Мысикова Юлия

Единый государственный экзамен по математике базового уровня состоит из 20 заданий. В задании 20 проверяются навыки решения логических задач. Школьник должен уметь применять свои знания для решения задач на практике, в том числе на арифметическую и геометрическую прогрессию. В этой работе подробно разбираются, способы решения задание 20 ЕГЭ по математике базового уровня, а также примеры и способы решений на основе подробно разобранных заданий.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задания на смекалку ЕГЭ по математике базового уровня. Задания №20 Мысиковой Юлии Александровны, ученицы 11 «А» социально-экономического класса Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №45»

Улитка на дереве Решение. Улитка за день заползает вверх по дереву на 3 м, а за ночь спускается на 2 м. Итого, за сутки она продвигается на 3 – 2 = 1 метр. За 7 суток она поднимется на 7 метров. На восьмой день она заползёт вверх еще на 3 метра и впервые окажется на высоте 7 + 3 = 10 (м), т.е. на вершине дерева. Ответ: 8 Улитка за день заползает вверх по дереву на 3 м, а за ночь спускается на 2 м. Высота дерева 10 м. За сколько дней улитка доползёт от основания до вершины дерева?

Бензоколонки Решение. Начертим окружность и расположим точки (бензоколонки)так, чтобы расстояния соответствовали условию. Заметим, что все расстояния между точками А, С и D известны. АС =20, АD=30, СD=20. Отметим точку А. От точки А по часовой стрелке отметим точку С, помним, что АС=20. Теперь будем отмечать точку D, которая лежит от А на расстоянии 30, это расстояние нельзя откладывать от А по часовой стрелке, так как тогда получится расстояние между С и D равно 10, а по условию СD= 2 0 . Значит от А до D надо двигаться против часовой стрелки, отмечаем точку D. Так как СD=20, то длина всей окружности равна 20+30+20=70. Так как АВ=35, то точка В диаметрально противоположна точке А. Расстояние от С до В будет равно 35-20=15. Ответ: 15. На кольцевой дороге расположены четыре бензоколонки: A, B, C и Д. Расстояние между A и B - 35 км, между A и C - 20 км, между C и Д -20 км, между Д и A - 30 км (все расстояния измеряются вдоль кольцевой дороги в кратчайшую сторону). Найдите расстояние между B и C. Ответ дайте в километрах.

В кинозале Решение. 1 способ. Просто считаем сколько мест в рядах до восьмого: 1 – 24 2 – 26 3 – 28 4 – 30 5 – 32 6 – 34 7 – 36 8 – 38. Ответ: 38. В пер­вом ряду ки­но­за­ла 24 места, а в каж­дом сле­ду­ю­щем на 2 боль­ше, чем в преды­ду­щем. Сколь­ко мест в вось­мом ряду? 2 способ. Замечаем, что количество мест в рядах составляет арифметическую прогрессию с первым члено в 24 и разность равной 2. По формуле n - го члена прогрессии находим восьмой член а 8 = 24 + (8 – 1)*2 = 38. Ответ: 38.

Грибы в корзине Решение. Из условия, что среди любых 27 гри­бов име­ет­ся хотя бы один рыжик следует – количество груздей не больше 26. Из второго условия, что среди любых 25 гри­бов хотя бы один груздь, следует - количество рыжиков не больше 24. Так как всего грибов – 50, то рыжиков 24, а груздей – 26. Ответ: 24. В кор­зи­не лежат 50 гри­бов: ры­жи­ки и груз­ди. Из­вест­но, что среди любых 27 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 25 гри­бов хотя бы один груздь. Сколь­ко ры­жи­ков в кор­зи­не?

Кубики в ряд Решение. Если пронумеровать все кубики числами от одного до шести (не учитывая, что имеются кубики разного цвета), то получим общее число перестановки кубиков: Р(6)=6*5*4*3*2*1=720 Теперь вспомним, что имеются 2 кубика красного цвета и перестановка их местами (Р(2)=2*1=2) не даст нового способа, поэтому полученное произведение надо уменьшить в 2 раза. Аналогично, вспоминаем, что у нас имеются 3 кубика зелёного цвета, поэтому придётся полученное произведение уменьшить ещё и в 6 раз (Р(3)=3*2*1=6) Итак, получим общее число способов расстановки кубиков 60. Ответ: 60. Сколь­ки­ми спо­со­ба­ми можно по­ста­вить в ряд два оди­на­ко­вых крас­ных ку­би­ка, три оди­на­ко­вых зелёных ку­би­ка и один синий кубик?

На бе­го­вой до­рож­ке Тре­нер по­со­ве­то­вал Ан­дрею в пер­вый день за­ня­тий про­ве­сти на бе­го­вой до­рож­ке 15 минут, а на каж­дом сле­ду­ю­щем за­ня­тии уве­ли­чи­вать время, про­ведённое на бе­го­вой до­рож­ке, на 7 минут. За сколь­ко за­ня­тий Ан­дрей про­ведёт на бе­го­вой до­рож­ке в общей слож­но­сти 2 часа 25 минут, если будет сле­до­вать со­ве­там тре­не­ра? Решение. 1 способ. Замечаем, что надо найти сумму арифметической прогрессии с первым членом 15 и разность равной 7. По формуле суммы n первых членов прогрессии S n =(2a 1 +(n-1)d)*n/2 имеем 145=(2*15+(n–1)*7)*n/2, 290=(30+(n–1)*7)*n, 290=(30+7n–7)*n, 290=(23+7n)*n, 290=23n+7n 2 , 7n 2 +23n-290=0, n=5 . Ответ: 5. 2 способ. Более трудоёмкий. 1-15-15 2-22-37 3-29-66 4-36-102 5-43-145. Ответ: 5.

Меняем монеты За­да­ние 20. В об­мен­ном пунк­те можно со­вер­шить одну из двух опе­ра­ций: за 2 зо­ло­тые мо­не­ты по­лу­чить 3 се­реб­ря­ные и одну мед­ную; за 5 се­реб­ря­ных монет по­лу­чить 3 зо­ло­тые и одну мед­ную. У Ни­ко­лая были толь­ко се­реб­ря­ные мо­не­ты. После не­сколь­ких по­се­ще­ний об­мен­но­го пунк­та се­реб­ря­ных монет у него стало мень­ше, зо­ло­тых не по­яви­лось, зато по­яви­лось 50 мед­ных. На сколь­ко умень­ши­лось ко­ли­че­ство се­реб­ря­ных монет у Ни­ко­лая? Решение. Пусть Николай сделал сначала х операций второго типа, а затем у операций первого типа. Тогда имеем: Тогда серебряных монет стало на 3у -5х = 90 – 100 = -10 т.е. на 10 меньше. Ответ: 10

Хозяин договорился Решение. Из условия понятно, что по­сле­до­ва­тель­ность цен за каждый выкопанный метр является ариф­ме­ти­че­ской про­грес­сией с пер­вым чле­ном а 1 = 3700 и раз­но­стью d=1700 . Сумма пер­вых n чле­нов ариф­ме­ти­че­ской про­грес­сии вы­чис­ля­ет­ся по фор­му­ле S n = 0,5(2a 1 + (n – 1)d)n . Подставляя исходные данные, получаем: S 10 = 0,5(2*3700 + (8 – 1)*1700)*8 = 77200 . Таким образом, хо­зя­ин дол­жен будет за­пла­тить ра­бо­чим 77200 руб. Ответ: 77200. Хозяин договорился с рабочими, что они выкопают ему колодец на следующих условиях: за первый метр он заплатит им 3700 рублей, а за каждый следующий метр - на 1700 рублей больше, чем за предыдущий. Сколько денег хозяин должен будет заплатить рабочим, если они выкопают колодец глубиной 8 метров?

