Слабое взаимодействие выявлению существования слабого взаимодействия физика про­двигалась медленно. Слабое взаимодействие ответственно за распа­ды частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада.
У бета-распада обнаружилась в высшей степени странная особен­ность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики – закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она - нейтральная и обла­дает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».
Но предсказание нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь ос­тавалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер нет таких частиц. Об их возникновении было высказано предположение, что электроны и нейтрино не существуют в ядре в «готовом виде», а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что вхо­дящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие.
Слабое взаимодействие по величине значительно меньше всех

взаимодействий, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабо­го взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, и потому оно не может влиять на макроскопические объекты, а ограничивается микроми­ром, субатомными частицами. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии.

Сильное взаимодействие.Последнее в ряду фундаментальных взаимодействий - сильное взаи­модействие, которое является источником огромной энергии. Наи­более характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце. В недрах Солнца и звезд непрерывно про­текают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.
К представлению о существовании сильного взаимодействия фи­зика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического оттал­кивания. Гравитация слишком слаба и не может это обеспечить; оче­видно, необходимо какое-то взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выясни­лось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Как и в случае слабого взаимо­действия, радиус действия новой силы оказался очень малым: силь­ное взаимодействие проявляется на расстоянии, определяемом раз­мерами ядра, т.е. примерно 10-13 см. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испы­тывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно толь­ко тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.
Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 60-х гг., когда была предложена кварковая модель. В этой теории нейтроны и про­тоны рассматриваются не как элементарные частицы, а как состав­ные системы, построенные из кварков.



Гравитационное взаимодействие существует между всеми элементарными частицами и обусловливает гравитационное притяжение всех тел друг к другу на любых расстояниях (смотри Всемирного тяготения закон); оно пренебрежимо мало в физических процессах в микромире, но играет основную роль, например, в космогонии. Слабое взаимодействие проявляется лишь на расстояниях около 10-18 м и обусловливает распадные процессы (например, бета-распад некоторых элементарных частиц и

ядер). Электромагнитное взаимодействие существует на любых расстояниях между элементарными частицами, имеющими электрический заряд или магнитный момент; в частности, оно определяет связь электронов и ядер в атомах, а также ответственно за все виды электромагнитных излучений. Сильное взаимодействие проявляется на расстояниях около 10-15 м и обусловливает существование ядер атомов.

СЛАБОЕ ВЗАИМОДЕЙСТВИЕ - одно из четырёх известных фундам. взаимодействий между . С. в. значительно слабее сильного и эл--магн. взаимодействий, но гораздо сильнее гравитационного. В 80-х гг. установлено, что слабое и эл--магн. взаимодействия - разл. проявления единого электрослабого взаимодействия .

Об интенсивности взаимодействий можно судить по скорости процессов, к-рые оно вызывает. Обычно сравнивают между собой скорости процессов при энергиях ГэВ, характерных для физики элементарных частиц. При таких энергиях процесс, обусловленный сильным взаимодействием, происходит за время с, эл--магн. процесс за времяс, характерное же время процессов, происходящих за счёт С. в. (слабых процессов), гораздо больше:с, так что в мире элементарных частиц слабые процессы протекают чрезвычайно медленно.

Другая характеристика взаимодействия - частицы в веществе. Сильно взаимодействующие частицы (адроны) можно задержать железной плитой толщиной в неск. десятков см, тогда как нейтрино, обладающее лишь С. в., проходило бы, не испытав ни одного столкновения, через железную плиту толщиной порядка миллиарда км. Ещё более слабым является гравитац. взаимодействие, сила к-рого при энергии ~1 ГэВ в 10 33 раз меньше, чем у С. в. Однако обычно роль гравитац. взаимодействия гораздо заметнее роли С. в. Это связано с тем, что гравитац. взаимодействие, как и электромагнитное, имеет бесконечно большой радиус действия; поэтому, напр., на тела, находящиеся на поверхности Земли, действует гравитац. притяжение всех атомов, из к-рых состоит Земля. Слабое же взаимодействие обладает очень малым радиусом действия: ок. 2*10 -16 см (что на три порядка меньше радиуса сильного взаимодействия). Вследствие этого, напр., С. в. между ядрами двух соседних атомов, находящихся на расстоянии 10 -8 см, ничтожно мало, несравненно слабее не только электромагнитного, но и гравитац. взаимодействий между ними.

Однако, несмотря на малую величину и короткодействие, С. в. играет очень важную роль в природе. Так, если бы удалось «выключить» С. в., то погасло бы Солнце, поскольку был бы невозможен процесс превращения протона в нейтрон, позитрон и нейтрино, в результате к-рого четыре протона превращаются в 4 Не, два позитрона и два нейтрино. Этот процесс служит осн. источником энергии Солнца и большинства звёзд (см. Водородный цикл ).Процессы С. в. с испусканием нейтрино вообще исключительно важны в эволюции звёзд , т. к. обусловливают потери энергии очень горячими звёздами, во взрывах сверхновых звёзд с образованием пульсаров и т. д. Если бы не было С. в., были бы стабильны и широко распространены в обычном веществе мюоны,-мезоны, странные и очарованные частицы, к-рые распадаются в результате С. в. Столь большая роль С. Е. связана с тем, что оно не подчиняется ряду запретов, характерных для сильного и эл--магн. взаимодействий. В частности, С. в. превращает заряженные лептоны в нейтрино, а одного типа (аромата) в кварки др. типов.

Интенсивность слабых процессов быстро растёт с ростом энергии. Так, бета-распад нейтрона ,энерговыделение в к-ром мало (~1 МэВ), длится ок. 10 3 с, что в 10 13 раз больше, чем время жизни-гиперона, энерговыделение при распаде к-рого составляет ~100 МэВ. Сечение взаимодействия с нуклонами для нейтрино с энергией ~100 ГэВ прибл. в миллион раз больше, чем для нейтрино с энергией ~1 МэВ. По теоретич. представлениям, рост сечения продлится до энергий порядка неск. сотен ГэВ (в системе центра инерции сталкивающихся частиц). При этих энергиях и при больших передачах импульсов проявляются эффекты, связанные с существованием промежуточных векторных бозонов . На расстояниях между сталкивающимися частицами, много меньших 2*10 -16 см (комптоновской длины волны промежуточных бозонов), С. в. и эл--магн. взаимодействия имеют практически одинаковую интенсивность.

