Сенсорная организация личности - это уровень развития отдельных систем чувствительности и возможность их объединения. Сенсорные системы человека - это его органы чувств, как бы приемники его ощущений, в которых происходит преобразование ощущения в восприятие.

Главная особенность сенсорной организации человека - это то, что она складывается в результате всего его жизненного пути . Чувствительность человека дана ему при рождении, но развитие ее зависит от обстоятельств, желания и усилий самого человека.Ощущение – низшийпсихический процесс отражения отдельных свойств предметов или явлений внутреннего и внешнего мира при непосредственном контакте.

Очевидно, что в сенсорных системах человека происходит первичный познавательный процесс и уже на его основе возникают более сложные по своей структуре познавательные процессы: восприятия, представления, память, мышление. Как бы прост ни был первичный познавательный процесс, но именно он является основой психической деятельности, лишь через "входы" сенсорных систем проникает в наше сознание окружающий мир. Физиологическим механизмом ощущений является деятельность нервных аппаратов - анализаторов , состоящих из 3 частей:

· рецептор - воспринимающая часть анализатора (осуществляет преобразование внешней энергии в нервный процесс)

· центральный отдел анализатора - афферентные или чувствительные нервы

· корковые отделы анализатора , в которых происходит переработка нервных импульсов.

Каждый вид ощущения характеризуется не только специфичностью, но и имеет общие свойства с другими видами: качество, интенсивность, длительность, пространственная локализация. Минимальная величина раздражителя, при которой появляется ощущение - абсолютный порог ощущения . Величина этого порога характеризует абсолютную чувствительность , которая численно равна величине, обратно пропорциональной абсолютному порогу ощущений. А чувствительность к изменению раздражителя называется относительной или разностной чувствительностью . Минимальное различие между двумя раздражителями, которое вызывает чуть заметное различие ощущений, называется разностным порогом .

Классификация ощущений

Широко распространенной является классификация по модальности ощущений (специфичности органов чувств) – это разделение ощущений на зрительные, слуховые, вестибулярные, осязательные, обонятельные, вкусовые, двигательные, висцеральные. Существуют интермодальные ощущения – синестезии. Основная и самая значительная группа ощущений доводит до человека информацию из внешнего мира, и связывает его с внешней средой. Это экстерорецептивные - контактные и дистантные ощущения, они возникают при наличии или отсутствии непосредственного контакта рецептора с раздражителем. Зрение, слух, обоняние относятся к дистантным ощущениям. Эти виды ощущений обеспечивают ориентировку в ближайшей среде. Вкусовые, болевые, тактильные ощущения - контактные. По расположению рецепторов на поверхности тела, в мышцах и сухожилиях или внутри организма различают соответственно:

– экстероцептивные ощущения (возникающие при воздействии внешних раздражителей на рецепторы, расположенные на поверхности тела, снаружи) зрительная, слуховая, тактильная;

– проприоцептивные (кинестетические) ощущения (отражающие движение и относительное положение частей тела при помощи рецепторов, расположенных в мышцах, сухожилиях, суставных сумках);

– интероцептивные (органические) ощущения – возникающие при отражении обменных процессов в организме с помощью специализированных рецепторов, голод и жажда.

Для того, чтобы ощущение возникло, необходимо, чтобы стимул достиг определённой величины, которая называется порогом восприятия .
Относительный порог - величина, которую должен достичь стимул, чтобы мы почувствовали это изменение.
Абсолютные пороги – это верхние и нижние границы разрешающей способности органа. Методы исследования порогов:

Метод границ

заключается в постепенном увеличении раздражителя с допороговых, затем обратная процедура

Метод установки

испытуемый самостоятельно различает величину раздражителя

сенсорные системы - это специализированные части нервной системы, включающие периферические рецепторы (сенсорные органы, или органы чувств), отходящие от них нервные волокна (проводящие пути) и клетки центральной нервной системы, сгруппированные вместе (сенсорные центры). Каждая область мозга, в которой находится сенсорный центр (ядро) и осуществляется переключение нервных волокон, образует уровень сенсорной системы. В сенсорных органах происходит преобразование энергии внеш­него стимула в нервный сигнал - рецепция. Нервный сигнал (рецепторный потенциал) трансформируется в импульсную активность или потенциалы действия нейронов (кодирование). По проводящим путям потенциалы действия достигают сенсорных ядер, на клетках которых происходит переключение нервных волокон и преобразова­ние нервного сигнала (перекодирование) . На всех уровнях сенсорной системы, одновременно с кодированием и анализом стимулов осу­ществляется декодирование сигналов, т.е. считывание сенсорного кода. Декодирование осуществляется на основе связей сенсорных ядер с двигательными и ассоциативными отделами мозга. Нервные импульсы аксонов сенсорных нейронов в клетках двигательных сис­тем вызывают возбуждение (или торможение). Результатом этих процессов является движение - действие или остановка движения - бездействие. Конечным проявлением активации ассоциативных функций также является движение.

основными функциями сенсорных систем являются:

  1. ре­цепция сигнала;
  2. преобразование рецепторного потенциала в им­пульсную активность нервных путей;
  3. передача нервной активнос­ти к сенсорным ядрам;
  4. преобразование нервной активности в сенсорных ядрах на каждом уровне;
  5. анализ свойств сигнала;
  6. идентификация свойств сигнала;
  7. классификация и опознание сигнала (принятие решения).

12. Определение, свойства и виды рецепторов.

Рецепторы – это специальные клетки или специальные нервные окончания, предназначены для трансформации энергии (преобразовании) различных видов раздражителей в специфическую активность нервной системы (в нервный импульс).

Сигналы, поступающие в ЦНС с рецепторов, вызывают либо новые реакции, либо изменяют течение происходящей в данный момент деятельности.

Большинство рецепторов представлено клеткой, снабженной волосками или ресничками, которые представляют такие образования, которые действуют подобно усилителям по отношению к раздражителям.

Происходит либо механическое, либо биохимическое взаимодействие раздражителя с рецепторами. Пороги восприятия раздражителя очень низкие.

По действию стимулов рецепторы делятся:

1. Интерорецепторы

2. Экстерорецепторы

3. Проприорецепторы: мышечные веретена и сухожильные органы Гольджи (открыл И.М. Сеченов новый вид чувствительности – суставно-мышечное чувство).


Выделяют 3 вида рецепторов:

1. Фазные – это рецепторы, которые возбуждаются в начальный и конечный период действия раздражителя.

2. Тонические – действуют в течение всего периода действия раздражителя.

3. Фазно–тонические - у которых все время возникают импульсы, но в начале и в конце больше.

Качество воспринимаемой энергии называется модальностью .

Рецепторы могут быть:

1. Мономодальные (воспринимают 1 вид раздражителя).

2. Полимодальные (могут воспринимать несколько раздражителей).

Передача информации от перефирических органов происходит по сенсорным путям, которые могут быть специфические и неспецифические.

Специфические – это мономодальные.