Вода в котловане В ре­зуль­та­те па­вод­ка кот­ло­ван за­пол­нил­ся водой до уров­ня 2 метра. Стро­и­тель­ная помпа не­пре­рыв­но от­ка­чи­ва­ет воду, по­ни­жая её уро­вень на 20 см в час. Под­поч­вен­ные воды, на­о­бо­рот, по­вы­ша­ют уро­вень воды в кот­ло­ва­не на 5 см в час. За сколь­ко часов ра­бо­ты помпы уро­вень воды в кот­ло­ва­не опу­стит­ся до 80 см? Решение. В результате работы насоса и подтопления почвенными водами уровень воды в котловане понижается на 20-5=15 сантиметров за час. Чтобы уровень снизился на 200-80=120 сантиметров необходимо 120:15=8 часов. Ответ: 8.

Бак с щелью В бак объёмом 38 литров каждый час, начиная с 12 часов, наливают полное ведро воды объёмом 8 литров. Но в днище бака есть небольшая щель, и из неё за час вытекает 3 литра. В какой момент времени (в часах) бак будет заполнен полностью? Решение. К концу каждого часа объём воды в баке увеличивается на 8 − 3 = 5 литров. Через 6 часов, то есть в 18 часов, в баке будет 30 литров воды. В 19 часов в бак дольют 8 литров воды и объём воды в баке станет равным 38 литров. Ответ: 19.

Скважина Неф­тя­ная ком­па­ния бурит сква­жи­ну для до­бы­чи нефти, ко­то­рая за­ле­га­ет, по дан­ным гео­ло­го­раз­вед­ки, на глу­би­не 3 км. В те­че­ние ра­бо­че­го дня бу­риль­щи­ки про­хо­дят 300 мет­ров в глу­би­ну, но за ночь сква­жи­на вновь «за­или­ва­ет­ся», то есть за­пол­ня­ет­ся грун­том на 30 мет­ров. За сколь­ко ра­бо­чих дней неф­тя­ни­ки про­бу­рят сква­жи­ну до глу­би­ны за­ле­га­ния нефти? Решение. Учитывая заиливание скважины, в течении суток проходят 300-30=270 метров. Значит за 10 полных суток будет пройдено 2700 метров и за 11-й рабочий день будет пройдено ещё 300 метров. Ответ: 11.

Глобус На по­верх­но­сти гло­бу­са фло­ма­сте­ром про­ве­де­ны 17 па­рал­ле­лей и 24 ме­ри­ди­а­на. На сколь­ко ча­стей про­ведённые линии раз­де­ли­ли по­верх­ность гло­бу­са? Решение. Одна параллель разбивает поверхность глобуса на 2 части. Две на три части. Три на четыре части и т. д. 17 параллелей разбивают поверхность на 18 частей. Проведём один меридиан, и получим одну целую (не разрезанную) поверхность. Проведём второй меридиан и у нас уже две части, третий меридиан разобьёт поверхность на три части и т. д. 24 меридиана разбили нашу поверхность на 24 части. Получаем 18*24=432. Все линии разделят поверхность глобуса на 432 части. Ответ: 432.

Кузнечик прыгает Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, сделав ровно 8 прыжков, начиная прыгать из начала координат? Решение: Немного подумав, мы можем за­ме­тить, что куз­не­чик может ока­зать­ся толь­ко в точ­ках с чётными ко­ор­ди­на­та­ми, по­сколь­ку число прыж­ков, ко­то­рое он де­ла­ет, чётно. Например, если он сделает пять прыжков в одну сторону, то в обратную сторону он сделает три прыжка и окажется в точках 2 или −2. Мак­си­маль­но куз­не­чик может ока­зать­ся в точ­ках, мо­дуль ко­то­рых не пре­вы­ша­ет восьми. Таким об­ра­зом, куз­не­чик может ока­зать­ся в точ­ках: −8, −6, −4, −2, 0, 2, 4, 6 и 8; всего 9 точек. Ответ: 9 .

Новые бактерии Каж­дую се­кун­ду бак­те­рия де­лит­ся на две новые бак­те­рии. Из­вест­но, что весь объём од­но­го ста­ка­на бак­те­рии за­пол­ня­ют за 1 час. За сколь­ко се­кунд бак­те­рии за­пол­ня­ют по­ло­ви­ну ста­ка­на? Решение. Вспомним, что 1 час = 3600 секундам. Через каждую секунду бактерий становится в два раза больше. Значит, чтобы из половины стакана бактерий получился полный стакан нужна всего 1 секунда. Поэтому стакан был заполнен на половину за 3600-1=3599 секунд. Ответ: 3599.

Делим числа Про­из­ве­де­ние де­ся­ти иду­щих под­ряд чисел раз­де­ли­ли на 7. Чему может быть равен оста­ток? Решение. Задача простая, так как среди десяти подряд идущих натуральных чисел хотя бы одно делится на 7. Значит и всё произведение будет делиться на 7 без остатка. То есть остаток равен 0. Ответ: 0.

Где живёт Петя? Задача 1. В доме, в котором живёт Петя, один подъезд. На каждом этаже по шесть квартир. Петя живёт в квартире № 50. На каком этаже живёт Петя? Решение: Делим 50 на 6, получаем частное 8 и 2 в остатке. Это значит, что Петя живёт на 9 этаже. Ответ: 9. Задача 2. Во всех подъездах дома одинаковое число этажей, и на всех этажах одинаковое число квартир. При этом число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного. Сколько этажей в доме, если всего в нём 455 квартир? Решение: Решение этой задачи вытекает из разложения числа 455 на простые множители. 455 = 13*7*5. Значит в доме 13 этажей, по 7 квартир на каждом этаже в подъезде, 5 подъездов. Ответ: 13.

Задача 3. Саша пригласил Петю в гости, сказав, что живёт в восьмом подъезде в квартире № 468, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом двенадцатиэтажный. На каком этаже живёт Саша? (На всех этажах число квартир одинаково, номера квартир в доме начинаются с единицы.) Решение: Петя может подсчитать, что в двенадцатиэтажном доме в первых семи подъездах 12*7=84 площадки. Дальше, перебирая возможное количество квартир на одной площадке, можно увидеть, что их меньше шести, так как 84*6 = 504. Это больше 468. Значит, на каждой из площадок 5 квартир, тогда в первых семи подъездах 84*5 =420 квартир. 468 – 420 = 48, то есть Саша живёт в 48 квартире в 8 подъезде (если бы нумерация была с единицы в каждом подъезде). 48:5 = 9 и 3 в остатке. Таким образом Сашина квартира на 10 этаже. Ответ: 10.

Меню ресторана В меню ресторана имеется 6 видов салатов, 3 вида первых блюд, 5 видов вторых блюд и 4 вида десерта. Сколько вариантов обеда из салата, первого, второго и десерта могут выбрать посетители этого ресторана? Решение. Если мы пронумеруем каждый салат, первое, второе, десерт, то: с 1 салатом, 1 первым,1 вторым можно подать один из 4-х десертов. 4 варианта. Со вторым вторым тоже 4 варианта и т.д. Всего получим 6*3*5*4=360. Ответ: 360.