Наиб. распространённый процесс, обусловленный С. в.,- бета-распад радиоактивных атомных ядер. В 1934 Э. Ферми (Е. Fermi) построил теорию-распада, к-рая с нек-рыми существ. модификациями легла в основу последующей теории т. н. универсального локального четырёхфермионного С. в. (взаимодействия Ферми). Согласно теории Ферми, электрон и нейтрино (точнее, ), вылетающие из-радиоактивного ядра, не находились в нём до этого, а возникли в момент распада. Это явление аналогично испусканию фотонов низкой энергии (видимого света) возбуждёнными атомами или фотонов высокой энергии (-квантов) возбуждёнными ядрами. Причиной таких процессов является взаимодействие электрич. частиц с эл--магн. полем: движущаяся заряженная частица создаёт электромагнитный ток, к-рый возмущает эл--магн. поле; в результате взаимодействия частица передаёт энергию квантам этого поля - фотонам. Взаимодействие фотонов с эл--магн. током описывается выражениемА . Здесь е - элементарный электрич. заряд, являющийся константой эл--магн. взаимодействия (см. Константа взаимодействия), А - оператор фотонного поля (т. е. оператор рождения и уничтожения фотона), j эм - оператор плотности эл--магн. тока. (Часто в выражение для эл--магн. тока включают также множитель е .)В j эм дают вклад все заряж. частицы. Напр., слагаемое, отвечающее электрону, имеет вид:, где- оператор уничтожения электрона или рождения позитрона, а- оператор рождения электрона или уничтожения позитрона. [Выше для упрощения не показано, что j эм, так же как А , является четырёхмерным вектором. Более точно, вместо следует писать совокупность четырёх выражений где - Дирака матрицы, = 0, 1, 2, 3. Каждое из этих выражений умножается на соответствующую компоненту четырёхмерного вектора.]

Взаимодействие описывает не только испускание и поглощение фотонов электронами и позитронами, но и такие процессы, как рождение фотонами электрон-позитронных пар (см. Рождение пар )или аннигиляция этих пар в фотоны. Обмен фотоном между двумя заряж. частицами приводит к взаимодействию их друг с другом. В результате возникает, напр., рассеяние электрона протоном, к-рое схематически изображается Фейнмана диаграммой , представленной на рис. 1. При переходе протона в ядре с одного уровня на другой это же взаимодействие может привести к рождению электрон-позитронной пары (рис. 2).

Теория-распада Ферми по существу аналогична теории эл--магн. процессов. Ферми положил в основу теории взаимодействие двух «слабых токов» (см. Ток в квантовой теории поля), но взаимодействующих между собой не на расстоянии путём обмена частицей - квантом поля (фотоном в случае эл--магн. взаимодействия), а контактно. Это взаимодействие между четырьмя фермионными полями (четырьмя фермионами р, п, е и нейтрино v) в совр. обозначениях имеет вид: . Здесь G F - константа Ферми, или константа слаоого четырёхфермионного взаимодействия, эксперим. значение к-рой эрг*см 3 (величина имеет размерность квадрата длины, и в единицах константа, где М - масса протона),- оператор рождения протона (уничтожения антипротона),- оператор уничтожения нейтрона (рождения антинейтрона),- оператор рождения электрона (уничтожения позитрона), v - оператор уничтожения нейтрино (рождения антинейтрино). (Здесь и в дальнейшем операторы рождения и уничтожения частиц обозначены символами соответствующих частиц, набранными полужирным шрифтом.) Ток, переводящий нейтрон в протон, получил впоследствии название нуклонного, а ток - лептонного. Ферми постулировал, что, подобно эл--магн. току, слабые токи также являются четырёхмерными векторами: Поэтому взаимодействие Ферми наз. векторным.

Подобно рождению электрон-позитронной пары (рис. 2),-распад нейтрона может быть описан похожей диаграммой (рис. 3) [античастицы помечены значком «тильда»над символами соответствующих частиц]. Взаимодействие лептонного и нуклонного токов должно приводить и к др. процессам, напр. к реакции (рис. 4), к пар (рис. 5) и и т. д.

Существ. отличием слабых токов иот электромагнитного является то, что слабый ток меняет заряд частиц, в то время как эл--магн. ток не меняет: слабый ток превращает нейтрон в протон, электрон в нейтрино, а электромагнитный оставляет протон протоном, а электрон электроном. Поэтому слабые токии ev наз. заряженными токами . Согласно такой термин логии, обычный эл--магн. ток ее является нейтральным током .

Теория Ферми опиралась на результаты исследований в трёх разл. областях: 1) эксперим. исследования собственно С. в. (-распад), приведшие к гипотезе о существовании нейтрино; 2) эксперим. исследования сильного взаимодействия (), приведшие к открытию протонов и нейтронов и к пониманию того, что ядра состоят из этих частиц; 3) эксперим. и теоретич. исследования эл--магн. взаимодействия, в результате к-рых бил заложен фундамент квантовой теории поля. Дальнейшее развитие физики элементарных частиц неоднократно подтверждало плодотворную взаимозависимость исследований сильного, слабого и эл--магн. взаимодействий.

Теория универсального четырёхфермионного С. в. отличается от теории Ферми в ряде существ, пунктов. Эти отличия, установленные за последующие годы в результате изучения элементарных частиц, свелись к следующему.

Гипотеза о том, что С. в. не сохраняет чётность, была выдвинута Ли Цзундао (Lee Tsung-Dao) и Янг Чженьнином (Yang Chen Ning) в 1956 при теоретич. исследовании распадов К-мезонов ; вскоре несохранение Р - и С-чётностей было обнаружено экспериментально в-распаде ядер [ By Цзяньсун (Wu Chien-Shiung) с сотрудниками], в распаде мюона [Р. Гарвин (R. Garwin), Л. Ледерман (L. Lederman), В. Телегди (V. Telegdi), Дж. Фридман (J. Friedman) и др.] и в распадах др. частиц.

Обобщая огромный эксперим. материал, М. Гелл-Ман (М. Gell-Mann), P. Фейнман (R. Feynman), P. Маршак (R. Marshak) и Э. Сударшан (Е. Sudarshan) в 1957 предложили теорию универсального С. в.- т. н. V - А -теорию. В формулировке, основанной на кварковой структуре адронов, эта теория заключается в том, что полный слабый заряженный ток j u является суммой лептонных и кварковых токов, причём каждый из этих элементарных токов содержит одну и ту же комбинацию дираковских матриц:

Как выяснилось впоследствии, заряж. лептонный ток, представленный в теории Ферми одним членом, является суммой трёх слагаемых: причём каждый из известных заряж. лептонов (электрон, мюон и тяжёлый лептон )входит в заряж. ток со своим нейтрино .