Неспецифические – это полимодальные

Свойства

· Избирательность - чувствительность к адекватным раздражителям

· Возбудимость - минимальной величиной энергии адекватного раздражителя, которая необходима для возникновения возбуждения, т.е. порогом возбуждения.

· Низкая величина порогов для адекватных раздражителей

· Адаптация (может сопровождаться как понижением, так и повышением возбудимости рецепторов. Так, при переходе из светлого помещения в темное происходит постепенное повышение возбудимости фоторецепторов глаза, и человек начинает различать слабо освещенные предметы- это так называемая темновая адаптация.)

13. Механизмы возбуждения первично-чувствующих и вторично-чувствующих рецепторов.

Первично-чувствующие рецепторы : раздражитель действует на дендрит сенсорного нейрона, изменяется проницаемость клеточной мембраны к ионам (в основном к Na+), образуется локальный электрический потенциал (рецепторный потенциал), который электротонически распространяется вдоль мембраны к аксону. На мембране аксона образуется потенциал действия, передаваемый далее в ЦНС.

Сенсорный нейрон с первично-чувствующим рецептором представляет собой биполярный нейрон, на одном полюсе которого располагается дендрит с ресничкой, а на другом – аксон, передающий возбуждение в ЦНС. Примеры: проприорецепторы, терморецепторы, обонятельные клетки.

Вторично-чувствующие рецепторы : в них раздражитель действует на рецепторную клетку, в ней возникает возбуждение (рецепторный потенциал). На мембране аксона рецепторный потенциал активирует выделение нейромедиатора в синапс, в результате чего на постсинаптической мембране второго нейрона (чаще всего биполярного) образуется генераторный потенциал, который и приводит к образованию потенциала действия на соседних участках постсинаптической мембраны. Далее этот потенциал действия передается в ЦНС. Примеры: волосковые клетки уха, вкусовые рецепторы, фоторецепторы глаза.

!14. Органы обоняния и вкуса (локализация рецепторов, первое переключение, повторное переключение, проекционная зона).

Органы обоняния и вкуса возбуждаются при химическими раздражителями. Рецепторы обонятельного анализатора возбуждаются газообразными, а вкусового - растворенными химическими веществами. Развитие органов обоняния также зависит от образа жизни животных. Обонятельный эпителий располагается в стороне от главного дыхательного пути и вдыхаемый воздух поступает туда путем вихревых движений или диффузии. Такие вихревые движения возникают при “принюхивании” т.е. при коротких вдохах через нос и расширении ноздрей, что облегчает проникновению анализируемого воздуха в эти области.

Обонятельные клетки представлены биполярными нейронами аксоны которых образуют обонятельный нерв, заканчивающийся в обонятельной луковице, являющейся обонятельным центром и далее от него идут пути в другие вышележащие структуры мозга. На поверхности обонятельных клеток имеется большое количество ресничек, значительно увеличивающих - обонятельную поверхность.

Вкусовой анализатор служит для определения характера, вкусовых качеств корма, его пригодности к поеданию. Животным, живущим в воде вкусовой и обонятельный анализаторы помогают ориентироваться в окружающей среде, определять наличие пищи, самки. С переходом к жизни в воздушной среде значение вкусового анализатора уменьшается. У травоядных животных вкусовой анализатор развит хорошо, что бывает видно на пастбище и в кормушке, когда животные не всю подряд поедают траву и сено.

Периферический отдел вкусового анализатора представлен вкусовыми луковицами, расположенными на языке, мягком небе, задней стенке глотки, миндалинах и надгортаннике. Вкусовые луковицы расположены на поверхности грибовидных, листовидных и желобовидных сосочков

15. Кожный анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона).

В коже располагаются различные рецепторные образования. Наиболее простым типом сенсорного рецептора являются свободные нервные окончания. Более сложную организацию имеют морфологически дифференцированные образования, такие как осязательные диски (диски Меркеля), осязательные тельца (тельца Мейснера), пластинчатые тельца (тельца Пачини) - рецепторы давления и вибрации, колбы Краузе, тельца Руффини и др.

Большинству специализированных концевых образований присуща предпочтительная чувствительность к определенным видам раздражении и только свободные нервные окончания являются полимодальными рецепторами.

16. Зрительный анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона).

Наибольшее количество информации (до 90%) о внешнем мире человек получает с помощью органа зрения. Орган зре­ния - глаз - состоит из глазного яблока и вспомогательного аппарата. К вспомогательному аппарату относят веки, ресницы, слезные железы и мышцы глазного яблока. Веки образованы складками кожи, выстланны­ми изнутри слизистой оболочкой - конъюнктивой. Слезные железы на­ходятся в наружном верхнем углу глаза. Слезы омывают передний отдел глазного яблока и через носослезный канал попадают в полость носа. Мышцы глазного яблока приводят его в движение и направляют в сто­рону рассматриваемого предмета
17. Зрительный анализатор. Строение сетчатки. Формирование цветоощущения. Проводниковый отдел. Переработка информации .

Сетчатка имеет очень сложное строение. В ней находятся световоспринимающие клетки - палочки и колбочки. Палочки (130 млн.) более чувствительны к свету. Их называют аппаратом сумеречного зрения. Колбочки (7 млн.) - это аппарат дневного и цветового зрения. При раздражении световыми лучами этих клеток возникает возбуждение, кото­рое через зрительный нерв проводится в зрительные центры, располо­женные в затылочной зоне коры больших полушарий. Участок сетчатки, из которого выходит зрительный нерв, лишен палочек и колбочек и поэтому не способен к восприятию света. Его называют слепым пятном. Почти рядом с ним находится желтое пятно, образованное скоплением колбочек, - место наилучшего видения.

В состав оптической, или преломляющей, системы глаза входят: ро­говица, водянистая влага, хрусталик и стекловидное тело. У людей с нормальным зрением лучи света, проходящие через каждую из этих сред, преломляются и затем попадают на сетчатку, где образуют умень­шенное и перевернутое изображение видимых глазом предметов. Из этих прозрачных сред только хрусталик способен активно изменять свою кривизну, увеличивая ее при рассматривании близких предметов и уменьшая при взгляде на далекие объекты. Такая способность глаза к четкому видению разноудаленных предметов называется аккомодацией. Если при прохождении через прозрачные среды лучи преломляются слишком сильно, они фокусируются впереди сетчатки, в результате чего у человека возникает близорукость. У таких людей глазное яблоко либо удлинено, либо увеличена кривизна хрусталика. Слабое преломление этих сред приводит к фокусировке лучей позади сетчатки, что вызывает дальнозоркость. Она возникает из-за укороченности глазного яблока или уплощения хрусталика. Правильно подобранные очки позволяют испра­вить эти Проводящие пути зрительного анализатора.Первые , вторые и третьи нейроны проводящего пути зрительного анализатора расположены в сетчатке. Волокна третьих (ганглиозных) нейронов в составе зрительного нерва частично перекрещиваются образуя зрительный перекрест (хиазму). После перекреста образуются правый и левый зрительные тракты. Волокна зрительного тракта заканчиваются в промежуточном мозге (ядре латерального коленчатого тела и подушке таламуса), где расположены четвертые нейроны зрительного пути. Небольшое число волокон достигает среднего мозга в области верхних холмиков четверохолмия. Аксоны четвертых нейронов проходят через заднюю ножку внутренней капсулы и проецируются на кору затылочной доли полушарий большого мозга, где расположен корковый центр зрительного анализатора.недостатки зрения.