Маша и медведь Медведь съел свою половину банки варенья в 3 раза быстрее, чем Маша, значит, у него еще осталось в 3 раза больше времени на кушанье печенья. Т.к. Медведь ест печенье в 3 раза быстрее, чем Маша и еще у него осталось в 3 раза больше времени (он съел в 3 раза быстрее свою половину банки варенья), то он съедает в 3⋅3=9 раз больше печений, чем Маша (9 печений съедает Медведь, в то время как Маша только 1 печенье). Получается, что в отношении 9:1 едят Медведь и Маша печенье. Всего получается 10 долей, значит, 1 доля равна 160:10=16. В итоге, Медведь съел 16⋅9=144 печений. Ответ: 144 Маша и Медведь съели 160 печений и банку варенья, начав и закончив одновременно. Сначала Маша ела варенье, а Медведь - печенье, но в какой-то момент они поменялись. Медведь и то, и другое ест в три раза быстрее Маши. Сколько печений съел Медведь, если варенье они съели поровну?

Палки и линии На палке отмечены поперечные линии красного, жёлтого и зелёного цвета. Если распилить палку по красным линиям, получится 15 кусков, если по жёлтым - 5 кусков, а если по зелёным - 7 кусков. Сколько кусков получится, если распилить палку по линиям всех трёх цветов? Решение. Если распилить палку по красным линиям, то получится 15 кусков, следовательно, линий - 14. Если распилить палку по желтым - 5 кусков, следовательно, линий - 4. Если распилить по зеленым - 7 кусков, линий - 6. Всего линий: 14+4+6=24 линии, следовательно, кусков будет 25. Ответ: 25

Врач прописал Врач прописал пациенту принимать лекарство по такой схеме: в первый день он должен принять 3 капли, а в каждый следующий день - на 3 капли больше, чем в предыдущий. Приняв 30 капель, он ещё 3 дня пьёт по 30 капель лекарства, а потом ежедневно уменьшает приём на 3 капли. Сколько пузырьков лекарства нужно купить пациенту на весь курс приёма, если в каждом содержится 20 мл лекарства (что составляет 250 капель)? Решение На первом этапе приёма капель число принимаемых капель в день представляет собой возрастающую арифметическую прогрессию с первым членом, равным 3, разностью, равной 3 и последним членом, равным 30. Следовательно: Тогда 3 + 3(n -1)=30; 3+ 3 n -3=30; 3 n =30; n =10 , т.е. прошло 10 дней по схеме увеличения до 30 капель. Знаем формулу суммы ариф. прогрессии: Вычислим S10:

За следующие 3 дня – по 30 капель: 30 · 3 = 90 (капель) На последнем этапе приёма: Т.е. 30 -3(n-1) =0; 30 -3n+3=0; -3n=-33; n=11 т.е. 11 дней приём лекарства уменьшался. Найдём сумму арифметич. прогрессии 4) Значит, 165 + 90 + 165 = 420 капель всего 5) Тогда 420: 250 = 42/25 = 1 (17/25) пузырька Ответ: надо купить 2 пузырька

Магазин бытовой техники В магазине бытовой техники объём продаж холодильников носит сезонный характер. В январе было продано 10 холодильников, и в три последующих месяца продавали по 10 холодильников. С мая продажи увеличивались на 15 единиц по сравнению с предыдущим месяцем. С сентября объём продаж начал уменьшаться на 15 холодильников каждый месяц относительно предыдущего месяца. Сколько холодильников продал магазин за год? Решение. Последовательно рассчитаем сколько холодильников было продано за каждый месяц и просуммируем результаты: 10 · 4+(10+15)+(25+15)+(40+15)+(55+15)+(70-15)+ (55-15)+(40-15)+ (25-15)= = 40+25+40+55+70+55+40+25+10=120+110+130=360 Ответ: 360.

Ящики Ящики двух видов, имеющие одинаковую ширину и высоту, укладывают на складе в один ряд длиной 43м, приставляя друг к другу по ширине. Ящики одного вида имеют длину 2м, а другого-5м. Какое наименьшее число ящиков потребуется для заполнения всего ряда без образования пустых мест? Решение Т.к. надо найти наименьшее число ящиков, то => надо взять наибольшее количество больших ящиков. Значит 5 · 7 = 35; 43 – 35 = 8 и 8:2=4 ; 4+7=11 Значит, ящиков всего 11 . Ответ: 11.

Таблица В таблице три столбца и несколько строк. В каждую клетку таблицы поставили по натуральному числу так, что сумма всех чисел в первом столбце равна 119, во втором - 125, в третьем - 133, а сумма чисел в каждой строке больше 15, но меньше 18. Сколько всего строк в столбце? Решение. Общая сумма во всех столбцах = 119 + 125 + 133 = 377 Числа 18 и 15 не включены в предел, значит: 1) если сумма в строке = 17, то, количество строк равно 377: 17= =22,2 2) если сумма в строке = 16, то, количество строк равно 377: 16= =23,5 Значит кол-во строк = 23 (т.к. оно должно быть между 22,2 и 23,5) Ответ: 23

Викторина и задания Список заданий викторины состоял из 36 вопросов. За каждый правильный ответ ученик получал 5 очков, за неправильный ответ с него списывали 11 очков, а при отсутствие ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 75 очков, если известно, что по крайней мере один раз он ошибся? Решение. 1 способ: Пусть Х – количество верных ответов у – количество неверных ответов. Тогда составим уравнение 5х -11у = 75, где 0

Группа туристов Группа туристов преодолела горный перевал. Первый километр подъёма они преодолели за 50 минут, а каждый следующий километр проходили на 15 минут дольше предыдущего. Последний километр перед вершиной был пройден за 95 минут. После десятиминутного отдыха на вершине туристы начали спуск, который был более пологим. Первый километр после вершины был пройден за час, а каждый следующий на 10 минут быстрее предыдущего. Сколько часов группа затратила на весь маршрут, если последний километр спуска был пройден за 10 минут? Решение. На подъём в гору группа затратила 290 минут, на отдых 10 минут, на спуск с горы 210 минут. В сумме туристы затратили на весь маршрут 510 минут. Переведём 510 минут в часы и получим, что за 8,5 часов туристы преодолели весь маршрут. Ответ: 8,5

Спасибо за внимание!

Среднее общее образование

Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

Линия УМК Мерзляка. Алгебра и начала анализа (10-11) (У)

Математика

Подготовка к ЕГЭ по математике (профильный уровень): задания, решения и объяснения

Разбираем задания и решаем примеры с учителем

Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут).

Минимальный порог - 27 баллов.

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий.

Определяющим признаком каждой части работы является форма заданий:

  • часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби;
  • часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).

Панова Светлана Анатольевна , учитель математики высшей категории школы, стаж работы 20 лет:

«Для того чтобы получить школьный аттестат, выпускнику необходимо сдать два обязательных экзамена в форме ЕГЭ, один из которых математика. В соответствии с Концепцией развития математического образования в Российской Федерации ЕГЭ по математике разделен на два уровня: базовый и профильный. Сегодня мы рассмотрим варианты профильного уровня».

Задание № 1 - проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 - 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.

Пример 1. В квартире, где проживает Петр, установили прибор учета расхода холодной воды (счетчик). Первого мая счетчик показывал расход 172 куб. м воды, а первого июня - 177 куб. м. Какую сумму должен заплатить Петр за холодную воду за май, если цена 1 куб. м холодной воды составляет 34 руб 17 коп? Ответ дайте в рублях.

Решение:

1) Найдем количество потраченной воды за месяц:

177 - 172 = 5 (куб м)

2) Найдем сколько денег заплатят за потраченную воду:

34,17 · 5 = 170,85 (руб)

Ответ: 170,85.


Задание № 2 -является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований - это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.

#ADVERTISING_INSERT#

Пример 2. На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?


Решение:

2) 1000 · 3/4 = 750 (акций) - составляют 3/4 от всех купленных акций.