Заряж. адронный ток, представленный в теории Ферми членом, является суммой кварковых токов. К 1992 известнопять типов кварков , из к-рых построены все известные адроны, и предполагается существование шестого кварка (t с Q = + 2 / 3). Заряженные кварковые токи, так же как и лептонные токи, обычно записывают в виде суммы трёх слагаемых:

Однако здесь являются линейными комбинациями операторов d, s, b , так что кварковый заряженный ток состоит из девяти слагаемых. Каждый из токов является суммой векторного и аксиального токов с коэффициентами, равными единице.

Коэффициенты девяти заряженных кварковых токов обычно представляют в виде матрицы 3x3, к-рая параметризуется тремя углами и фазовым множителем, характеризующим нарушение СР-инвариантности в слабых распадах. Эта матрица получила назв. матрицы Кобаяши - Маскавы (М. Kobayashi, T. Maskawa).

Лагранжиан С. в. заряженных токов имеет вид:

Еде- ток, сопряжённый и т. д.). Такое взаимодействие заряженных токов количественно описывает огромное число слабых процессов: лептонных , полулептонных ( и т. д.) и нелептонных ( ,, и т. д.). Многие из этих процессов были открыты после 1957. За этот период были открыты также два принципиально новых явления: нарушение СР-инвариантности и нейтральные токи.

Нарушение СР-инвариантности было обнаружено в 1964 в эксперименте Дж. Кристепсона (J. Christenson), Дж. Кронина (J. Cronin), В. Фитча (V. Fitch) и Р. Тёрли (R. Turley), к-рые наблюдали распад долгоживущих К°-мезонов на два-мезона. Позднее нарушение СР-инвариантности наблюдалось также в полулептонных распадах. Для выяснения природы СР-неинвариантного взаимодействия было бы крайне важным найти к--л. СР-неинвариантный процесс в распадах или взаимодействиях др. частиц. В частности, большой интерес представляют поиски дипольного момента нейтрона (наличие к-рого означало бы нарушение инвариантности относительно обращения времени , а следовательно, согласно теореме СРТ , и СР-инвариантности).

Существование нейтральных токов было предсказано единой теорией слабого и эл--магн. взаимодействий, созданной в 60-х гг. Ш. Глэшоу (Sh. Glashow), С. Вайнбергом (S. Weinberg), А. Саламом (A. Salam) и др. и позднее получившей назв. стандартной теории электрослабого взаимодействия. Согласно этой теории, С. в. не является контактным взаимодействием токов, а происходит путём обмена промежуточными векторными бозонами (W + , W - , Z 0 )- массивными частицами со спином 1. При этом-бозоны осуществляют взаимодействие заряж. токов (рис. 6), а Z 0 -бозоны - нейтральных (рис. 7). В стандартной теории три промежуточных бозона и фотон являются квантами векторных, т. н. калибровочных полей , выступающими при асимптотически больших передачах четырёхмерного импульса ( , m z , где m w , m z - массы W - и Z-бозонов в энергетич. единицах) совершенно равноправно. Нейтральные токи были обнаружены в 1973 во взаимодействии нейтрино и антинейтрино с нуклонами. Позднее были найдены процессы рассеяния мюонного нейтрино на электроне, а также эффекты несохранения чётности во взаимодействии электронов с нуклонами, обусловленные электронным нейтральным током (эти эффекты впервые наблюдались в опытах по несохранению чётности при атомных переходах, проведённых в Новосибирске Л. М. Барковым и М. С. Золоторёвым, а также в экспериментах по рассеянию электронов на протонах и дейтронах в США).

Взаимодействие нейтральных токов описывается соответствующим членом в лагранжиане С. в.:

где - безразмерный параметр. В стандартной теории (эксперим. значение р совпадает с 1 в пределах одного процента эксперим. точности и точности расчёта радиационных поправок) . Полный слабый нейтральный ток содержит вклады всех лептонов и всех кварков:

Очень важным свойством нейтральных токов является то, что они диагональны, т. е. переводят лептоны (и кварки) самих в себя, а не в др. лептоны (кварки), как в случае заряженных токов. Каждый из 12 кварковых и лептонных нейтральных токов представляет собой линейную комбинацию аксиального тока с коэф. I 3 и векторного тока с коэф. , где I 3 - третья проекция т. н. слабого изотопического спина , Q - заряд частицы, а - Вайнберга угол .

Необходимость существования четырёх векторных полей промежуточных бозонов W + , W - , Z 0 и фотона А можно пояснить след. образом. Как известно, в эл--магн. взаимодействии электрич. заряд играет двойную роль: с одной стороны, он является сохраняющейся величиной, а с другой - источником эл--магн. поля, осуществляющего взаимодействие между заряженными частицами (константа взаимодействия е) . Такая роль электрич. заряда обеспечивается калибровочной , заключающейся в том, что ур-ния теории не меняются, когда волновые ф-ции заряженных частиц умножаются на произвольный фазовый множитель , зависящий от пространственно-временной точки [локальная симметрия U(1 )], и при этом эл--магн. поле, являющееся калибровочным, подвергается преобразованию . Преобразования локальной группы U(1 )с одним типом заряда и одним калибровочным полем коммутируют друг с другом (такая группа наз. абелевой). Указанное свойство электрич. заряда послужило исходным пунктом для построения теорий и др. типов взаимодействий. В этих теориях сохраняющиеся величины (напр., изотопич. спин) являются одновременно источниками нек-рых калибровочных полей, переносящих взаимодействие между частицами. В случае неск. типов «зарядов» (напр., разл. проекций изотопич. спина), когда отд. преобразования не коммутируют друг с другом (неабелева группа преобразований), оказывается необходимым введение неск. калибровочных полей. (Мультиплеты калибровочных полей, отвечающих локальным неабелевым симметриям, наз. Янга - Миллса полями .)В частности, чтобы изотопич. спин [к-рому отвечает локальная группа SU(2)] выступал в качестве константы взаимодействия, необходимы три калибровочных поля с зарядами1 и 0. Т. к. в С. в. участвуют заряженные токи пар частиц и т. д., то полагают, что эти пары являются дублетами группы слабого изоспина, т. е. группы SU(2) . Инвариантность теории относительно локальных преобразований группы SU (2) требует, как отмечалось, существования триплета безмассовых калибровочных полей W + , W - , W 0 , источником к-рых является слабый изоспин (константа взаимодействия g) . По аналогии с сильным взаимодействием, в к-ром гиперзаряд Y частицы, входящей в изотопич. мультиплет, определяется ф-лой Q = I 3 + Y/2 (где I 3 - третья проекция изоспина, a Q - электрич. заряд), наряду со слабым изоспином вводят слабый гиперзаряд. Тогда сохранению электрич. заряда и слабого изоспина отвечает сохранение слабого гиперзаряда [группа [U (1)]. Слабый гиперзаряд является источником нейтрального калибровочного поля В 0 (константа взаимодействия g") . Две взаимно ортогональные линейные суперпозиции полей В° и описывают поле фотона А и поле Z-бозона:

где . Именно величина угла определяет структуру нейтральных токов. Она же определяет связь между константой g , характеризующей взаимодействие-бозонов со слабым током, и константой е , характеризующей взаимодействие фотона с электрич. током:

Для того чтобы С. в. носило короткодействующий характер, промежуточные бозоны должны быть массивными, в то время как кванты исходных калибровочных полей - - безмассовые. Согласно стандартной теории, возникновение массы у промежуточных бозонов происходит при спонтанном нарушении симметрии SU(2) X U(1 )до U(1) эм . При этом одна из суперпозиций полей В 0 и W 0 - фотон (А ) остаётся безмассовой, а- и Z-бозоны приобретают массы:

Эксперим. данные по нейтральным токам давали . Этому отвечали ожидаемые массы W -и Z-бозонов соответственно и

Для обнаружения W - и Z-бозонов созданы спец. установки, в к-рых эти бозоны рождаются при столкновениях встречных пучкови высокой энергии. Первая-установка вступила в строй в 1981 в ЦЕРНе. В 1983 появились сообщения о детектировании в ЦЕРНе первых случаев рождения промежуточных векторных бозонов. В 1989 были опубликованы данные о рождении W - и Z -бозонов на американском протон-антипротонном коллайдере - Тэватроне, в Фермиевской национальной ускорительной лаборатории (FNAL). К кон. 1980-х гг. полное число W - и Z-бозонов, наблюдавшихся на протон-антипротонных коллайдерах в ЦЕРНе и FNAL, исчислялось сотнями.

В 1989 заработали электрон-позитроиные коллайдеры LEP в ЦЕРНе и SLC в Стэнфордском линейном ускорительном центре (SLAC). Особенно успешной оказалась работа LEP, где к началу 1991 было зарегистрировано более полумиллиона случаев рождения и распада Z-бозонов. Изучение распадов Z-бозонов показало, что никаких других нейтрино, кроме известных ранее , в природе не существует. С высокой точностью была измерена масса Z-бозона: т z = 91,173 0,020 ГэВ (масса W-бозона известна с существенно худшей точностью: m w = 80,220,26 ГэВ). Изучение свойств W - и Z-бозонов подтвердило правильность основной (калибровочной) идеи стандартной теории электрослабого взаимодействия. Однако для проверки теории в полном объёме необходимо также экспериментально исследовать механизм спонтанного нарушения симметрии. В рамках стандартной теории источником спонтанного нарушения симметрии является специальное изодублетное скалярное поле , обладающее специфич. самодействием, где - безразмерная константа, а константа h имеет размерность массы. Минимум энергии взаимодействия достигается при, и, т, о., низшее энергетич. состояние - вакуум - содержит ненулевое вакуумное значение поля. Если этот механизм нарушения симметрии действительно осуществляется в природе, то должны существовать элементарные скалярные бозоны - т. н. Хиггса бозон (кванты поля Хиггса). Стандартная теория предсказывает существование как минимум одного скалярного бозона (он должен быть нейтрален). В более сложных вариантах теории имеется неск. таких частиц, причём нек-рые из них - заряженные (при этом возможно). В отличие от промежуточных бозонов массы хиггсовых бозонов теорией не предсказываются.

Калибровочная теория электрослабого взаимодействия перенормируема: это означает, в частности, что амплитуды слабых и эл--магн. процессов можно вычислять по теории возмущений, причём высшие поправки малы, как в обычной квантовой (см. Перенормируемость ).(В отличие от этого четырёх-фермионная теория С. в. неперенормируема и не является внутренне непротиворечивой теорией.)

Существуют теоретич. модели Великого объединения , в к-рых как группа электрослабого взаимодействия, так и группа SU(3 )сильного взаимодействия являются подгруппами единой группы, характеризующейся единой константой калибровочного взаимодействия. В ещё более фундам. моделях эти взаимодействия объединяются с гравитационными (т. н. суперобъединение ).

Лит.: В у Ц. С., Мошковский С. А., Бета-распад, пер. с англ., М., 1970; Вайнберг С., Единые теории взаимодействия элементарных частиц, пер. с англ., «УФН», 1976, т. 118, в. 3, с. 505; Тейлор Д ж., Калибровочные теории слабых взаимодействий, пер. с англ., М., 1978; На пути к единой теории поля. Сб. ст., переводы, М., 1980; Окунь Л. Б., Лептоны и кварки, 2 изд., М., 1990. Л. Б. Окунь .

Время подобно реке, несущей проходящие мимо события, и течение её сильно; только что-либо покажется вам на глаза - а его уже унесло, и видно что-то другое, что тоже вскоре унесёт.

Марк Аврелий

Каждый из нас стремится создать целостную картину мира, включая картину Вселенной, от мельчайших субатомных частиц до величайших масштабов. Но законы физики порою настолько странные и контринтуитивные, что эта задача может стать непосильной для тех, кто не стал профессиональными теоритическими физиками.

Читатель спрашивает:

Хотя это и не астрономия, но может быть вы подскажете. Сильное взаимодействие переносится глюонами и связывает кварки и глюоны вместе. Электромагнитное переносится фотонами и связывает электрические заряженные частицы. Гравитация, предположительно, переносится гравитонами и связывает все частицы с массой. Слабое переносится W и Z частицами, и … связано с распадом? Почему слабое взаимодействие описывают именно так? Ответственно ли слабое взаимодействие за притяжение и/или отталкивание каких-либо частиц? И каких? А если нет, почему тогда это одно из фундаментальных взаимодействий, если оно не связано ни с какими силами? Спасибо.

Давайте-ка разберёмся в основах. Во вселенной существует четыре фундаментальных взаимодействия – гравитация, электромагнетизм, сильное ядерное взаимодействие и слабое ядерное взаимодействие.


И всё это – взаимодействия, силы. Для частиц, состояние которых можно измерить, приложение силы меняет её момент – в обычной жизни в таких случаях мы говорим об ускорении. И для трёх из указанных сил это так и есть.

В случае гравитации, общая сумма энергии (в основном массы, но сюда входит вся энергия) искривляет пространство-время, и движение всех остальных частиц меняется в присутствии всего, что имеет энергию. Так оно работает в классической (не квантовой) теории гравитации. Может, и есть более общая теория, квантовой гравитации, где происходит обмен гравитонами, приводящий к тому, что мы наблюдаем как гравитационное взаимодействие.