18. Слуховой анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона). Проводниковый отдел. Переработка информации. Слуховая адаптация.

Слуховой и вестибулярный анализаторы. Орган слуха и равновесия включает три отдела: наружное, среднее и внутреннее ухо. Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина представлена эластическим хрящом, покрытым кожей, и служит для улавливания звука. Наружный слуховой проход - канал дли­ной 3,5 см, который начинается наружным слуховым отверстием и за­канчивается слепо барабанной перепонкой. Он выстлан кожей и имеет железы, выделяющие ушную серу.

За барабанной перепонкой расположена полость среднего уха, со­стоящая из барабанной полости, заполненной воздухом, слуховых кос­точек и слуховой (евстахиевой) трубы. Слуховая труба связывает бара­банную полость с полостью носоглотки, что способствует уравниванию давления по обе стороны барабанной перепонки. Слуховые косточки - мо­лоточек, наковальня и стремечко соединены между собой подвижно. Молоточек рукояткой сращен с ба­рабанной перепонкой, головка моло­точка прилегает к наковальне, кото­рая другим концом соединяется со стремечком. Стремечко широким основанием соединяется с перепон­кой овального окна, ведущего во внутреннее ухо. Внутреннее ухо расположено в толще пирамиды височной кости; состоит из костного лабиринта и расположенного в нем перепончато­го лабиринта. Пространство между ними заполнено жидкостью – перилимфой, полость перепончатого ла­биринта - эндолимфой. Костный лабиринт содержит три отдела: пред­дверие, улитку и полукружные каналы. Улитка относится к органу слу­ха, остальные его части - к органу равновесия.

Улитка представляет собой костный канал, закрученный в виде спи­рали. Ее полость разделена тонкой перепончатой перегородкой - основ­ной мембраной. Она состоит из многочисленных (около 24 тыс.) соеди­нительнотканных волоконец разной длины. На основной мембране по­мещаются рецепторные волосковые клетки кортиева органа - перифери­ческого отдела слухового анализатора.

Звуковые волны через наружный слуховой проход достигают бара­банной перепонки и вызывают ее колебания, которые усиливаются (поч­ти в 50 раз) системой слуховых косточек и передаются перилимфе и эндолимфе, затем воспринимаются волокнами основной мембраны. Вы­сокие звуки вызывают колебания коротких волоконец, низкие - более длинных, расположенных у вершины улитки. Эти колебания возбужда­ют рецепторные волосковые клетки кортиева органа. Далее возбуждение передается по слуховому нерву в височную долю коры больших полу­шарий, где происходят окончательный анализ и синтез звуковых сигна­лов. Ухо человека воспринимает звуки частотой от 16 до 20 тыс. Гц.

Проводящие пути слухового анализатора.Первый нейрон про­водящих путей слухового анализатора - упомянутые выше бипо­лярные клетки. Их аксоны образуют улитковый нерв, волокна ко­торого входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела, главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий.

Помимо основного, проводящего пути, связывающего перифери­ческий отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуще­ствляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий. Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм ко­торого идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

19. Вестибулярный анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона). Проводниковый отдел. Переработка информации .

Вестибулярный аппарат. Представлен преддверием и полукруж­ными каналами и является органом равновесия. В преддверии имеются два мешочка, заполненные эндолимфой. На дне и во внутренней стенке мешочков расположены рецепторные волосковые клетки, к которым примыкает отолитовая мембрана с особыми кристаллами - отолитами, содержащими ионы кальция. Три полукружных канала расположены в трех взаимно перпендикулярных плоскостях. Основания каналов в местах их соединения с преддверием образуют расширения - ампулы, в ко­торых расположены волосковые клетки.

Рецепторы отолитового аппарата возбуждаются при ускоряющихся или замедляющихся прямолинейных движениях. Рецепторы полукруж­ных каналов раздражаются при ускоренных или замедленных враща­тельных движениях за счет передвижения эндолимфы. Возбуждение рецепторов вестибулярного аппарата сопровождается рядом рефлектор­ных реакций: изменением тонуса мышц, способствующих выпрямлению тела и сохранению позы. Импульсы от рецепторов вестибулярного ап­парата по вестибулярному нерву поступают в ЦНС. Вестибулярный ана­лизатор связан с мозжечком, который регулирует его деятельность.

Проводящие пути вестибулярного аппарата.Проводящий путь статокинетического аппаратаосуществляет передачу импульсов при измене­нии положения головы и тела, участвуя совместно с други­ми анализаторами в ориентировочных реакциях организма относительно окружающего пространства. Первый нейрон статокинетического аппарата находится в преддверном ган­глии, залегающем на дне внутреннего слухового прохода. Дендриты биполярных клеток преддверного узла формиру­ют преддверный нерв, образованный 6 ветвями: верхними, нижними, боковыми и задними ампулярными, утрикулярными и саккулярными. Они контактируют с чувствитель­ными клетками слуховых пятен и гребешков, расположен­ных в ампулах полукружных каналов, в мешочке и маточке преддверия перепончатого лабиринта.

20. Вестибулярный анализатор. Формирование чувства равновесия. Автоматический и сознательный контроль равновесия тела. Участие вестибулярного аппарата в регуляции рефлексов .

Вестибулярный аппарат выполняет функции восприя­тия положения тела в пространстве, сохранения равнове­сия. При любом изменении положения головы раз­дражаются рецепторы вестибулярного аппарата. Импульсы передаются в мозг, из которого к скелетным мыш­цам поступают нервные импульсы с целью коррекции по­ложения тела и движений. Вестибулярный аппарат состоит из двух частей: преддве­рия и полукружных каналов, в которых находятся рецепторы статокинетического анализатора.

Лекция

Значение сенсорных систем для организма человека.

Зрительные и слуховые сенсорные системы:

Строение, функции и гигиена.

План

1. Значение сенсорных систем для организма человека.

2. Зрительная сенсорная система: строение, функции. Нарушения зрения.

3. Профилактика нарушения зрения у детей и подростков.

4. Эмбриология глаза. Возрастные особенности зрительных рефлекторных реакций.

5. Слуховая сенсорная система: строение, функции.

6. Болезни уха и гигиена слуха. Профилактика негативного влияния "школьного" шума на организм школьника.

7. Возрастные особенности слухового анализатора.

Основные понятия : органы чувств, анализатор, сенсорные системы, зрительный анализатор, слуховой анализатор, рецепторы, адаптация, глазное яблоко, вспомогательный аппарат глаза, фоторецепторы, слепое пятно, желтое пятно, аккомодация, дальнозоркость, близорукость, рефракция, рефракция, гиперметропия, эмметропия, миопия, астигматизм, офтальмотренаж, естественное и искусственное освещение, световой коэффициент, наружное ухо, среднее ухо, внутреннее ухо, Фонорецепторы, кортиев орган.