6) 247500 + 77500 = 325000 (руб) - бизнесмен получил после продажи 1000 акций.

7) 340000 – 325000 = 15000 (руб) - потерял бизнесмен в результате всех операций.

Ответ: 15000.

Задание № 3 - является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.

Пример 3. Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Решение: Для вычисления площади данной фигуры можно воспользоваться формулой Пика:

Для вычисления площади данного прямоугольника воспользуемся формулой Пика:

S = В +

Г
2
где В = 10, Г = 6, поэтому

S = 18 +

6
2
Ответ: 20.

Читайте также: ЕГЭ по физике: решение задач о колебаниях

Задание № 4 - задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.

Пример 4. На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.

Решение: 1) Воспользуемся формулой числа сочетаний из n элементов по k :

у которых все вершины красные.

3) Один пятиугольник, у которого все вершины красные.

4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.

у которых вершины красные или с одной синей вершиной.

у которых вершины красные или с одной синей вершиной.

8) Один шестиуголник, у которого вершины красные с одной синей вершиной.

9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.

10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.

11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин - синяя точка, больше, чем многоугольников, у которых все вершины только красные.

Ответ: 10.

Задание № 5 - базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).

Пример 5. Решите уравнение 2 3 + x = 0,4 · 5 3 + x .

Решение. Разделим обе части данного уравнения на 5 3 + х ≠ 0, получим

2 3 + x = 0,4 или 2 3 + х = 2 ,
5 3 + х 5 5

откуда следует, что 3 + x = 1, x = –2.

Ответ: –2.

Задание № 6 по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.

Площадь треугольника ABC равна 129. DE – средняя линия, параллельная стороне AB . Найдите площадь трапеции ABED .


Решение. Треугольник CDE подобен треугольнику CAB по двум углам, так как угол при вершине C общий, угол СDE равен углу CAB как соответственные углы при DE || AB секущей AC . Так как DE – средняя линия треугольника по условию, то по свойству средней линии | DE = (1/2)AB . Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

Следовательно, S ABED = S ΔABC S ΔCDE = 129 – 32,25 = 96,75.

Задание № 7 - проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.

Пример 7. К графику функции y = f (x ) в точке с абсциссой x 0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f ′(x 0).

Решение. 1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).

(y y 1)(x 2 – x 1) = (x x 1)(y 2 – y 1)

(y – 3)(3 – 4) = (x – 4)(–1 – 3)

(y – 3)(–1) = (x – 4)(–4)

y + 3 = –4x + 16| · (–1)

y – 3 = 4x – 16

y = 4x – 13, где k 1 = 4.

2) Найдём угловой коэффициент касательной k 2 , которая перпендикулярна прямой y = 4x – 13, где k 1 = 4, по формуле:

3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f ′(x 0) = k 2 = –0,25.

Ответ: –0,25.

Задание № 8 - проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.


Решение. 1) V куба = a 3 (где а – длина ребра куба), поэтому

а 3 = 216

а = 3 √216

2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d = a , d = 6, d = 2R , R = 6: 2 = 3.

Задание № 9 - требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:

    преобразования числовых рациональных выражений;

    преобразования алгебраических выражений и дробей;

    преобразования числовых/буквенных иррациональных выражений;

    действия со степенями;

    преобразование логарифмических выражений;

  1. преобразования числовых/буквенных тригонометрических выражений.

Пример 9. Вычислите tgα, если известно, что cos2α = 0,6 и

< α < π.
4

Решение. 1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos 2 α – 1 и найдём

tg 2 α = 1 – 1 = 1 – 1 = 10 – 1 = 5 – 1 = 1 1 – 1 = 1 = 0,25.
cos 2 α 0,8 8 4 4 4

Значит, tg 2 α = ± 0,5.

3) По условию

< α < π,
4

значит, α – угол II четверти и tgα < 0, поэтому tgα = –0,5.

Ответ: –0,5.

#ADVERTISING_INSERT# Задание № 10 - проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.

Два тела массой m = 2 кг каждое, движутся с одинаковой скоростью v = 10 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q = mv 2 sin 2 α. Под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
Решение. Для решения задачи нам необходимо решить неравенство Q ≥ 50, на интервале 2α ∈ (0°; 180°).

mv 2 sin 2 α ≥ 50

2· 10 2 sin 2 α ≥ 50

200 · sin 2 α ≥ 50

Так как α ∈ (0°; 90°), то будем решать только

Изобразим решение неравенства графически:


Так как по условию α ∈ (0°; 90°), значит 30° ≤ α < 90°. Получили, что наименьший угол α равен 30°, тогда наименьший угол 2α = 60°.

Задание № 11 - является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.

Пример 11. На весенних каникулах 11-классник Вася должен был решить 560 тренировочных задач для подготовки к ЕГЭ. 18 марта в последний учебный день Вася решил 5 задач. Далее ежедневно он решал на одно и то же количество задач больше по сравнению с предыдущим днём. Определите, сколько задач Вася решил 2 апреля в последний день каникул.

Решение: Обозначим a 1 = 5 – количество задач, которые Вася решил 18 марта, d – ежедневное количество задач, решаемых Васей, n = 16 – количество дней с 18 марта по 2 апреля включительно, S 16 = 560 – общее количество задач, a 16 – количество задач, которые Вася решил 2 апреля. Зная, что ежедневно Вася решал на одно и то же количество задач больше по сравнению с предыдущим днём, то можно использовать формулы нахождения суммы арифметической прогрессии:

560 = (5 + a 16) · 8,

5 + a 16 = 560: 8,

5 + a 16 = 70,

a 16 = 70 – 5

a 16 = 65.

Ответ: 65.

Задание № 12 - проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.

Найти точку максимума функции y = 10ln(x + 9) – 10x + 1.

Решение: 1) Найдем область определения функции: x + 9 > 0, x > –9, то есть x ∈ (–9; ∞).

2) Найдем производную функции:

4) Найденная точка принадлежит промежутку (–9; ∞). Определим знаки производной функции и изобразим на рисунке поведение функции:


Искомая точка максимума x = –8.

Скачать бесплатно рабочую программу по математике к линии УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной 10-11 Скачать бесплатно методические пособия по алгебре

Задание № 13 -повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

а) Решите уравнение 2log 3 2 (2cosx ) – 5log 3 (2cosx ) + 2 = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку .

Решение: а) Пусть log 3 (2cosx ) = t , тогда 2t 2 – 5t + 2 = 0,


log 3 (2cosx ) = 2
2cosx = 9
cosx = 4,5 ⇔ т.к. |cosx | ≤ 1,
log 3 (2cosx ) = 1 2cosx = √3 cosx = √3
2 2
то cosx = √3
2

x = π + 2πk
6
x = – π + 2πk , k Z
6

б) Найдём корни, лежащие на отрезке .


Из рисунка видно, что заданному отрезку принадлежат корни

11π и 13π .
6 6
Ответ: а) π + 2πk ; – π + 2πk , k Z ; б) 11π ; 13π .
6 6 6 6
Задание № 14 -повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между хордами равно 2√197.

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Решение: а) Хорда длиной 12 находится на расстоянии = 8 от центра окружности основания, а хорда длиной 16, аналогично, – на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2.

Тогда расстояние между хордами составляет либо

= = √980 = = 2√245

= = √788 = = 2√197.

По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее. Что требовалось доказать.

б) Обозначим центры оснований за О 1 и О 2 . Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания - к другой хорде. Они лежат в одной плоскости β, перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание - H (H ∈ β). Тогда AB,AH ∈ β и значит, AB,AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит, искомый угол равен

∠ABH = arctg AH = arctg 28 = arctg14.
BH 8 – 6

Задание № 15 - повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

Пример 15. Решите неравенство |x 2 – 3x | · log 2 (x + 1) ≤ 3x x 2 .

