены фосфодиэфирными связями. Тейхоевые кислоты связывают ионы магния и участвуют в транспорте их в клетку. В составе клеточной стенки грамположительных прокариот в небольших количествах также найдены полисахариды, белки и липиды.

Рис. 2. Схема строения прокариотической клетки:

1 — капсула; 2 — клеточная стенка; 3 — цитоплазматическая мембрана; 4 — нуклеоид; 5 — цитоплазма; 6 — хроматофоры; 7 — тилакоиды; 8 — мезосома; 9 — рибосомы; 10 — жгутики; 11— базальное тельце; 12 — пили; 13 — включение серы; 14 — капли жира; 15 — гранулы полифосфата; 16 — плазмида

Клеточная стенка грамотрицательных бактерий многослойна, толщина ее 14—17 нм. Внутренний слой — пептидогликан, который образует тонкую (2 нм) непрерывную сетку, окружающую клетку. Пептидогликан содержит только мезодиаминопимелиновую кислоту и не имеет лизина. Внешний слой клеточной стенки — наружная мембрана — состоит из фосфолипидов, липополисахарида, липопротеина и белков. В наружной мембране содержатся белки основы (матричные), они прочно связаны с пептидогликановым слоем. Одной из их функций является формирование в мембране гидрофильных пор, через которые осуществляется диффузия молекул с массой до 600, иногда 900. Матричные белки, кроме того, выполняют еще роль рецепторов для некоторых фагов. Липополисахарид (ЛПС) клеточных стенок грамотрицательных бактерий состоит из липида А и полисахарида. Токсичный для животных ЛПС получил название эндотоксина. Тейхоевые кислоты у грамотрицательных бактерий не обнаружены.

Структурные компоненты клеточной стенки грамотрицальных бактерий отграничены от цитоплазматической мембраны и разделены промежутком, называемым периплазмой или периплазматическим пространством.

Протопласты и сферопласты. Протопласты — формы прокариот, полностью лишенные клеточной стенки, образующиеся обычно у грамположительных бактерий. Сферопласты — бактерии с частично разрушенной клеточной стенкой. У них сохраняются элементы наружной мембраны. Наблюдаются у грамотрицательных бактерий и значительно реже у грамположительных. Образуются в результате разрушения пептидогликанового слоя литическими ферментами, например лизоцимом, или блокирования биосинтеза пептидогликана антибиотиком пенициллином и др. в среде с соответствующим осмотическим давлением.

Протопласты и сферопласты имеют сферическую или полусферическую форму и в 3—10 раз крупнее исходных клеток. В обычных условиях наступает осмотический лизис и они погибают. В условиях повышенного осмотического давления способны некоторое время переживать, расти и даже делиться. При снятии фактора, разрушающего пептидогликан, протопласты, как правило, отмирают, но могут превращаться в L-формы; сферопласты легко реверсируют в исходные бактерии, иногда трансформируются в L-формы или же гибнут.

L-Формы бактерий. Это фенотипические модификации, или мутанты, бактерий, частично или полностью утратившие способность синтезировать пептидогликан клеточной стенки. Таким образом, L-формы — бактерии, дефектные по клеточной стенке. Свое название они получили в связи с тем, что были выделены и описаны в институте Листера в Англии в 1935 г. Образуются при воздействии L-трансформирующих агентов — антибиотиков (пенициллина, полимиксина, бацитрацина, венкомицина, стрептомицина), аминокислот (глицина, метионина, лейцина и др.), фермента лизоцима, ультрафиолетовых и рентгеновых лучей. В отличие от протопластов и сферопластов L-формы обладают относительно высокой жизнеспособностью и выраженной способностью к репродукции. По морфологическим и культуральным свойствам они резко отличаются от исходных бактерий, что обусловлено утратой клеточной стенки и изменением метаболической активности.

L-Формы бактерий полиморфны. Встречаются элементарные тельца размером 0,2—1 мкм (минимальные репродуцирующие элементы), шары — 1—5, большие тела — 5—50, нити — до 4 мкм и более. Клетки L-форм имеют хорошо развитую систему внутрицитоплазматических мембран и миелиноподобные структуры. Вследствие дефекта клеточной стенки осмотически неустойчивы и их можно культивировать только на специальных средах с высоким осмотическим давлением; они проходят через бактериальные фильтры.

Различают стабильные и нестабильные L-формы бактерий. Первые полностью лишены ригидной клеточной стенки, что сближает их с протопластами; они крайне редко реверсируют в исходные бактериальные формы. Вторые могут обладать элементами клеточной стенки, в чем они проявляют сходство со сферопластами; в отсутствие фактора, вызвавшего их образование, реверсируют в исходные клетки.