Литература

1. Даценко И.И. Гигиена и экология человека. Учебное пособие Львов: Афиша, 2000. С. 238-242.

2. Подоляк-Шумило Н.Г., Познанский С.С. Школьная гигиена. Учеб. пособие для пед. ин-тив.- К.: Высшая школа, 1981.- С. 48-53.

3. Попов С.В. Валеология в школе и дома (О физическом благополучии школьников) .- СПб.: СОЮЗ, 1997.-С. 80-92.

4. Советов С.Е. и др. Школьная гигиена. Учеб. пособие для студентов пед. ин-тив.- К.: Высшая школа, 1971.- С. 70-75.

5. Старушенко Л.1. Клиническая анатомия и физиология человека: Учебное пособие М.: УСМП, 2001. С. 231-237.

6. Присяжнюк М.С. Человек и его здоровье: Пробы, учеб. пособие.-М.: Феникс, 1998.-С. 59-71.

7. Хрипкова А.Г. и др. Возрастная физиология и школьная гигиена. Пособие для пед. ин-тов / А.Г.Хрипкова, М.В.Антропова, Д.А.Фарбер.- М.: Просвещение, 1990.- С. 79-96.

8. Хрипкова А.Г., Колесов Д.В. Гигиена и здоровье школьника.- М.: Просвещение, 1988.- С. 141-148.

Значение сенсорных систем для организма человека



Система, которая обеспечивает восприятие, передачу и переработку информации о явлениях окружающей среды, называют анализатором, или сенсорной системой . Учение об анализаторах разработано И.П. Павловым. Анализатор, по учению И.П. Павлова, состоит из трех неразрывно связанных отделов:

1) рецептора - периферического воспринимающего аппарата, который воспринимает раздражение и превращает его в нервный процесс возбуждения;

2) проводника возбуждения - центростремительного нервного волокна, которое передает возбуждение в головной мозг;

3) нервного центра - участка коры головного мозга, в котором происходит тонкий анализ возбуждения и возникают ощущения.

Таким образом, каждый анализатор состоит из периферического, проводникового и центрального отделов. К периферическому отделу относится рецепторный аппарат, к проводному - афферентные нейроны и проводящие пути, к центральному - участки коры полушарий большого мозга. Периферический отдел анализатора представляют органы чувств с заложенными в них рецепторами, с помощью которых человек познает окружающий мир, получает информацию о нем. Они называются органами внешнего чувств, или экстерорецепторы.

Экстерорецепторы - чувствительные образования, осуществляющих восприятие раздражений от окружающей среды. К ним относятся воспринимающие клетки сетчатки глаза, уши, рецепторы кожи (прикосновения и давления), органы обоняния, вкуса.

Интерорецепторы - чувствительные образования, воспринимающие изменения внутренней - среды организма.

Интерорецепторы расположены в тканях различных внутренних органов (сердца, печени, почек, кровеносных сосудов и др.) И воспринимают изменения внутренней среды организма и состояние внутренних органов. В результате поступления импульсов от рецепторов внутренних органов происходит саморегуляция дыхания, артериального давления, деятельности сердца.

Проприорецепторы - чувствительные образования, сигнализирующие о положении и движении тела содержатся в мышцах, суставах и воспринимают сокращение и растяжение мышц.

Таким образом, у человека есть такие органы чувств : зрения, слуха, ощущение положения тела в пространстве, вкуса, обоняния, кожной чувствительности, мышечно-суставного чувства.

По характеру взаимодействия с раздражителем рецепторы делятся на контактные и дистанционные; по виду энергии, трансформируется в рецепторы - механорецепторы, хеморецепторы, фоторецепторы и другие.

Контактные рецепторы могут получить информацию о свойствах предмета, явления, получить раздражение только при контакте, непосредственном соприкосновении с агентом среды. Это - хеморецепторы языка, осязательные рецепторы кожи.

Благодаря дистанционным рецепторам можно получить информацию на расстоянии: агент среды распространяет волновую энергию - световую, звуковую. Именно ее и улавливают дистанционные органы чувств, например, глаз, ухо.

Механорецепторы трансформируют механическую энергию в энергию нервного возбуждения (например, рецепторы осязания), хеморецепторы - мимической (рецепторы обоняния, вкуса), фоторецепторы - световую (рецепторы органа зрения), терморецепторы - тепловую (холодовые и тепловые рецепторы кожи).

Рецепторы отличаются очень высокой возбудимостью по адекватности раздражений. Специфические для определенного рецептора раздражители, к которым он специально приспособлен в процессе фило- и онтогенеза, называется называются адекватными. При действии адекватных раздражителей возникают ощущения, характерные для определенного органа чувств (глаз воспринимает только световые волны, но не воспринимает запахи, звук).

Кроме адекватных, существуют неадекватные раздражители, которые обуславливают только примитивные ощущения, присущие определенному анализатору. Например, от удара в ухо возникает звон в ушах.

Возбудимость рецепторов зависит как от состояния всего анализатора, так и от общего состояния организма. Наименьшая разница в силе двух раздражителей одного вида, которая может восприниматься органами чувств, называется порогом различения . Однако большинство импульсов от рецепторов внутренних органов, достигая коры большого мозга, не вызывает психических явлений. Такие импульсы называются субсенсорными: они ниже порога ощущений и потому не вызывают ощущений.

Рецепторы способны привыкать к силе раздражителя. Это свойство называют адаптацией, при которой уменьшается или увеличивается чувствительность рецепторов. Максимальная скорость адаптации для рецепторов, которые воспринимают прикосновение к коже, наименьшая - для рецепторов мышц. Медленнее адаптируются рецепторы кровеносных сосудов и легких, обеспечивает постоянную саморегуляцию артериального давления и дыхания. Обусловлена ​​адаптация, прежде всего, изменениями в корковых отделах анализаторов, а также процессами, которые осуществляются в самых рецепторах.

Проводниковый отдел сенсорных систем состоит из доцентровых (афферентных) нервных волокон в составе чувствительных нервов и некоторых подкорковых образований (ядер гипоталамуса, таламуса и ретикулярной формации). В этом отделе импульс от рецепторов не только проводится, но и кодируется и превращается.

В центральном отделе анализатора нервные импульсы приобретают новые качества и отражаются в сознании в виде ощущения. На основе ощущения возникают сложные субъективные образы:восприятия, представления.

У детей органы чувств еще несовершенны и находятся в процессе развития. Первыми развиваются органы вкуса и обоняния, а затем органы осязания. Для усовершенствования различных органов чувств у детей большое значение масс правильно поставленная тренировка их в процессе развития.

«Сенс» - переводится как «чувство», «ощущение».

Определение понятия

Сенсорные системы – это воспринимающие системы организма (зрительная, слуховая, обонятельная, осязательная, вкусовая, болевая, тактильная, вестибулярный аппарат, проприоцептивная, интероцептивная).