Перед тем, как продолжить, уясните:

  1. У частиц есть свойство, или что-то, присущее им, что позволяет им чувствовать (или не чувствовать) определённый тип силы
  2. Другие частицы, переносящие взаимодействия, взаимодействуют с первыми
  3. В результате взаимодействий частицы меняют момент, или ускоряются

В электромагнетизме основное свойство – электрический заряд. В отличие от гравитации, он может быть положительным или отрицательным. Фотон, частица, переносящая взаимодействие, связанное с зарядом, приводит к тому, что одинаковые заряды отталкиваются, а различающиеся – притягиваются.

Стоит отметить, что движущиеся заряды, или электрические токи, испытывают ещё одно проявление электромагнетизма – магнетизм. С гравитацией происходит то же самое, и называется гравитомагнетизм (или гравитоэлектромагнетизм). Углубляться не будем – суть в том, что есть не только заряд и переносчик силы, но и токи.

Есть ещё сильное ядерное взаимодействие , у которого есть три типа зарядов. Хотя у всех частиц есть энергия, и они все подвержены гравитации, и хотя кварки, половина лептонов и пара бозонов содержат электрические заряды – только у кварков и глюонов есть цветной заряд, и они могут испытывать сильное ядерное взаимодействие.

Масс везде много, поэтому гравитацию наблюдать легко. А поскольку сильное взаимодействие и электромагнетизм довольно сильны, их тоже легко наблюдать.

Но что насчёт последнего? Слабого взаимодействия?

Про него мы обычно говорим в контексте радиоактивного распада. Тяжёлые кварк или лептон распадаются на лёгкие и более стабильные. Да, слабое взаимодействие имеет к этому отношение. Но в данном примере оно как-то отличается от остальных сил.

Оказывается, что слабое взаимодействие – тоже сила, просто про неё нечасто рассказывают. Она ведь слабая! В 10 000 000 раз слабее, чем электромагнетизм, на дистанции длиной в диаметр протона.

Заряженная частица всегда имеет заряд, независимо от того, двигается она или нет. Но электрический ток, создаваемый ею, зависит от её движения относительно остальных частиц. Ток определяет магнетизм, который так же важен, как и электрическая часть электромагнетизма. У составных частиц вроде протона и нейтрона есть существенные магнитные моменты, как и у электрона.

Кварки и лептоны бывают шести ароматов. Кварки – верхний, нижний, странный, очарованный, прелестный, истинный (согласно их буквенным обозначениям в латинице u, d, s, c, t, b - up, down, strange, charm, top, bottom). Лептоны – электрон, электрон-нейтрино, мюон, мюон-нейтрино, тау, тау-нейтрино. У каждого из них есть электрический заряд, но также и аромат. Если мы объединим электромагнетизм и слабое взаимодействие, чтобы получить электрослабое взаимодействие , то у каждой из частиц будет некий слабый заряд, или электрослабый ток, и константа слабого взаимодействия. Всё это описано в Стандартной модели, но проверить это было довольно сложно, поскольку электромагнетизм настолько силён.

В новом эксперименте, результаты которого недавно были опубликованы , впервые был измерен вклад слабого взаимодействия. Эксперимент позволил определить слабое взаимодействие верхних и нижних кварков

И слабые заряды протона и нейтрона. Предсказания Стандартной модели для слабых зарядов были такие:

Q W (p) = 0.0710 ± 0.0007,
Q W (n) = -0.9890 ± 0.0007.

А по результатам рассеяния эксперимент выдал следующие значения:

Q W (p) = 0.063 ± 0.012,
Q W (n) = -0.975 ± 0.010.

Что очень хорошо совпадает с теорией с учётом погрешности. Экспериментаторы говорят, что обработав больше данных, они ещё уменьшат погрешность. И если там будут какие-то сюрпризы или расхождения со Стандартной моделью, это будет круто! Но на это ничто не указывает:

Поэтому у частиц есть слабый заряд, но мы про него не распространяемся, поскольку его нереально тяжело измерить. Но мы всё-таки сделали это, и судя по всему, снова подтвердили Стандартную модель.

В 1896 г. французский ученый Анри Беккерель обнаружил радиоактивность урана. Это был первый экспериментальный сигнал о неизвестных до того силах природы - слабом взаимодействии. Теперь мы знаем, что слабое взаимодействие кроется за многими привычными явлениями, - например, оно принимает участие в некоторых термоядерных реакциях, поддерживающих излучение Солнца и других звезд.

Название «слабое» досталось этому взаимодействию по недоразумению, - так, для протона оно в 1033 раз сильнее гравитационного взаимодействия (см. Тяготение, Единство сил природы). Это, скорее, разрушительное взаимодействие, единственная сила природы, которая не скрепляет вещество, а только разрушает его. Можно было назвать его и «беспринципным», так как в разрушении оно не считается с принципами пространственной четности и временной обратимости, которые соблюдают остальные силы.

Основные свойства слабого взаимодействия стали известны еще в 1930-х гг., главным образом благодаря работам итальянского физика Э. Ферми. Оказалось, что, в отличие от гравитационных и электрических, слабые силы имеют очень малый радиус действия. В те годы казалось, что радиуса действия вообще нет - взаимодействие происходит в одной точке пространства, и к тому же мгновенно. Это взаимодействие виртуально (на короткое время) превращает каждый протон ядра в нейтрон, позитрон - в позитрон и нейтрино, а каждый нейтрон - в протон, электрон и антинейтрино. В стабильных ядрах (см. Ядро атомное) эти превращения так и остаются виртуальными, подобно виртуальным рождениям электрон-позитронных пар или протон-антипротонных пар в вакууме. Если разница масс ядер, отличающихся на единицу по заряду, достаточно велика, эти виртуальные превращения делаются реальными, и ядро изменяет свой заряд на 1, выбрасывая электрон и антинейтрино (электронный β-распад) или позитрон и нейтрино (позитронный β-распад). Нейтроны имеют массу, превышающую приблизительно на 1 МэВ сумму масс протона и электрсгна. Поэтому свободный нейтрон распадается на протон, электрон и антинейтрино с выделением энергии приблизительно 1 МэВ. Время жизни свободного нейтрона примерно 10 мин, хотя в связанном состоянии, например, в дейтоне, который состоит из нейтрона и протона, эти частицы живут неограниченно долго.

Аналогичное событие происходит с мюоном (см. Лептоны) - он распадается на электрон, нейтрино и антинейтрино. Перед тем как распасться, мюон живет около 10 -6 с - гораздо меньше, чем нейтрон. Теория Ферми объясняла это разницей масс участвующих частиц. Чем больше энергии выделяется при распаде, тем быстрее он идет. Выделение энергии при μ-распаде около 100 МэВ, примерно в 100 раз больше, чем при распаде нейтрона. Время жизни частицы обратно пропорционально пятой степени этой энергии.