Решение: Областью определения данного неравенства является интервал (–1; +∞). Рассмотри отдельно три случая:

1) Пусть x 2 – 3x = 0, т.е. х = 0 или х = 3. В этом случае данное неравенство превращается в верное, следовательно, эти значения входят в решение.

2) Пусть теперь x 2 – 3x > 0, т.е. x ∈ (–1; 0) ∪ (3; +∞). При этом данное неравенство можно переписать в виде (x 2 – 3x ) · log 2 (x + 1) ≤ 3x x 2 и разделить на положительное выражение x 2 – 3x . Получим log 2 (x + 1) ≤ –1, x + 1 ≤ 2 –1 , x ≤ 0,5 –1 или x ≤ –0,5. Учитывая область определения, имеем x ∈ (–1; –0,5].

3) Наконец, рассмотрим x 2 – 3x < 0, при этом x ∈ (0; 3). При этом исходное неравенство перепишется в виде (3x x 2) · log 2 (x + 1) ≤ 3x x 2 . После деления на положительное выражение 3x x 2 , получим log 2 (x + 1) ≤ 1, x + 1 ≤ 2, x ≤ 1. Учитывая область, имеем x ∈ (0; 1].

Объединяя полученные решения, получаем x ∈ (–1; –0.5] ∪ ∪ {3}.

Ответ: (–1; –0.5] ∪ ∪ {3}.

Задание № 16 - повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E – на отрезке AB. а) Докажите, что FH = 2DH. б) Найдите площадь прямоугольника DEFH, если AB = 4.

Решение: а)


1) ΔBEF – прямоугольный, EF⊥BC, ∠B = (180° – 120°) : 2 = 30°, тогда EF = BE по свойству катета, лежащего против угла 30°.

2) Пусть EF = DH = x , тогда BE = 2x , BF = x √3 по теореме Пифагора.

3) Так как ΔABC равнобедренный, значит, ∠B = ∠C = 30˚.

BD – биссектриса ∠B, значит ∠ABD = ∠DBC = 15˚.

4) Рассмотрим ΔDBH – прямоугольный, т.к. DH⊥BC.

2x = 4 – 2x
2x (√3 + 1) 4
1 = 2 – x
√3 + 1 2

√3 – 1 = 2 – x

x = 3 – √3

EF = 3 – √3

2) S DEFH = ED · EF = (3 – √3 ) · 2(3 – √3 )

S DEFH = 24 – 12√3.

Ответ: 24 – 12√3.


Задание № 17 - задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание - текстовая задача с экономическим содержанием.

Пример 17. Вклад в размере 20 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме того, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х млн. рублей, где х - целое число. Найдите наибольшее значение х , при котором банк за четыре года начислит на вклад меньше 17 млн рублей.

Решение: В конце первого года вклад составит 20 + 20 · 0,1 = 22 млн рублей, а в конце второго – 22 + 22 · 0,1 = 24,2 млн рублей. В начале третьего года вклад (в млн рублей) составит (24,2 + х ), а в конце - (24,2 + х) + (24,2 + х) · 0,1 = (26,62 + 1,1х ). В начале четвёртого года вклад составит (26,62 + 2,1х) , а в конце - (26,62 + 2,1х ) + (26,62 + 2,1х ) · 0,1 = (29,282 + 2,31х ). По условию, нужно найти наибольшее целое х, для которого выполнено неравенство

(29,282 + 2,31x ) – 20 – 2x < 17

29,282 + 2,31x – 20 – 2x < 17

0,31x < 17 + 20 – 29,282

0,31x < 7,718

x < 7718
310
x < 3859
155
x < 24 139
155

Наибольшее целое решение этого неравенства - число 24.

Ответ: 24.


Задание № 18 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.

При каких a система неравенств

x 2 + y 2 ≤ 2ay a 2 + 1
y + a ≤ |x | – a

имеет ровно два решения?

Решение: Данную систему можно переписать в виде

x 2 + (y a ) 2 ≤ 1
y ≤ |x | – a

Если нарисовать на плоскости множество решений первого неравенства, получится внутренность круга (с границей) радиуса 1 с центром в точке (0, а ). Множество решений второго неравенства – часть плоскости, лежащая под графиком функции y = | x | – a , причём последний есть график функции
y = | x | , сдвинутый вниз на а . Решение данной системы есть пересечение множеств решений каждого из неравенств.

Следовательно, два решения данная система будет иметь лишь в случае, изображённом на рис. 1.


Точки касания круга с прямыми и будут двумя решениями системы. Каждая из прямых наклонена к осям под углом 45°. Значит, треугольник PQR – прямоугольный равнобедренный. Точка Q имеет координаты (0, а ), а точка R – координаты (0, –а ). Кроме того, отрезки PR и PQ равны радиусу окружности, равному 1. Значит,

Qr = 2a = √2, a = √2 .
2
Ответ: a = √2 .
2


Задание № 19 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.

Пусть Sn сумма п членов арифметической прогрессии (а п ). Известно, что S n + 1 = 2n 2 – 21n – 23.

а) Укажите формулу п -го члена этой прогрессии.

б) Найдите наименьшую по модулю сумму S n .

в) Найдите наименьшее п , при котором S n будет квадратом целого числа.

Решение : а) Очевидно, что a n = S n S n – 1 . Используя данную формулу, получаем:

S n = S (n – 1) + 1 = 2(n – 1) 2 – 21(n – 1) – 23 = 2n 2 – 25n ,

S n – 1 = S (n – 2) + 1 = 2(n – 1) 2 – 21(n – 2) – 23 = 2n 2 – 25n + 27

значит, a n = 2n 2 – 25n – (2n 2 – 29n + 27) = 4n – 27.

Б) Так как S n = 2n 2 – 25n , то рассмотрим функцию S (x ) = | 2x 2 – 25x| . Ее график можно увидеть на рисунке.


Очевидно, что наименьшее значение достигается в целочисленных точках, расположенных наиболее близко к нулям функции. Очевидно, что это точки х = 1, х = 12 и х = 13. Поскольку, S (1) = |S 1 | = |2 – 25| = 23, S (12) = |S 12 | = |2 · 144 – 25 · 12| = 12, S (13) = |S 13 | = |2 · 169 – 25 · 13| = 13, то наименьшее значение равно 12.

в) Из предыдущего пункта вытекает, что Sn положительно, начиная с n = 13. Так как S n = 2n 2 – 25n = n (2n – 25), то очевидный случай, когда данное выражение является полным квадратом, реализуется при n = 2n – 25, то есть при п = 25.

Осталось проверить значения с 13 до 25:

S 13 = 13 · 1, S 14 = 14 · 3, S 15 = 15 · 5, S 16 = 16 · 7, S 17 = 17 · 9, S 18 = 18 · 11, S 19 = 19 · 13, S 20 = 20 · 13, S 21 = 21 · 17, S 22 = 22 · 19, S 23 = 23 · 21, S 24 = 24 · 23.

Получается, что при меньших значениях п полный квадрат не достигается.

Ответ: а) a n = 4n – 27; б) 12; в) 25.