Сенсорные системы - это специализированные подсистемы нервной системы, обеспечивающие ей восприятие и ввод информации за счёт формирования субъективных ощущений на основе объективных раздражений. Сенсорные системы включают в себя периферические сенсорные рецепторы вместе со вспомогательными структурам (органы чувств), отходящие от них нервные волокна (проводящие пути) и сенсорные нервные центры (низшие и высшие). Низшие нервные центры трансформируют (перерабатывают) входящее сенсорное возбуждение в выходящее, а высшие нервные центры наряду с этой функцией образуют экранные структуры, формирующие нервную модель раздражения - сенсорный образ. © Сазонов В.Ф., 2012-2016. © kineziolog.bodhu.ru, 2012-2016..

Можно сказать, что сенсорные системы - это «информационные входы» организма для восприятия им характеристик окружающей среды, а также характеристик внутренней среды самого организма. В физиологии принято делать ударение на букву «о», тогда как в технике - на букву «е». Поэтому технические воспринимающие системы - сЕ нсорные, а физиологические - сенсО рные.

Итак, сенсорные системы - это информационные входы в нервную систему.

Виды сенсорных систем

Анализаторы и сенсорные системы

И.П. Павлов создал учение об анализаторах. Это упрощённое представление о восприятии. Он делил анализатор на 3 звена.

Строение анализатора

    Периферическая часть (отдаленная) – это рецепторы, воспринимающие раздражение и превращающие его в нервное возбуждение.

    Проводниковый отдел – это проводящие пути, передающие сенсорное возбуждение, рождённое в рецепторах.

    Центральный отдел – это участок коры больших полушарий головного мозга, анализирующий поступившее к нему сенсорное возбуждение и строящий за счёт синтеза возбуждений сенсорный образ.

Таким образом, например, окончательное зрительное восприятие происходит в мозге, а не в глазу.

Понятие сенсорная система шире , чем анализатор. Она включает в себя дополнительные приспособления, системы настройки и системы саморегуляции. Сенсорная система предусматривает обратную связь между мозговыми анализирующими структурами и воспринимающим рецептивным аппаратом. Для сенсорных систем характерен процесс адаптации к раздражению.

Адаптация – это процесс приспособления сенсорной системы и ее отдельных элементов к действию раздражителя.

1. Сенсорная система активна , а не пассивна в передаче возбуждения.

2. В состав сенсорной системы входят вспомогательные структуры , обеспечивающие оптимальную настройку и работу рецепторов.

3. В состав сенсорной системы входят вспомогательные , которые не просто передают сенсорное возбуждение дальше, а меняют его характеристики и разделяют на несколько потоков, посылая их по разным направлениям.

4. Сенсорная система имеет обратные связи между последующими и предшествующими структурами, передающими сенсорное возбуждение.

5. Обработка и переработка сенсорного возбуждения происходит не только в коре головного мозга, но и в нижележащих структурах.

6. Сенсорная система активно подстраивается под восприятие раздражителя и приспосабливается к нему, т. е. происходит её адаптация .

7. Сенсорная система сложнее, чем анализатор.

Вывод:

Сенсорная система = анализатор + низший нервный центр (или несколько центров) + система регуляции.

Отделы сенсорной системы:

1. Рецепторы. Возможны также вспомогательные структуры (например глазное яблоко, ухо и т.п.).
2. Афферентные (чувствительные) (афферентные нейроны).
3. .
4. Высший нервный центр в коре больших полушарий головного мозга.

1. Принцип многоэтажности.

В каждой сенсорной системе существует несколько передаточных промежуточных инстанций на пути от рецепторов к коре больших полушарий головного мозга. В этих промежуточных низших нервных центрах происходит частичная переработка возбуждения (информации). Уже на уровне низших нервных центров формируются безусловные рефлексы, т. е. ответные реакции на раздражение, они не требуют участия коры головного мозга и осуществляются очень быстро.

Например: Мошка летит прямо в глаз - глаз моргнул в ответ, и мошка в него не попала. Для ответной реакции в виде моргания не требуется создавать полноценный образ мошки, достаточно простой детекции того, что объект быстро приближается к глазу.

Одна из вершин многоэтажного устройства сенсорной системы - это слуховая сенсорная система. В ней можно насчитать 6 этажей. Существуют также дополнительные обходные пути к высшим корковым структурам, которые минуют несколько низших этажей. Таким способом кора получает предварительный сигнал для повышения её готовности до основного потока сенсорного возбуждения.

Иллюстрация принципа многоэтажности:

2. Принцип многоканальности.

Возбуждение передается от рецепторов в кору всегда по нескольким параллельным путям. Потоки возбуждения частично дублируются, и частично разделяются. По ним передается информация о различных свойствах раздражителя.

Пример параллельных путей зрительной системы:

1-й путь: сетчатка - таламус - зрительная кора.

2-й путь: сетчатка - четверохолмие (верхние холмы) среднего мозга (ядра глазодвигательных нервов).

3-й путь: сетчатка - таламус - подушка таламуса - теменная ассоциативная кора.

При повреждении разных путей и результаты получаются различные.

Например: если разрушить наружное коленчатое тело таламуса (НКТ) в зрительном пути 1, то наступает полная слепота; если разрушить верхнее двухолмие среднего мозга в пути 2, то нарушается восприятие движения предметов в поле зрения; если разрушить подушку таламуса в пути 3, то пропадает узнавание предметов и зрительное запоминание.

Во всех сенсорных системах обязательно существуют три пути (канала) передачи возбуждения:

1) специфический путь: он ведет в первичную сенсорную проекционную зону коры,

2) неспецифический путь: он обеспечивает общую активность и тонус коркового отдела анализатора,

3) ассоциативный путь: он определяет биологическую значимость раздражителя и управляет вниманием.

В эволюционном процессе усиливается многоэтажность и многоканальность в структуре сенсорных путей.

Иллюстрация принципа многоканальности:

3. Принцип конвергенции.

Конвергенция - это схождение нервных путей в виде воронки. За счёт конвергенции нейрон верхнего уровня получает возбуждение от нескольких нейронов нижележащего уровня.

Например: в сетчатке глаза существует большая конвергенция. Фоторецепторов несколько десятков млн., а ганглиозных клеток - не более одного млн. Т.е. нервных волокон, передающих возбуждение от сетчатки во много раз меньше, чем фоторецепторов.

4. Принцип дивергенции.

Дивергенция - это расхождение потока возбуждения на несколько потоков от низшего этажа к высшему (напоминает расходящуюся воронку).

5. Принцип обратной связи.

1. Преобразование силы раздражения в частотный код импульсов – универсальный принцип действия любого сенсорного рецептора.

Причём во всех сенсорных рецепторах преобразование начинается с вызванного стимулом изменения свойств клеточной мембраны. Под действием стимула (раздражителя) в мембране клеточного рецептора должны открыться (а в фоторецепторах, наоборот, закрыться) стимул-управляемые ионные каналы. Через них начинается поток ионов и развивается состояние деполярицации мембраны. Смотри: Рецепция и трансдукция

2. Топическое соответствие - поток возбуждения (информационный поток) во всех передаточных структурах соответствует значимым характеристикам раздражителя. Это означает, что важные признаки раздражителя будут закодированы в виде потока нервных импульсов и нервной системой будет построен внутренний сенсорный образ, похожий на раздражитель - нервная модель стимула. "Топическое" - означает "пространственное".