Процесс образования L-форм получил название L-трансформации или L-индукции. Способностью к L-трансформации обладают практически все виды бактерий, в том числе и патогенные (возбудители бруцеллеза, туберкулеза, листерии и др.).

L-Формам придается большое значение в развитии хронических рецидивирующих инфекций, носительстве возбудителей, длительной персистенции их в организме. Доказана трансплацентарная инвазивность элементарных телец L-форм бактерий.

Инфекционный процесс, вызванный L-формами бактерий, характеризуется атипичностью, длительностью течения, тяжестью заболевания, трудно поддается химиотерапии.

Капсула — слизистый слой, расположенный над клеточной стенкой бактерии. Вещество капсулы четко отграничено от окружающей среды. В зависимости от толщины слоя и прочности соединения с бактериальной клеткой различают макрокапсулу, толщиной более 0,2 мкм, хорошо различимую в световом микроскопе, и микрокапсулу, толщиной менее 0,2 мкм, обнаруживаемую лишь при помощи электронного микроскопа или выявляемую химическими и иммунологическими методами. Макрокапсулу (истинную капсулу) образуют В. anlhracis, C1. perfringens, микрокапсулу — Escherichia coJi. Капсула не является обязательной структурой бактериальной клетки: потеря ее не приводит к гибели бактерии. Известны бескапсульные мутанты бактерий, например сибиреязвенный вакцинный штамм СТИ-1.

Вещество капсул состоит из высокогидрофильных мицелл, химический же состав их весьма разнообразен. Основные компоненты большинства капсул прокариот — гомо- или гетсрополисахариды (энтсробактерии и др.). У некоторых видов бацилл капсулы построены из полипептида. Так, в состав капсулы В. anthracis входит полипептид Д-глутаминовой кислоты (правовращающий изомер). В состав микрокапсулы микобактерий туберкулеза млекопитающих входят гликопептиды, представленные сложным эфиром трегалозы и миколовой кислоты (корд-фактор).

Синтез капсулы — сложный процесс и у различных прокариот имеет свои особенности; считают, что биополимеры капсулы синтезируются на наружной поверхности цитоплазматической мембраны и выделяются на поверхность клеточной стенки в определенных специфических ее участках.

Существуют бактерии, синтезирующие слизь, которая откладывается на поверхности клеточной стенки в виде бесструктурного слоя полисахаридной природы. Слизистое вещество, окружающее клетку, по толщине часто превосходит диаметр последней. У сапрофитной бактерии лейконостока наблюдается образование одной капсулы для многих особей. Такие скопления бактерий, заключенных в общую капсулу, называются зооглеями.

Капсула — полифункциональный органоид, выполняющий важную биологическую роль. Она является местом локализации капсульных антигенов, определяющих вирулентность, антигенную специфичность и иммуногенность бактерий. Утрата капсулы у патогенных бактерий резко снижает их вирулентность, например у бескапсульных штаммов бациллы антракса. Капсулы обеспечивают выживание бактерий, защищая их от механических повреждений, высыхания, заражения фагами, токсических веществ, а у патогенных форм — от действия защитных сил макроорганизма: инкапсулированные клетки плохо фагоцитируются. У некоторых видов бактерий, в том числе и патогенных, способствует прикреплению клеток к субстрату.

В ветеринарной микробиологии выявление капсулы используют в качестве дифференциального морфологического признака возбудителя при исследовании на сибирскую язву.

Для окрашивания капсул применяют специальные методы — Романовского — Гимзы, Гинса — Бурри, Ольта, Михина и др.

Микрокапсулу и слизистый слой определяют серологическими реакциями (РА), антигенные компоненты капсулы идентифицируют при помощи иммунофлюоресцентного метода (РИФ) и РДД.

Жгутики — органоиды движения бактерий, представленные тонкими, длинными, нитевидными структурами белковой природы. Их длина превышает бактериальную клетку в несколько раз и составляет 10—20 мкм, а у некоторых спирилл достигает 80— 90 мкм. Нить жгутика (фибрилла) — полный спиральный цилиндр диаметром 12—20 нм. У вибрионов и протея нить окружена футляром толщиной 35 нм.

Жгутик состоит из трех частей: спиральной нити, крюка и базального тельца. Крюк — изогнутый белковый цилиндр, выполняющий функцию гибкого связывающего звена между базальным тельцем и жесткой нитью жгутика. Базальное тельце — сложная структура, состоящая из центрального стержня (оси) и колец.

Рис. 3. Жгутики:

а — монотрихи; б — амфитрихи; в — лофотрихи; г — перитрихи

Жгутики не являются жизненно важными структурами бактериальной клетки: существуют фазовые вариации бактерий, когда в одной фазе развития клетки они имеются, у другой — отсутствуют. Так, у возбудителя столбняка в старых культурах преобладают клетки без жгутиков.