________________

*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования (электронные формы учебников, «Российская электронная школа», цифровая образовательная платформа LECTA). До прихода в издательство «ДРОФА» занимал позицию вице-президента по стратегическому развитию и инвестициям издательского холдинга «ЭКСМО-АСТ». Сегодня издательская корпорация «Российский учебник» обладает самым крупным портфелем учебников, включенных в Федеральный перечень - 485 наименований (примерно 40%, без учета учебников для коррекционной школы). Издательствам корпорации принадлежат наиболее востребованные российскими школами комплекты учебников по физике, черчению, биологии, химии, технологии, географии, астрономии - областям знаний, которые нужны для развития производственного потенциала страны. В портфель корпорации входят учебники и учебные пособия для начальной школы, удостоенные Премии Президента в области образования. Это учебники и пособия по предметным областям, которые необходимы для развития научно-технического и производственного потенциала России.

Яковлева Наталья Сергеевна
Должность: учитель математики
Учебное заведение: МКОУ "Бунинская СОШ"
Населённый пункт: село Бунино, Солнцевский район, Курская область
Наименование материала: статья
Тема: "Методы решения заданий №20 ЕГЭ по математике базовый уровень"
Дата публикации: 05.03.2018
Раздел: полное образование

Единый государственный экзамен является на данный момент единственной

формой итоговой аттестации выпускников средней школы. А получение

аттестата о среднем образовании не возможно без успешной сдачи ЕГЭ по

математике. Математика является не только важным учебным предметом, но

и достаточно сложным. Математическими способностями обладают далеко

не все дети, а от успешной сдачи экзамена зависит их дальнейшая судьба.

Учителя выпускных классов снова и снова задают вопрос: «Как помочь

школьнику при подготовке к ЕГЭ и успешно его сдать?». Для того, чтобы

выпускник получил аттестат достаточно сдать математику базового уровня. А

успешность сдачи экзамена напрямую связана с тем, как учитель владеет

методикой решения различных задач. Вашему вниманию предлагаю примеры

решения задания №20 математика базовый уровень ФИПИ 2018 под

редакцией М.В. Ященко.

1 .На ленте по разные стороны от середине отмечены две полосы: синяя и

красная. Если ленту разрезать по красной полосе, то одна часть будет на 5 см

длиннее другой. Если ленту разрезать по синей полосе, то одна часть будет на

15 см длиннее другой. Найдите расстояние между красной и синей

полосами.

Решение:

Пусть а см расстояние от левого конца ленты до синей полосы, в см

расстояние от правого конца ленты до красной полосы, с см расстояние

между полосами. Известно, что если ленту разрезать по красной полосе, то

одна часть на 5 см длиннее другой, то есть а + с – в =5. Если разрезать по

синей полосе, то одна часть будет длиннее другой на 15 см, значит, в +с –

а=15. Сложим два равенство почленно: а+с-в+в+с-а=20, 2с=20, с=10.

2 . Среднее арифметическое 6 различных натуральных чисел равно 8. На

сколько нужно увеличить наибольшее из этих чисел, чтобы среднее

арифметическое стало на 1 больше.

Решение: Так как среднее арифметическое 6 натуральных чисел равно 8,

значит, сумма этих чисел равна 8*6=48. Среднее арифметическое чисел

увеличилось на 1 и стало равно 9, а количество чисел не изменилось, значит,

сумма чисел стане равной 9*6=54. Чтобы найти на сколько увеличилось одно

из чисел, нужно найти разность 54-48=6.

3. Клетки таблицы 6х5 раскрашены в черные и белые цвета. Пар соседних

клеток разного цвета 26, пар соседних клеток черного цвета 6. Сколько пар

соседних клеток белого цвета.

Решение:

В каждой горизонтали образуется 5 пар соседних клеток, значит, по

горизонтали всего будет 5*5=25 пар соседних клеток. По вертикали

образуется 4 пары соседних клеток, то есть всего пар соседних клеток по

вертикали будет 4*6=24. Всего образуется 24+25=49 пар соседних клеток. Из

них разного цвета 26 пар, черного 6 пар, следовательно белых пар будет 49-

26-6 = 17 пар.

Ответ: 17 .

4. На прилавке цветочного магазина стоят три вазы с розами: белая, синяя и

красная. Слева от красной вазы находится 15 роз, справа от синей вазы 12

роз. Всего в вазах 22 розы. Сколько роз в белой вазе?

Решение: Пусть х роз находится в белой вазе, у роз – в синей, z роз – в

красной. По условию задачи в вазах 22 розы, то есть х+у+ z=22. Известно,

что слева от красной вазы, то есть в синей и белой 15 роз, значит, х+у=15. А

справа от синей вазы, то есть в белой и красной вазах 12 роз, значит х+ z= 12.

Получили:

Прибавим почленно 2-ое и 3-ье равенства: х+у+х+ z=27 или 22 +х=27, х=5.

5 .Маша и Медведь съели 160 печений и банку варенья, начав и закончив

одновременно. Сначала Маша ела варенье, а Медведь печенья, но в какой-то

момент они поменялись. Медведь и то и другое ест в 3 раза быстрее Маши.

Сколько печений съел Медведь, если варенья они съели поровну.

Решение: Так как Маша и Медведь начали есть печенья и варенье

одновременно и закончили одновременно, причем ели один продукт, а затем

другой, и по условию задачи Медведь ест и то и другое в 3 раза быстрее, чем

Маша, значит Медведь поглощал еду в 9 раз быстрее Маши. Тогда пусть х

печений съела Маша, а Медведь 9х печений. Известно, что всего они съели

160 печений. Получим: х+9х=160, 10х=160, х=16, значит, медведь съел

16*9=144 печенья.

6. Из книги выпало несколько идущих подряд листов. Номер последней

страницы перед выпавшими листами 352. Номер первой страницы после

выпавших листов записывается теми же цифрами, но в другом порядке.

Сколько листов выпало?

Решение: Пусть х листов выпало, тогда количество выпавших страниц 2х, то

есть четное число. Номер первой выпавшей страницы 353. Разность между

номером первой выпавшей страницы и первой страницы после выпавших

должно быть четным числом, значит, номер после выпавших листов будет

523. Тогда количество выпавших листов будет равно (523-353):2=85.

7. Про натуральные числа А,В,С известно, что каждое из них больше 5, но

меньше 9. Загадали натуральное число, затем умножили на А, прибавили В и

вычли С. Получили 164. Какое число было задумано?

Решение: Пусть х загаданное натуральное число, тогда Ах+В-С=164, Ах=

164 – (В-С), так как числа А,В,С больше 5, но меньше 9, то -2≤В-С≤2,

значит, Ах= 166; 165; 164;163;162. Из чисел 6,7,8 только 6 является

Задача №5922.

Хозяин договорился с рабочими, что они копают колодец на следующих условиях: за первый метр он заплатит им 3500 рублей, а за каждый следующий метр – на 1600 рублей больше, чем за предыдущий. Сколько денег хозяин должен будет заплатить рабочим, если они выкопают колодец глубиной 9 метров?

Так как оплата каждого следующего метра отличается от оплаты предыдущего на одно и то же число, перед нами .

В этой прогрессии - плата за первый метр, - разница в оплате каждого последующего метра, - количество рабочих дней.

Сумма членов арифметической прогрессии находится по формуле:

Подставим данные задачи в эту формулу.

Ответ: 89100.

Задача №5943.

В об­мен­ном пунк­те можно со­вер­шить одну из двух опе­ра­ций:

· за 2 зо­ло­тые мо­не­ты по­лу­чить 3 се­реб­ря­ные и одну мед­ную;

· за 5 се­реб­ря­ных монет по­лу­чить 3 зо­ло­тые и одну мед­ную.