3. Детекция - это выделение качественных признаков. Нейроны-детекторы реагируют на определенные признаки объекта и не реагируют на все остальное. Нейроны-детекторы отмечают контрастные переходы. Детекторы придают сложному сигналу осмысленность и уникальность. В разных сигналах они выделяют одинаковые параметры. К примеру, только детекция поможет вам отделить контуры маскирующейся камбалы от окружающего её фона.

4. Искажение информации об исходном объекте на каждом уровне передачи возбуждения.

5. Специфичность рецепторов и органов чувств. Их чувствительность максимальна к определенному типу раздражителя с определенной интенсивностью.

6. Закон специфичности сенсорных энергий: ощущение определяется не стимулом, а раздражаемым сенсорным органом. Ещё точнее можно сказать так: ощущение определяется не раздражителем, а тем сенсорным образом, который строится в высших нервных центрах в ответ на действие раздражителя. Например, источник болевого раздражения может находиться в одном месте тела, а ощущение боли может проецироваться на совсем другой участок. Или же: один и тот же раздражитель может вызывать очень разные ощущения в зависимости от адаптации к нему нервной системы и/или органа чувств.

7. Обратная связь между последующими и предшествующими структурами. Последующие структуры могут менять состояние предшествующих и менять таким способом характеристики приходящего к ним потока возбужджения.

Адекватный раздражитель – это раздражитель, дающий максимальную ответную реакцию, при минимальной силе раздражения.

Адекватность раздражителя - относительное понятие. Так, например, существует белок туаматин, который имеет молекулярную массу 22 тысячи, состоит из 207 остатков аминокислот и в 8 тысяч раз слаще сахарозы. А ведь именно водный раствор сахарозы принят эталоном сладкого вкуса.

Специфичность сенсорных систем предопределяется их структурой. Структура ограничивает их реакции на один раздражитель и способствует восприятию других.

Подробности по сенсорным системам для докладов и рефератов можно посмотреть тут:

Реброва Н.П. Физиология сенсорных систем: Учебно-методическое пособие. СПб.,Стратегия будущего, 2007. Читать

bibliotekar.ru/447/213.htm

humbio.ru/humbio/ssb/00000aa0.htm Электронный учебник по биологии человека, раздел Сенсорные системы.

medbiol.ru/medbiol/physiology/001b2075.htm Электронный учебник, раздел Сенсорные системы

http://website-seo.ru/read/page/15/ Основные электронные ресурсы по психофизиологии (разрешено скачивание).

website-seo.ru/read/page/2/ Дополнительные электронные ресурсы по психофизиологии (разрешено скачивание).

www.maik.ru/cgi-bin/list.pl?page=sensis elibrary.ru/title_about.asp?id=8212 Журнал Сенсорные системы.

ito.osu.ru/resour/el_book/courses/temp3/glava_4_1.html Сенсорные системы кратенько.

www.ozrenii.ru/ О зрении (не классическое представление информации о зрительной системе).

1) Сенсорные системы

«Сенс» - переводится как «чувство», «ощущение».

Сенсорные системы - это воспринимающие системы организма (зрительная, слуховая, обонятельная, осязательная, вкусовая, болевая, тактильная, вестибулярный аппарат, проприоцептивная, интероцептивная).

Можно сказать, что сенсорные системы -- это «информационные входы» организма для восприятия им характеристик окружающей среды, а также характеристик внутренней среды самого организма. В физиологии принято делать ударение на букву «о», тогда как в технике -- на букву «е». Поэтому технические воспринимающие системы -- сЕнсорные, а физиологические -- сенсОрные.

Восприятие -- это перевод характеристик внешнего раздражения во внутренние нервные коды, доступные для обработки и анализа нервной системой (кодирование), и построение нервной модели раздражителя (сенсорного образа).

Восприятие позволяет строить внутренний образ, отражающий существенные характеристики внешнего раздражителя. Внутренний сенсорный образ раздражителя -- это нервная модель, состоящая из системы нервных клеток. Важно понять, что эта нервная модель не может полностью соответствовать реальному раздражителю и всегда будет отличаться от него хотя бы в некоторых деталях.

К примеру, кубики на картинке справа образуют модель, близкую к реальности, но не способную в реальности существовать...

2) Анализаторы и сенсорные системы

Анализаторами называют часть нервной системы, состоящую из множества специализированных воспринимающих рецепторов, а также промежуточных и центральных нервных клеток и связывающих их нервных волокон.

И.П. Павлов создал учение об анализаторах. Это упрощённое представление о восприятии. Он делил анализатор на 3 звена.

Строение анализатора

· Периферическая часть (отдаленная) - это рецепторы, воспринимающие раздражение и превращающие его в нервное возбуждение.

· Проводниковый отдел (афферентные или чувствительные нервы) - это проводящие пути, передающие сенсорное возбуждение, рождённое в рецепторах.

· Центральный отдел - это участок коры больших полушарий головного мозга, анализирующий поступившее к нему сенсорное возбуждение и строящий за счёт синтеза возбуждений сенсорный образ.

Таким образом, например, окончательное зрительное восприятие происходит в мозге, а не в глазу.

Понятие сенсорная система шире, чем анализатор. Она включает в себя дополнительные приспособления, системы настройки и системы саморегуляции. Сенсорная система предусматривает обратную связь между мозговыми анализирующими структурами и воспринимающим рецептивным аппаратом. Для сенсорных систем характерен процесс адаптации к раздражению.

Адаптация - это процесс приспособления сенсорной системы и ее отдельных элементов к действию раздражителя.

Отличия между понятиями «сенсорная система» и «анализатор»

1) Сенсорная система активна, а не пассивна в передаче возбуждения.

2) В состав сенсорной системы входят вспомогательные структуры, обеспечивающие оптимальную настройку и работу рецепторов.

3) В состав сенсорной системы входят вспомогательные низшие нервные центры, которые не просто передают сенсорное возбуждение дальше, а меняют его характеристики и разделяют на несколько потоков, посылая их по разным направлениям.

4) Сенсорная система имеет обратные связи между последующими и предшествующими структурами, передающими сенсорное возбуждение.

5) Обработка и переработка сенсорного возбуждения происходит не только в коре головного мозга, но и в нижележащих структурах.

6) Сенсорная система активно подстраивается под восприятие раздражителя и приспосабливается к нему, т. е. происходит её адаптация.

7) Сенсорная система сложнее, чем анализатор.

Вывод: Сенсорная система = анализатор + система регуляции.

3) Сенсорные рецепторы

Сенсорные рецепторы - специфические клетки, настроенные на восприятие различных раздражителей внешней и внутренней среды организма и обладающие высокой чувствительностью к адекватному раздражителю. Адекватный раздражитель - это раздражитель, дающий максимальную ответную реакцию, при минимальной силе раздражения.