Количество жгутиков (от I до 50 и более) и места их локализации у бактерий разных видов неодинаковы, но стабильны для одного вида. В зависимости от этого выделяют следующие группы жгутиковых бактерий: моиотрихи — бактерии с одним полярно расположенным жгутиком; амфитрихи — бактерии с двумя полярно расположенными жгутиками или имеющие по пучку жгутиков на обоих концах; лофотрихи — бактерии, имеющие пучок жгутиков на одном конце клетки; перитрихи — бактерии с множеством жгутиков, расположенных по бокам клетки или на всей ее поверхности (рис. 3). Бактерии, не имеющие жгутиков, называют атрихиями.

Будучи органами движения, жгутики типичны для плавающих палочковидных и извитых форм бактерий и лишь в единичных случаях встречаются у кокков. Они обеспечивают эффективное движение в жидкой среде и более медленное перемещение по поверхности твердых субстратов. Скорость движения монотрихов и лофотрихов достигает 50 мкм/с, амфитрихи и перитрихи движутся медленнее и обычно за 1 с проходят расстояние, равное размерам их клетки.

Бактерии передвигаются беспорядочно, однако они способны к направленным формам движения — таксисам, которые определяются внешними стимулами. Реагируя на различные факторы окружающей среды, бактерии за короткое время локализуются в оптимальной зоне обитания. Таксис может быть положительным и отрицательным. Принято различать: хемотаксис, аэротаксис, фототаксис, магнототаксис. Хемотаксис вызывается разницей в концентрации химических веществ в среде, аэротаксис — кислорода, фототаксис — интенсивностью освещения, магнитотаксис определяется способностью микроорганизмов ориентироваться в магнитном поле.

Выявление подвижных жгутиковых форм бактерий имеет значение для их идентификации при лабораторной диагностике инфекционных болезней.

Пили (фимбрии, ворсинки) — прямые, тонкие, полые белковые цилиндры толщиной 3—25 нм и длиной до 12 мкм, отходящие от поверхности бактериальной клетки. Образованы специфическим белком — пилином, берут начало от цитоплазматической мембраны, встречаются у подвижных и неподвижных форм бактерий и видимы только в электронном микроскопе (рис. 4). На поверхности клетки может быть от 1—2, 50—400 и более пилей до нескольких тысяч.

Рис. 4. Пили

Существует два класса пилей: половые (секспили) и пили общего типа, которые чаще называют фимбриями. У одной и той же бактерии могут быть пили разной природы. Половые пили возникают на поверхности бактерий в процессе конъюгации и выполняют функцию органелл, через которые происходит передача генетического материала (ДНК) от донора к реципиенту.

Пили общего типа располагаются перитрихиально (кишечная палочка) или на полюсах (псевдомонады); одна бактерия их может содержать сотни. Они принимают участие в слипании бактерий в агломераты, прикреплении микробов к различным субстратам, в том числе к клеткам (адгезивная функция), в транспорте метаболитов, а также способствуют образованию пленок на поверхности жидких сред; вызывают агглютинацию эритроцитов.

Цитоплазматическая мебрана и ее производные. Цитоплазматическая мембрана (плазмолемма) — полупроницаемая липопротеидная структура бактериальных клеток, отделяющая цитоплазму от клеточной стенки. Она является обязательным полифункциональным компонентом клетки и составляет 8—15 % ее сухой массы. Разрушение цитоплазматической мембраны приводит к гибели бактериальной клетки. На ультратонких срезах в электронном микроскопе выявляется ее трехслойное строение — два ограничивающих осмиофильных слоя, толщиной 2—3 нм каждый, и один осмиофобный центральный слой толщиной 4—5 нм.

Цитоплазматическая мембрана в химическом отношении — белково-липидный комплекс, состоящий из 50—75 % белков и 15—50 % липидов. Основная часть мембранных липидов (70— 90 %) представлена фосфолипидами. Она построена из двух мономолекулярных белковых слоев, между которыми расположен липидный слой, состоящий из двух рядов правильно ориентированных молекул липидов.

Цитоплазматичсская мембрана служит осмотическим барьером клетки, контролирует поступление питательных веществ в клетку и выход продуктов метаболизма наружу, в ней содержатся субстратспецифические ферменты-пермеазы, осуществляющие активный избирательный перенос органических и неорганических молекул.

Ферменты цитоплазматической мембраны катализуют конечные этапы синтеза мембранных липидов, компонентов клеточной стенки, капсулы и экзоферментов; на мембране локализованы ферменты окислительного фосфорилирования и ферменты транспорта электронов, ответственные за синтез энергии.