У Ни­ко­лая были толь­ко се­реб­ря­ные мо­не­ты. После не­сколь­ких по­се­ще­ний об­мен­но­го пунк­та се­реб­ря­ных монет у него стало мень­ше, зо­ло­тых не по­яви­лось, зато по­яви­лось 100 мед­ных. На сколь­ко умень­ши­лось ко­ли­че­ство се­реб­ря­ных монет у Ни­ко­лая ?

Задача №5960.

Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, сделав ровно 5 прыжков, начиная прыгать из начала координат?

Если кузнечик сделает пять прыжков в одном направлении (вправо или влево), то он окажется в точках с координатами 5 или -5:

Заметим, что кузнечик может прыгать и вправо и влево. Если он сделает 1 прыжок вправо и 4 прыжка влево (в сумме 5 прыжков), то окажется в точке с координатой -3. Аналогично, если кузнечик сделает 1 прыжок влево и 4 прыжка вправо (в сумме 5 прыжков), то окажется в точке с координатой 3:

Если кузнечик сделает 2 прыжка вправо и 3 прыжка влево (в сумме 5 прыжков), то окажется в точке с координатой -1. Аналогично, если кузнечик сделает 2 прыжка влево и 3 прыжка вправо (в сумме 5 прыжков), то окажется в точке с координатой 1:


Заметим, что если общее количество прыжков нечетное, то в начало координат кузнечик не вернется, то есть он сможет попасть только в точки с нечетными координатами:


Этих точек всего 6.

Если бы количество прыжков было четным, то кузнечик смог бы вернуться в начало координат и все точки на координатной прямой, в которые он мог бы попасть имели бы четные координаты.

Ответ: 6

Задача №5990

Улитка за день залезает вверх по дереву на 2 м, а за ночь сползает на 1 м. Высота дерева 9 м. За сколько дней улитка доползет до вершины дерева?

Заметим, что в этой задаче следует различать понятие "сутки" и понятие "день".

В задаче спрашивается именно за сколько дней улитка доползет до вершины дерева.

За один день улитка поднимается на 2 м, а за одни сутки улитка поднимается на 1 м (за день поднимается на 2 м, а потом за ночь спускается на 1 м).

За 7 суток улитка поднимается на 7 метров. То есть утром 8-го дня ей останется доползти до вершины 2 м. И за восьмой день она преодолеет это расстояние.

Ответ: 8 дней.

Задача №6010.

Во всех подъездах дома одинаковое число этажей, а на каждом этаже одинаковое число квартир. При этом число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного. Сколько этажей в доме, если всего в нём 105 квартир?

Чтобы найти число квартир в доме, нужно число квартир на этаже ( ) умножить на число этажей ( ) и умножить на число подъездов ( ).

То есть нам нужно найти ( ), исходя из следующих условий:

(1)

Последнее неравенство отражает условие "число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного".

То есть ( ) - самое больше число.

Разложим 105 на простые множители:

С учетом условия (1), .

Ответ: 7.

Задача №6036.

В корзине лежат 30 грибов: рыжики и грузди. Известно, что среди любых 12 грибов имеется хотя бы один рыжик, а среди любых 20 грибов хотя бы один груздь. Сколько рыжиков в корзине?

Так как среди любых 12 грибов имеется хотя бы один рыжик (или больше) число груздей должно быть меньше или равно чем .

Отсюда следует, что число рыжиков больше или равно чем .

Так как среди любых 20 грибов хотя бы один груздь (или больше), число рыжиков должно быть меньше или равно чем

Тогда получили, что с одной стороны, число рыжиков больше или равно чем 19 , а с другой - меньше или равно чем 19 .

Следовательно, число рыжиков равно 19.

Ответ: 19.

Задача №6047.

Саша пригласил Петю в гости, сказав, что живёт в седьмом подъезде в квартире № 333, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом девятиэтажный. На каком этаже живёт Саша? (На каждом этаже число квартир одинаково, номера квартир в доме начинаются с единицы.)

Пусть на каждом этаже квартир.

Тогда число квартир в первых шести подъездах равно

Найдем максимальное натуральное значение , удовлетворяющее неравенству ( - номер последней квартиры в шестом подъезде, и он меньше, чем 333.)

Отсюда

Номер последней квартиры в шестом подъезде -

Седьмой подъезд начинается с 325-й квартиры.

Следовательно, 333 квартира находится на втором этаже.

Ответ: 2

Задача №6060.

На поверхности глобуса фломастером проведены 17 параллелей и 24 меридиана. На сколько частей проведённые линии разделяют поверхность глобуса? Меридиан – это дуга окружности, соединяющая Северный и Южный полюса. параллель – это окружность, лежащая в плоскости, параллельной плоскости экватора .

Представим себе арбуз, который мы разрезаем на кусочки.

Сделав два разреза от верхней точки к нижней (проведя два меридиана), мы разрежем арбуз на две дольки. Следовательно, проведя 24 разреза (24 меридиана) мы разрежем арбуз на 24 дольки.

Теперь будем разрезать каждую дольку.

Если мы сделаем 1 поперечный разрез (параллель), то разрежем одну дольку на 2 части.

Если мы сделаем 2 поперечных разреза (параллели), то разрежем одну дольку на 3 части.

Значит, сделав 17 разрезов мы разрежем одну дольку на 18 частей.

Итак, мы разрезали 24 дольки на 18 частей, и получили куска.

Следовательно, 17 параллелей и 24 меридиана разделяют поверхность глобуса на 432 части.

Ответ: 432.

Задача №6069

На палке отмечены поперечные линии красного, жёлтого и зелёного цвета. Если распилить палку по красным линиям, получится 5 кусков, если по жёлтым – 7 кусков, а если по зелёным – 11 кусков. Сколько кусков получится, если распилить палку по линиям всех трёх цветов?

Если сделать 1 разрез, то получится 2 куска.

Если сделать 2 разреза, то получится 3 куска.

В общем случае: если сделать разрезов, то получится кусок.

Обратно: чтобы получить кусков, нужно сделать разрез.

Найдем общее количество линий, по которым разрезали палку.

Если распилить палку по красным линиям, получится 5 кусков - следовательно, красных линий было 4;

если по жёлтым – 7 кусков - следовательно, желтых линий было 6;

а если по зелёным – 11 кусков - следовательно, зеленых линий было 10.

Отсюда общее количество линий равно . Если распилить палку по всем линиям, то получится 21 кусок.

Ответ: 21.

Задача №9626.

На кольцевой дороге расположены четыре бензоколонки: A, Б, B, и Г. Расстояние между A и Б – 50 км, между A и В – 40 км, между В и Г – 25 км, между Г и A – 35 км (все расстояния измеряются вдоль кольцевой дороги в кратчайшую сторону). Найдите расстояние между Б и В.

Посмотрим, как могут быть расположены бензоколонки. Попробуем расположить их так:


При таком расположении расстояние между Г и А не может быть равно 35 км.

Попробуем так:


При таком расположении расстояние между А и В не может быть 40 км.

Рассмотрим такой вариант:


Этот вариант удовлетворяет условию задачи.

Ответ: 10.

Задача №10041.

Список заданий викторины состоял из 25 вопросов. За каждый правильный ответ ученик получал 7 очков, за неправильный ответ с него списывали 9 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 56 очков, если известно, что по крайней мере один раз он ошибся?

Пусть ученик дал правильных ответов и неправильных ( ). Так как возможно были еще вопросы, на которые он на ответил, получаем неравенство:

Кроме того, по условию,

Так как правильный ответ добавляет 7 очков, а неправильный убавляет 9, и в конечном итоге ученик набрал 56 очков, получаем уравнение:

Это уравнение надо решить в целых числах.

Так как 9 на 7 не делится, должен делиться на 7.

Пусть , тогда .