Деятельность сенсорных рецепторов является необходимым условием для осуществления всех функций ЦНС. Сенсорные рецепторы являются первым звеном в рефлекторном пути и периферической частью более сложной структуры - анализаторов. Совокупность рецепторов, стимуляция которых приводит к изменению активности каких-либо нервных структур, называют рецептивным полем.

Классификация рецепторов

Нервная система отличается большим разнообразием рецепторов, различные типы которых представлены на рисунке:


Рис.

Рецепторы классифицируются по нескольким признакам:

А. Центральное место занимает подразделение в зависимости от вида воспринимаемого раздражителя. Выделяют 5 таких типов рецепторов:

Ш Механорецепторы возбуждаются при механической деформации. Они расположены в коже, сосудах, внутренних органах, опорно-двигательном аппарате, слуховой и вестибулярной системах.

Ш Хеморецепторы воспринимают химические изменения внешней и внутренней среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепторы, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспинальной жидкости. Такие рецепторы есть в слизистой оболочке языка и носа, каротидном и аортальном тельцах, гипоталамусе и продолговатом мозге.

Ш Терморецепторы воспринимают изменения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, сосудах, внутренних органах, гипоталамусе, среднем, продолговатом и спинном мозге.

Ш Фоторецепторы в сетчатке глаза воспринимают световую (электромагнитную) энергию.

Ш Ноцицепторы (болевые рецепторы) - их возбуждение сопровождается болевыми ощущениями. Раздражителями для них являются механические, термические и химические факторы. Болевые стимулы воспринимаются свободными нервными окончаниями, которые имеются в коже, мышцах, внутренних органах, дентине, сосудах.

Б. С психофизиологической точки зрения рецепторы подразделяют в соответствии с органами чувств и формируемыми ощущениями на зрительные, слуховые, вкусовые, обонятельные и тактильные.

В. По расположению в организме рецепторы делят на экстеро- и интерорецепторы. К экстерорецепторам относят рецепторы кожи, видимых слизистых оболочек и органов чувств: зрительные, слуховые, вкусовые, обонятельные тактильные, кожные, болевые и температурные. К интерорецепторам принадлежат рецепторы внутренних органов (висцерорецепторы), сосудов и ЦНС, а также рецепторы опорно-двигательного аппарата (проприорецепторы) и вестибулярные рецепторы. Если одна и та же разновидность рецепторов локализованы как в ЦНС, так и в других местах (сосуды), то такие сосуды подразделяют на центральные и периферические.

Г. В зависимости от степени специфичности рецепторов , т.е. от их способности отвечать на один или более видов раздражителей выделяют мономодальные и полимодальные рецепторы. В принципе каждый рецептор может отвечать не только на адекватный, но и на неадекватный раздражитель, однако, чувствительность к ним разная. Если чувствительность к адекватному намного превосходит таковую к неадекватным раздражителям, то это мономодальные рецепторы. Мономодальность особенно характерна для экстрерорецепторов. Полимодальные рецепторы приспособлены к воприятию нескольких адекватных раздражителей, например механического и температурного или механического, химического и болевого. К ним относятся ирритальные рецепторы легких.

Д. По структурно-функциональной организации различают первичные и вторичные рецепторы. В первичном рецепторе раздражитель действует непосредственно на окончание сенсорного нейрона: обонятельные, тактильные, температурные, болевые рецепторы, проприорецепторы, рецепторы внутренних органов. Во вторичных рецепторах имеется специальная клетка, синаптически связанная с окончание дендрита сенсорного нейрона, она и передает сигнал через окончание дендрита к проводящим путям: слуховые, вестибулярные, вкусовые рецепторы, фоторецепторы сетчатки.

Е. По скорости адаптации рецепторы делятся на 3 группы: фазные (быстро адаптирующиеся): рецепторы вибрации и прикосновения кожи, тонические (медленно адаптирующиеся): проприорецепторы, рецепторы растяжения легких, часть болевых рецепторов, фазно-тонические (смешанные, адаптирующиеся со средней скоростью): фоторецепторы сетчатки, терморецепторы кожи.

СВОЙСТВА РЕЦЕПТОРОВ

Высокая возбудимость рецепторов. Например, для возбуждения сетчатки достаточно 1 кванта света, для обонятельного рецептора одной молекулы пахучего вещества. Данное свойство позволяет быстро передать информацию в ЦНС обо всех изменениях внешней и внутренней среды. При этом возбудимость у разных видов рецепторов неодинакова. У экстерорецептеров она выше, чем у интеро. У болевых рецепторов низкая возбудимость, они эволюционно приспособлены к ответу на действие чрезвычайных по силе раздражителей.

Адаптация рецепторов - уменьшение их возбудимости при длительном действии раздражителя. Исключением является применение термина «темновая адаптация» для фоторецепторов, возбудимость которых в темноте повышается. Значение адаптации в том, что она уменьшает восприятие раздражителей, обладающих свойствами (длительное действие, малая динамика силы), которые уменьшают их значение для жизнедеятельности организма.

Спонтанная активность рецепторов. Многие виды рецепторов способны генерировать в нейроне импульсацию без действия на них раздражителя. Это называется фоновой активностью и возбудимость таких рецепторов выше, чем не имеющих таковой активности. Фоновая активность рецепторов участвует в поддержании тонуса нервных центров в условиях физиологического покоя.

Возбудимость рецепторов находится под нейрогуморальным контролем целостного организма. Нервная система может влиять на возбудимость рецепторов разными путями. Установлено, что нервные центры осуществляют эфферентный (нисходящий) контроль над многими рецепторами - вестибулярными, слуховыми, обонятельными, мышечными.

Среди эфферентных лучше изучены тормозные эффекты (отрицательная обратная связь). Таким образом, ограничиваются эффекты сильных раздражителей. Через эфферентные пути может оказываться и активирующий эффект на рецепторы.

Также нервная система регулирует активность рецепторов через изменение концентрации гормонов (например, повышение чувствительности зрительных и слуховых рецепторов под влиянием адреналина, тироксина); через регуляцию кровотока в рецепторной зоне и через дорецепторное влияние, т.е. изменяющее силу раздражителя на рецептор (например, изменение потока света с помощью зрачкового рефлекса).

Значение для организма регуляции активности рецепторов заключается в наилучшем согласовании их возбудимости с силой раздражения.

4) Общие принципы устройства сенсорных систем

1. Принцип многоэтажности

В каждой сенсорной системе существует несколько передаточных промежуточных инстанций на пути от рецепторов к коре больших полушарий головного мозга. В этих промежуточных низших нервных центрах происходит частичная переработка возбуждения (информации). Уже на уровне низших нервных центров формируются безусловные рефлексы, т. е. ответные реакции на раздражение, они не требуют участия коры головного мозга и осуществляются очень быстро.

Например: Мошка летит прямо в глаз - глаз моргнул в ответ, и мошка в него не попала. Для ответной реакции в виде моргания не требуется создавать полноценный образ мошки, достаточно простой детекции того, что объект быстро приближается к глазу.