Как выяснилось в последние десятилетия, слабое взаимодействие нелокально, т. е. оно происходит не мгновенно и не в одной точке. По современной теории, слабое взаимодействие передается не мгновенно, а виртуальная пара электрон - антинейтрино рождается через 10 -26 с после того, как мюон переходит в нейтрино, и происходит это на расстоянии 10 -16 см. Ни одна линейка, ни один микроскоп не могут, конечно, измерить такое малое расстояние, так же как ни один секундомер не может измерить такой малый интервал времени. Как это почти всегда бывает, в современной физике мы должны довольствоваться косвенными данными. Физики строят различные гипотезы о механизме процесса и проверяют всевозможные следствия этих гипотез. Те гипотезы, которые противоречат хотя бы одному достоверному опыту, отметаются, а для проверки оставшихся ставятся новые опыты. Этот процесс в случае слабого взаимодействия продолжался около 40 лет, пока физики не пришли к убеждению, что слабое взаимодействие переносится сверхмассивными частицами - в 100 раз тяжелее протона. Эти частицы имеют спин 1 и называются векторными бозонами (открыты в 1983 г. в ЦЕРНе, Швейцария - Франция).

Есть два заряженных векторных бозона W + , W - и один нейтральный Z 0 (значок вверху, как обычно, указывает заряд в единицах протонного). В распадах нейтрона и мюона «работает» заряженный векторный бозон W - . Ход распада мюона изображен на рис. (вверху, справа). Такие рисунки называют диаграммами Фейнмана, они не только иллюстрируют процесс, но и помогают его рассчитать. Это своего рода стенографическая запись формулы для вероятности реакции; здесь она используется только для иллюстрации.

Мюон переходит в нейтрино, испуская W-бозон, который распадается на электрон и антинейтрино. Выделяемой энергии недостаточно для реального рождения W-бозона, поэтому он рождается виртуально, т. е. на очень короткое время. В данном случае это 10 -26 с. За это время поле, соответствующее W-бозону, не успевает сформировать волну, или иначе, реальную частицу (см. Поля и частицы). Образуется сгусток поля размером 10 -16 см, и через 10 -26 с из него рождаются электрон и антинейтрино.

Для распада нейтрона можно было бы нарисовать такую же диаграмму, но тут она уже ввела бы нас в заблуждение. Дело в том, что размер нейтрона 10 -13 см, что в 1000 раз больше радиуса действия слабых сил. Поэтому эти силы действуют внутри нейтрона, где находятся кварки. Один из трех кварков нейтрона испускает W-бозон, переходя при этом в другой кварк. Заряды кварков в нейтроне: -1/3, -1/3 и +2/3, так что один из двух кварков с отрицательным зарядом -1/3 переходит в кварк с положительным зарядом +2/3. В результате получатся кварки с зарядами -1/3, 2/3, 2/3, составляющие вместе протон. Продукты реакции - электрон и антинейтрино - беспрепятственно вылетают из протона. Но ведь кварк, испустивший W-бозон, получил отдачу и начал двигаться в противоположном направлении. Почему же он не вылетает?

Его удерживает сильное взаимодействие. Это взаимодействие увлечет за кварком его двух неразлучных спутников, в результате чего получится движущийся протон. По аналогичной схеме происходят слабые распады (связанные со слабым взаимодействием) остальных адронов. Все они сводятся к испусканию векторного бозона одним из кварков, переходу этого векторного бозона в лептоны (μ-, e-, τ- и ν-частицы) и дальнейшему разлету продуктов реакции.

Иногда, впрочем, происходят и адронные распады: векторный бозон может распасться на пару кварк - антикварк, которая перейдет в мезоны.

Итак, большое количество различных реакций сводится к взаимодействию кварков и лептонов с векторными бозонами. Это взаимодействие универсально, т. е. одинаково для кварков и лептонов. Универсальность слабого взаимодействия в отличие от универсальности гравитационного или электромагнитного взаимодействия не получила пока исчерпывающего объяснения. В современных теориях слабое взаимодействие объединяется с электромагнитным взаимодействием (см. Единство сил природы).

О нарушении симметрии слабым взаимодействием см. Четность, Нейтрино. В статье Единство сил природы рассказано о месте слабых сил в картине микромира.

Переносчиками слабого взаимодействия являются векторные бозоны W + , W − и Z 0 . При этом различают взаимодействие так называемых заряженных слабых токов и нейтральных слабых токов . Взаимодействие заряженных токов (при участии заряженных бозонов W ± ) приводит к изменению зарядов частиц и превращению одних лептонов и кварков в другие лептоны и кварки. Взаимодействие нейтральных токов (при участии нейтрального бозона Z 0 ) не меняет заряды частиц и переводит лептоны и кварки в те же самые частицы.

Энциклопедичный YouTube

  • 1 / 5

    Воспользовавшись гипотезой Паули, Энрико Ферми разработал в 1933 году первую теорию бета-распада. Интересно, что его работу отказались публиковать в журнале Nature , сославшись на излишнюю абстрактность статьи. Теория Ферми основана на использовании метода вторичного квантования , аналогичного тому, который был уже применён к тому времени для процессов испускания и поглощения фотонов . Одной из идей, озвученных в работе, было также утверждение о том, что вылетающие из атома частицы не содержались в нём изначально, а были рождены в процессе взаимодействия.

    Долгое время считалось, что законы природы симметричны относительно зеркального отражения , то есть результат любого эксперимента должен быть таким же, как результат эксперимента, проведённого на зеркально-симметричной установке. Эта симметрия относительно пространственной инверсии (которая обычно обозначается как P ) связана с законом сохранения чётности . Однако в 1956 году при теоретическом рассмотрении процесса распада K-мезонов Янг Чжэньнин и Ли Цзундао предположили, что слабое взаимодействие может не подчиняться этому закону. Уже в 1957 году группа Ву Цзяньсун подтвердили это предсказание в эксперименте по β-распаду, что принесло Янгу и Ли Нобелевскую премию по физике за 1957 год. Позднее тот же факт был подтверждён в распаде мюона и других частиц .

    Чтобы объяснить новые экспериментальные факты, в 1957 году Мюреем Гелл-Манном , Ричардом Фейнманом , Робертом Маршаком и Джорджем Сударшаном была разработана универсальная теория четырёхфермионного слабого взаимодействия, получившая название V A -теории .