В процессе роста клетки цитоплазмзтическая мембрана образует многочисленные инвагинаты, формирующие внутрицитоплазмати-ческие мембраны структуры. Локальные инвагинаты мембраны получили название мезосом. Эти структуры хорошо выражены у грамположительных бактерий, хуже — у грамотрицательных и плохо — у риккетсий и микоплазм.

Установлена связь мезосом с хромосомой бактерии, такие структуры называются нуклеоидосомеши. Интегрированные с нуклеоидом мезосомы принимают участие в кариокинезе и цитокинезе микробных клеток, обеспечивая распределение генома после окончания репликации ДНК и последующее расхождение дочерних хромосом. Мезосомы, как и цитоплазматическая мембрана, являются центрами дыхательной активности бактерий, поэтому их иногда называют аналогами митохондрий. Однако значение мезосом окончательно еще не выяснено. Они увеличивают рабочую поверхность мембран, возможно, выполняют только структурную функцию, производя разделение бактериальной клетки на относительно обособленные отсеки, что создает более благоприятные условия для протекания ферментативных процессов. У патогенных бактерий обеспечивают транспорт белковых молекул экзотоксинов.

Цитоплазма — содержимое бактериальной клетки, отграниченное цитоплазматической мембраной. Состоит из цитозоля — гомогенной фракции, включающей растворимые компоненты РНК, вещества субстрата, ферменты, продукты метаболизма, и структурных элементов — рибосом, внутрицитоплазматических мембран, включений и нуклеоида.

Рибосомы — органоиды, осуществляющие биосинтез белка. Состоят из белка и РНК, соединенных в комплекс водородными и гидрофобными связями. Бактериальные рибосомы — гранулы диаметром 15—20 нм, имеют константу седиментации 70S и образованы из двух рибонуклеопротеидных субъединиц: 30S и 50S. Одна бактериальная клетка может содержать от 5000—50 000 рибосом, посредством и-РНК они объединяются в полисомы-агрегаты, состоящие из 50—55 рибосом, обладающих высокой белоксинтезирующей активностью.

В цитоплазме бактерий выявляются различного типа включения. Они могут быть твердыми, жидкими и газообразными, с белковой мембраной или без нее и присутствовать непостоянно. Значительная часть их представляет собой запасные питательные вещества и продукты клеточного метаболизма. К запасным питательным веществам относятся: полисахариды, липиды, полифосфаты, отложения серы и др. Из включений полисахаридной природы чаще обнаруживаются гликоген и крахмалоподобное вещество гранулеза, которые служат источником углерода и энергетическим материалом. Липиды накапливаются в клетках в виде гранул и капелек жира, к ним относятся окруженные мембраной гранулы поли-/3-оксимас-ляной кислоты, резко преломляющие свет и хорошо различимые в световом микроскопе. Выявляются и бациллы антракса и аэробных спорообразующих сапрофитных бактерий. Микобактерии в качестве запасных веществ накапливают воски. В клетках некоторых кори-небактерий, спирилл и других содержатся гранулы волютина, образованные полифосфатами. Они характеризуются метахромазией: толуидиновый синий и метиленовый синий окрашивают их в фиолетово-красный цвет. Волютиновые гранулы играют роль фосфатных депо.

К включениям, окруженным мембраной, также относятся газовые вакуоли, или аэросомы, они снижают удельную массу клеток, встречаются у водных прокариот.

Нуклеоид — ядро у прокариот. Он состоит из одной замкнутой в кольцо двухспиральной нити ДНК длиной 1,1 —1,6 нм, которую рассматривают как одиночную бактериальную хромосому, или генофор.

Нуклеоид у прокариот не отграничен от остальной части клетки мембраной — у него отсутствует ядерная оболочка.

В состав структур нуклеоида входят РНК-полимераза, основные белки и отсутствуют гистоны; хромосома закрепляется на цитоплазматической мембране, а у грамположительных бактерий — на мезосомс. Бактериальная хромосома реплицируется поликонсервативным способом: родительская двойная спираль ДНК раскручивается и на матрице каждой полинуклеотидной цепи собирается новая комплементарная цепочка. Нуклеоид не имеет митотического аппарата, и расхождение дочерних ядер обеспечивается ростом цитоплазматической мембраны.

Бактериальное ядро — дифференцированная структура. В зависимости от стадии развития клетки нуклеоид может быть дискретным (прерывистым) и состоять из отдельных фрагментов. Это связано с тем, что деление бактериальной клетки во времени осуществляется после завершения цикла репликации молекулы ДНК и оформления дочерних хромосом.

В нуклеоиде сосредоточен основной объем генетической информации бактериальной клетки.

Кроме нуклеоида в клетках многих бактерий обнаружены внехромосомные генетические элементы — плазмиды, представленные небольшими кольцевыми молекулами ДНК, способными к автономной репликации.