Одна из вершин многоэтажного устройства сенсорной системы - это слуховая сенсорная система. В ней можно насчитать 6 этажей. Существуют также дополнительные обходные пути к высшим корковым структурам, которые минуют несколько низших этажей. Таким способом кора получает предварительный сигнал для повышения её готовности до основного потока сенсорного возбуждения.

Иллюстрация принципа многоэтажности:

2. Принцип многоканальности

Возбуждение передается от рецепторов в кору всегда по нескольким параллельным путям. Потоки возбуждения частично дублируются, и частично разделяются. По ним передается информация о различных свойствах раздражителя.

Пример параллельных путей зрительной системы:

1-й путь: сетчатка -- таламус - зрительная кора.

2-й путь: сетчатка - четверохолмие (верхние холмы) среднего мозга (ядра глазодвигательных нервов).

3-й путь: сетчатка -- таламус - подушка таламуса - теменная ассоциативная кора.

При повреждении разных путей и результаты получаются различные.

Например: если разрушить наружное коленчатое тело таламуса (НКТ) в зрительном пути 1, то наступает полная слепота; если разрушить верхнее двухолмие среднего мозга в пути 2, то нарушается восприятие движения предметов в поле зрения; если разрушить подушку таламуса в пути 3, то пропадает узнавание предметов и зрительное запоминание.

Во всех сенсорных системах обязательно существуют три пути (канала) передачи возбуждения:

1) специфический путь: он ведет в первичную сенсорную проекционную зону коры,

2) неспецифический путь: он обеспечивает общую активность и тонус коркового отдела анализатора,

3) ассоциативный путь: он определяет биологическую значимость раздражителя и управляет вниманием.

Иллюстрация принципа многоканальности:


В эволюционном процессе усиливается многоэтажность и многоканальность в структуре сенсорных путей.

3. Принцип конвергенции

Конвергенция -- это схождение нервных путей в виде воронки. За счёт конвергенции нейрон верхнего уровня получает возбуждение от нескольких нейронов нижележащего уровня.

Например: в сетчатке глаза существует большая конвергенция. Фоторецепторов несколько десятков млн., а ганглиозных клеток - не более одного млн. Т.е. нервных волокон, передающих возбуждение от сетчатки во много раз меньше, чем фоторецепторов.

4. Принцип дивергенции

Дивергенция - это расхождение потока возбуждения на несколько потоков от низшего этажа к высшему (напоминает расходящуюся воронку).

5. Принцип обратной связи

Обратная связь обычно означает влияние управляемого элемента на управляющий. Для этого существуют соответствующие пути возбуждения от низших и высших центров обратно к рецепторам.

5) Работа анализаторов и сенсорных систем

В работе сенсорных систем определенным рецепторам соответствуют свои участки корковых клеток.

Специализация каждого органа чувств основана не только на особенности строения рецепторов анализаторов, но и на специализации нейронов, входящих в состав центральных нервных аппаратов до которых доходят сигналы, воспринимаемые периферическими органами чувств. Анализатор является не пассивным приемником энергии, он рефлекторно перестраивается под воздействием раздражителей.

Согласно когнитивному подходу движение стимула при его переходе из внешнего мира во внутренний, происходит следующим образом:

1) стимул вызывает определенные изменения энергии в рецепторе,

2) энергия преобразуется в нервные импульсы,

3) информация о нервных импульсах передается соответствующим структурам коры головного мозга.

Ощущения зависят не только от возможности мозга и сенсорных систем человека, но также и от особенностей самого человека, его развития и состояния. При заболевании или утомлении у человека меняется чувствительность к некоторым воздействиям.

Имеют место и случаи патологий, когда человек лишен, например, слуха или зрения. Если эта беда врожденная, то происходит нарушение притока информации, что может привести к задержкам психического развития. Если же эти дети были обучены специальным приемам, компенсирующим их недостатки, то возможно некоторое перераспределение внутри сенсорных систем, благодаря которому они смогут нормально развиваться.

Свойства ощущений

Каждый вид ощущения характеризуется не только специфичностью, но и имеет общие свойства с другими видами:

ь качество,

ь интенсивность,

ь длительность,

ь пространственная локализация.

Но не всякое раздражение вызывает ощущение. Минимальная величина раздражителя, при которой появляется ощущение -- абсолютный порог ощущения. Величина этого порога характеризует абсолютную чувствительность, которая численно равна величине, обратно пропорциональной абсолютному порогу ощущений. А чувствительность к изменению раздражителя называется относительной или разностной чувствительностью. Минимальное различие между двумя раздражителями, которое вызывает чуть заметное различие ощущений, называется разностным порогом.

Исходя из этого, можно сделать заключение, что возможно измерение ощущений.

Общие принципы работы сенсорных систем:

1. Преобразование силы раздражения в частотный код импульсов - универсальный принцип действия любого сенсорного рецептора.

Причём во всех сенсорных рецепторах преобразование начинается с вызванного стимулом изменения свойств клеточной мембраны. Под действием стимула (раздражителя) в мембране клеточного рецептора должны открыться (а в фоторецепторах, наоборот, закрыться) стимул-управляемые ионные каналы. Через них начинается поток ионов и развивается состояние деполяризации мембраны.

2. Топическое соответствие - поток возбуждения (информационный поток) во всех передаточных структурах соответствует значимым характеристикам раздражителя. Это означает, что важные признаки раздражителя будут закодированы в виде потока нервных импульсов и нервной системой будет построен внутренний сенсорный образ, похожий на раздражитель - нервная модель стимула.

3. Детекция - это выделение качественных признаков. Нейроны-детекторы реагируют на определенные признаки объекта и не реагируют на все остальное. Нейроны-детекторы отмечают контрастные переходы. Детекторы придают сложному сигналу осмысленность и уникальность. В разных сигналах они выделяют одинаковые параметры. К примеру, только детекция поможет вам отделить контуры маскирующейся камбалы от окружающего её фона.

4. Искажение информации об исходном объекте на каждом уровне передачи возбуждения.

5. Специфичность рецепторов и органов чувств. Их чувствительность максимальна к определенному типу раздражителя с определенной интенсивностью.

6. Закон специфичности сенсорных энергий: ощущение определяется не стимулом, а раздражаемым сенсорным органом. Ещё точнее можно сказать так: ощущение определяется не раздражителем, а тем сенсорным образом, который строится в высших нервных центрах в ответ на действие раздражителя. Например, источник болевого раздражения может находиться в одном месте тела, а ощущение боли может проецироваться на совсем другой участок. Или же: один и тот же раздражитель может вызывать очень разные ощущения в зависимости от адаптации к нему нервной системы и/или органа чувств.

7. Обратная связь между последующими и предшествующими структурами. Последующие структуры могут менять состояние предшествующих и менять таким способом характеристики приходящего к ним потока возбуждения.

Специфичность сенсорных систем предопределяется их структурой. Структура ограничивает их реакции на один раздражитель и способствует восприятию других.