    В стремлении сохранить максимально возможную симметрию взаимодействий Л. Д. Ландау в 1957 году предположил, что хотя P -симметрия нарушается в слабых взаимодействиях, в них должна сохраняться комбинированная симметрия CP - комбинация зеркального отражения и замены частиц на античастицы. Однако в 1964 году Джеймс Кронин и Вал Фитч в распадах нейтральных каонов нашли слабое нарушение CP -чётности . За это нарушение также оказалось ответственным именно слабое взаимодействие, более того теория в таком случае предсказывала, что кроме двух поколений кварков и лептонов , известных к тому времени, должно существовать как минимум ещё одно поколение. Это предсказание получило подтверждение сначала в 1975 году, когда был открыт тау-лептон , а затем в 1977 году с открытием b-кварка . Кронин и Фитч получили Нобелевскую премию по физике 1980 года.

    Свойства

    В слабом взаимодействии принимают участие все фундаментальные фермионы (лептоны и кварки). Это единственное взаимодействие, в котором участвуют нейтрино (не считая гравитации , пренебрежимо малой в лабораторных условиях), чем объясняется колоссальная проникающая способность этих частиц. Слабое взаимодействие позволяет лептонам, кваркам и их античастицам обмениваться энергией , массой , электрическим зарядом и квантовыми числами - то есть превращаться друг в друга.

    Слабое взаимодействие получило своё название из-за того, что его характерная интенсивность значительно ниже, чем у электромагнетизма . В физике элементарных частиц интенсивность взаимодействия принято характеризовать скоростью протекания процессов, вызванных этим взаимодействием. Чем быстрее протекают процессы, тем выше интенсивность взаимодействия. При энергиях взаимодействующих частиц порядка 1 ГэВ характерная скорость протекания процессов, обусловленных слабым взаимодействием, составляет около 10 −10 с, что примерно на 11 порядков больше, чем для электромагнитных процессов, то есть слабые процессы - это чрезвычайно медленные процессы .

    Другой характеристикой интенсивности взаимодействия является длина свободного пробега частиц в веществе. Так, для того, чтобы остановить за счёт сильного взаимодействия летящий адрон , требуется плита из железа толщиной в несколько сантиметров. А нейтрино, которое участвует только в слабом взаимодействии, может пролететь через плиту толщиной в миллиарды километров.

    Помимо прочего, слабое взаимодействие обладает очень малым радиусом действия - около 2·10 -18 м (это приблизительно в 1000 раз меньше размера ядра). Именно по этой причине, несмотря на то, что слабое взаимодействие значительно интенсивнее гравитационного, радиус действия которого неограничен, оно играет заметно меньшую роль. Например, даже для ядер, находящихся на расстоянии 10 −10 м , слабое взаимодействие слабее не только электромагнитного, но и гравитационного .

    При этом интенсивность слабых процессов сильно зависит от энергии взаимодействующих частиц. Чем выше энергия, тем интенсивность выше. Например, в силу слабого взаимодействия нейтрон , энерговыделение при бета-распаде которого равно приблизительно 0,8 МэВ , распадается за время около 10 3 с , а Λ-гиперон с энерговыделением примерно в сто раз больше, - уже за 10 −10 с . То же самое справедливо для энергичных нейтрино: сечение взаимодействия с нуклоном нейтрино с энергией 100 ГэВ на шесть порядков больше, чем у нейтрино с энергией около 1 МэВ . Однако при энергиях порядка нескольких сотен ГэВ (в системе центра масс сталкивающихся частиц) интенсивность слабого взаимодействия становится сравнимой с энергией электромагнитного взаимодействия, в результате чего они могут быть описаны единым образом как электрослабое взаимодействие .

    Слабое взаимодействие является единственным из фундаментальных взаимодействий, для которого не выполняется закон сохранения чётности , это означает, что законы, которым подчиняются слабые процессы, меняются при зеркальном отражении системы. Нарушение закона сохранения чётности приводит к тому, что слабому взаимодействию подвержены только левые частицы (спин которых направлен противоположно импульсу), но не правые (спин которых сонаправлен с импульсом), и наоборот: правые античастицы взаимодействуют слабым образом, но левые - инертны .

    Помимо пространственной чётности, слабое взаимодействие не сохраняет также и комбинированной пространственно-зарядовой чётности, то есть единственное из известных взаимодействий нарушает принцип CP -инвариантности .

    Теоретическое описание

    Теория Ферми

    Первая теория слабого взаимодействия была разработана Энрико Ферми в 1930-х годах. Его теория основана на формальной аналогии между процессом β-распада и электромагнитных процессов излучения фотонов . В основе теории Ферми лежит взаимодействие так называемых адронного и лептонного токов. При этом в отличие от электромагнетизма предполагается, что их взаимодействие носит контактный характер и не подразумевает наличие переносчика, аналогичного фотону. В современных обозначениях взаимодействие между четырьмя основными фермионами (протоном, нейтроном, электроном и нейтрино) описывается оператором вида

    G F 2 p ¯ ^ n ^ ⋅ e ¯ ^ ν ^ {\displaystyle {\frac {G_{F}}{\sqrt {2}}}{\hat {\overline {p}}}{\hat {n}}\cdot {\hat {\overline {e}}}{\hat {\nu }}} ,

    где G F {\displaystyle G_{F}} - так называемая константа Ферми , численно равная приблизительно 10 −48 Дж/м³ или 10 − 5 / m p 2 {\displaystyle 10^{-5}/m_{p}^{2}} ( m p {\displaystyle m_{p}} - масса протона) в системе единиц, где ℏ = c = 1 {\displaystyle \hbar =c=1} ; p ¯ ^ {\displaystyle {\hat {\overline {p}}}} - оператор рождения протона (или уничтожения антипротона), n ^ {\displaystyle {\hat {n}}} - оператор уничтожения нейтрона (рождения антинейтрона), e ¯ ^ {\displaystyle {\hat {\overline {e}}}} - оператор рождения электрона (уничтожения позитрона), ν ^ {\displaystyle {\hat {\nu }}} - оператор уничтожения нейтрино (рождения антинейтрино).

    Произведение p ¯ ^ n ^ {\displaystyle {\hat {\overline {p}}}{\hat {n}}} , отвечающее за перевод нейтрона в протон, получило название нуклонного тока, а e ¯ ^ ν ^ , {\displaystyle {\hat {\overline {e}}}{\hat {\nu }},} переводящее электрон в нейтрино, - лептонного. Постулируется, что эти токи аналогично электромагнитным токам являются 4-векторами p ¯ ^ γ μ n ^ {\displaystyle {\hat {\overline {p}}}\gamma _{\mu }{\hat {n}}} и e ¯ ^ γ μ ν ^ {\displaystyle {\hat {\overline {e}}}\gamma _{\mu }{\hat {\nu }}} ( γ μ , μ = 0 … 3 {\displaystyle \gamma _{\mu },~\mu =0\dots 3} - матрицы Дирака). Поэтому и их взаимодействие называется векторным .

    Существенным отличием введённых Ферми слабых токов от электромагнитных является то, что они меняют заряд частиц: положительнозаряженный протон становится нейтральным нейтроном, а отрицательнозаряженный электрон - нейтральным же нейтрино. В связи с этим эти токи получили название заряженных токов .

    Универсальная V-A теория

    Универсальная теория слабого взаимодействия, получившая также название V − A -теории, была предложена в 1957 году М. Гелл-Манном , Р. Фейнманом , Р. Маршаком и Дж. Сударшаном . Эта теория принимала во внимание доказанный незадолго до этого факт нарушения чётности (P -симметрии) при слабом взаимодействии. Для этого слабые токи были представлены как сумма векторного тока V и аксиального A (отсюда и название теории) .

    Векторный и аксиальный токи ведут себя совершенно одинаково при преобразованиях Лоренца . Однако при пространственной инверсии их поведение различно: векторный ток при таком преобразовании остаётся неизменным, а аксиальный ток меняет знак, что и приводит к нарушению чётности. Кроме того, токи V и A отличаются так называемой зарядовой чётностью (нарушают C -симметрию) .

    Аналогично, адронный ток является суммой кварковых токов всех поколений (u - верхний, d - нижний, c - очарованный, s - странный, t - истинный, b - прелестный кварки):

    u ¯ ^ d ′ ^ + c ¯ ^ s ′ ^ + t ¯ ^ b ′ ^ . {\displaystyle {\hat {\overline {u}}}{\hat {d^{\prime }}}+{\hat {\overline {c}}}{\hat {s^{\prime }}}+{\hat {\overline {t}}}{\hat {b^{\prime }}}.}

    В отличие от лептонного тока, однако, здесь операторы d ′ ^ , {\displaystyle {\hat {d^{\prime }}},} s ′ ^ {\displaystyle {\hat {s^{\prime }}}} и b ′ ^ {\displaystyle {\hat {b^{\prime }}}} представляют собой линейную комбинацию операторов d ^ , {\displaystyle {\hat {d}},} s ^ {\displaystyle {\hat {s}}} и b ^ , {\displaystyle {\hat {b}},} то есть адронный ток содержит в общей сложности не три, а девять слагаемых. Эти слагаемые можно обединить в одну матрицу 3×3, называемую матрицей Кабиббо - Кобаяши - Маскавы . Эта матрица может быть параметризована тремя углами и фазовым множителем. Последний характеризует степень нарушения CP -инвариантности в слабом взаимодействии .

    Все слагаемые в заряженном токе представляют собой сумму векторного и аксиального операторов с множителями, равными единице .

    L = G F 2 j w ^ j w † ^ , {\displaystyle {\mathcal {L}}={\frac {G_{F}}{\sqrt {2}}}{\hat {j_{w}}}{\hat {j_{w}^{\dagger }}},}

    где j w ^ {\displaystyle {\hat {j_{w}}}} - оператор заряженного тока, а j w † ^ {\displaystyle {\hat {j_{w}^{\dagger }}}} - сопряжённый ему (получается заменой e ¯ ^ ν e ^ → ν e ¯ ^ e ^ , {\displaystyle {\hat {\overline {e}}}{\hat {\nu _{e}}}\rightarrow {\hat {\overline {\nu _{e}}}}{\hat {e}},} u ¯ ^ d ^ → d ¯ ^ u ^ {\displaystyle {\hat {\overline {u}}}{\hat {d}}\rightarrow {\hat {\overline {d}}}{\hat {u}}} и т. д.)

    Теория Вайнберга - Салама

    В современной форме слабое взаимодействие описывается как часть единого электрослабого взаимодействия в рамках теории Вайнберга - Салама. Это квантовая теория поля с калибровочной группой SU (2)×U (1) и спонтанно нарушенной симметрией вакуумного состояния, вызванной действием поля бозона Хиггса . Доказательство перенормируемости такой модели Мартинусом Вельтманом и Герардом "т Хоофтом было отмечено Нобелевской премией по физике за 1999 год .

    В этой форме теория слабого взаимодействия входит в современную Стандартную модель , причём оно - единственное взаимодействие, нарушающее симметрии P и CP .

    Согласно теории электрослабого взаимодействия слабое взаимодействие не является контактным, а имеет своих переносчиков - векторные бозоны W + , W − и Z 0 с ненулевой массой и спином , равным 1. Масса этих бозонов составляет около 90 ГэВ /c², что и обуславливает малый радиус действия слабых сил.

    При этом заряженные бозоны W ± отвечают за взаимодействие заряженных токов, а существование нейтрального бозона Z 0 означает существование также и нейтральных токов . Такие токи, действительно, были обнаружены экспериментально. Примером взаимодействия с их участием служит, в частности, упругое рассеяние нейтрино на протоне. При таких взаимодействиях сохраняется как вид частиц, так и их заряды .

    Для описания взаимодействия нейтральных токов лагранжиан должен быть дополнен членом вида

    L = G F ρ 2 2 f 0 ^ f 0 ^ , {\displaystyle {\mathcal {L}}={\frac {G_{F}\rho }{2{\sqrt {2}}}}{\hat {f_{0}}}{\hat {f_{0}}},}

    где ρ - безразмерный параметр, в стандартной теории равный единице (экспериментально он отличается от единицы не более чем на 1 %), f 0 ^ = ν e ¯ ^ ν e ^ + ⋯ + e ¯ ^ e ^ + ⋯ + u ¯ ^ u ^ + … {\displaystyle {\hat {f_{0}}}={\hat {\overline {\nu _{e}}}}{\hat {\nu _{e}}}+\dots +{\hat {\overline {e}}}{\hat {e}}+\dots +{\hat {\overline {u}}}{\hat {u}}+\dots } - самосопряжённый оператор нейтрального тока .

    В отличие от заряженных токов, оператор нейтрального тока диагонален, то есть переводит частицы в сами себя, а не в другие лептоны или кварки. Каждое из слагаемых оператора нейтрального тока представляет собой сумму векторного оператора с множителем и аксиального оператора с множителем I 3 − 2 Q sin 2 ⁡ θ w {\displaystyle I_{3}-2Q\sin ^{2}\theta _{w}} , где I 3 {\displaystyle I_{3}} - третья проекция так называемого слабого