В этом случае - все условия выполняются.

Задача №10056.

Прямоугольник разбит на четыре маленьких прямоугольника двумя прямолинейными разрезами. Площади трех из них, начиная с левого верхнего и далее по часовой стрелке равны 15, 18, 24. Найдите площадь четвертого прямоугольника.


Площадь прямоугольника равна произведению его сторон.

Желтый и голубой прямоугольники имеют общую сторону, поэтому отношение площадей этих прямоугольников равно отношению длин других сторон (не равных между собой).

Белый и зеленый прямоугольники также имеют имеют общую сторону, поэтому отношение их площадей равно отношению других сторон (не равных между собой), то есть тому же отношению:

По свойству пропорции получим

Отсюда .

Задача №10071.

Прямоугольник разбит на четыре маленьких прямоугольника двумя прямолинейными разрезами. Периметры трех из них, начиная с левого верхнего и далее почасовой стрелке равны 17, 12, 13. Найдите периметр четвертого прямоугольника.


Периметр прямоугольника равен сумме длин всех его сторон.

Обозначим стороны прямоугольников как указано на рисунке и выразим через указанные переменные периметры прямоугольников. Получим:

Теперь нам нужно найти, чему равно значение выражения .

Вычтем из третьего уравнения второе и прибавим третье. Получим:

Упростим правую и левую части, получим:

Итак, .

Ответ: 18.

Задача №10086.

В таблице три столбца и несколько строк. В каждую клетку таблицы поставили по натуральному числу так, что сумма всех чисел в первом столбце равна 72, во втором – 81, в третьем – 91, а сумма чисел в каждой строке больше 13, но меньше 16. Сколько всего строк в таблице?

Найдем сумму всех чисел в таблице: .

Пусть число строк в таблице равно .

По условию задачи сумма чисел в каждой строке больше 13, но меньше 16 .

Так как сумма чисел - натуральное число, этому двойному неравенству удовлетворяют только два натуральных числа: 14 и 15.

Если предположить, что сумма чисел в каждой строке равна 14, то тогда сумма всех чисел в таблице равна , и эта сумма удовлетворяет неравенству .

Если предположить, что сумма чисел в каждой строке равна 15, то тогда сумма всех чисел в таблице равна , и это число удовлетворяет неравенству .

Итак, натуральное число должно удовлетворять системе неравенств:

Единственное натуральное , удовлетворяющее этой системе - это

Ответ: 17.

Про натуральные числа А, В и С известно, что каждое из них больше 4 но меньше 8. Загадали натуральное число, затем его умножили на А потом прибавили к полученному произведению В и вычли С. Получилось 165. Какое число было загадано?

Натуральные числа А, В и С могут быть равны числам 5, 6 или 7.

Пусть неизвестное натуральное число равно .

Получим: ;

Рассмотрим различные варианты.

Пусть А=5. Тогда B=6 и С=7, или B=7 и С=6, или B=7 и С=7, или B=6 и С=6.

Проверим: ; (1)

165 делится на 5.

Разность между числами В и С либо равна , либо равна 0, если эти числа равны. Если разность равна , то равенство (1) невозможно. Следовательно, разность равна 0 и

Пусть А=6. Тогда B=5 и С=7, или B=7 и С=5, или B=7 и С=7, или B=5 и С=5.

Проверим: ; (2)

Разность между числами В и С либо равна , либо равна 0, если эти числа равны. Если разность равна или 0 то равенство (2) невозможно, так как - четное число, а сумма (165 + четное число) - не может быть четным числом.

Пусть А=7. Тогда B=5 и С=6, или B=6 и С=5, или B=6 и С=6, или B=5 и С=5.

Проверим: ; (3)

Разность между числами В и С либо равна , либо равна 0, если эти числа равны. Число 165 при делении на 7 дает в остатке 4. Следовательно, также не делится на 7, и равенство (3) невозможно.

Ответ: 33

Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами - 352, номер первой страницы после выпавших листов записывается теми же цифрами, но в другом порядке. Сколько листов выпало?

Очевидно, что номер первой страницы после выпавших листов больше чем 352, значит это может быть либо 532, либо 523.

Каждый выпавший лист содержит 2 страницы. Следовательно выпало четное число страниц. 352 - четное число. Если мы к четному числу прибавим четное, то получим четное число. Следовательно, номер последней выпавшей страницы - четное число, и номер первой страницы после выпавших листов должен быть нечетным, то есть 523. Следовательно, номер последней выпавшей страницы 522. Тогда выпало листов.

Ответ: 85

Маша и Медведь съели 160 печений и банку варенья, начав и закончив одновременно. Сначала Маша ела варенье, а Медведь - печенье, но в какой-то момент они поменялись. Медведь и то, и другое ест в три раза быстрее Маши. Сколько печений съел Медведь, если варенье они съели поровну?

Если Маша и Медведь съели варенье поровну, а медведь в единицу времени съедал втрое больше варенья, значит он ел варенье втрое меньшее время, чем Маша. Другим словами, Маша ела варенье втрое дольше, чем Медведь. Но пока Маша ела варенье, медведь ел печенье. Следовательно, медведь ел печенье втрое дольше, чем Маша. Но Медведь, к тому же, в единицу времени съедал втрое больше печенья, чем Маша, следовательно, в итоге он съел в 9 раз больше печенья, чем Маша.

Теперь несложно составить уравнение. Пусть Маша съела печений, тогда Медведь съел печений. Вместе они съели печений. получаем уравнение:

Ответ: 144

На прилавке цветочного магазина стоят 3 вазы с розами: оранжевая, белая и синяя. Слева от оранжевой вазы 15 роз, справа от синей вазы 12 роз. Всего в вазах 22 розы. сколько роз в оранжевой вазе?

Так как 15+12=27, и 27>22, следовательно, количество цветов одной вазе посчитали дважды. И это белая ваза, так как это должная быть ваза, которая стоит справа от синей и слева от оранжевой. Значит, вазы стоят в таком порядке:

Отсюда получаем систему:

Вычтя из третьего уравнения первое, получим О= 7.

Ответ: 7

Десять столбов соединены между собой проводами так, что от каждого столба отходит ровно 8 проводов. сколько всего проводов протянуто между этими десятью столбами?

Решение

Смоделируем ситуацию. Пусть у нас есть два столба, и они соединены между собой проводами так, что от каждого столба отходит ровно 1 провод. Тогда получается, что от столбов отходит 2 провода. Но мы имеем такую ситуацию:


То есть при том, что от столбов отходит 2 провода, протянут между столбами всего один провод. Значит, число протянутых проводов в два раза меньше, чем число отходящих.

Получаем: - число отходящих проводов.

Число протянутых проводов.

Ответ: 40

Из десяти стран семь подписали договор о дружбе ровно с тремя другими странами, а каждая из оставшихся трёх - ровно с семью. Сколько всего было подписано договоров?

Эта задача аналогична предыдущей: две страны подписывают один общий договор. На каждом договоре стоит две подписи. То есть число подписанных договоров вдвое меньше, чем число подписей.

Найдем число подписей:

Найдем число подписанных договоров:

Ответ: 21

Три луча, выходящие из одной точки, разбивают плоскость на три разных угла, измеряемых целым числом градусов. Наибольший угол в 3 раза больше наименьшего. Сколько значений может принимать величина среднего угла?

Пусть наименьший угол равен , тогда наибольший угол равен . Так как сумма всех углов равна , величина среднего угла равна .


Средний угол должен больше наименьшего и меньше наибольшего угла.

Получим систему неравенств:

Следовательно, принимает значения в диапазоне от 52 до 71 градуса, то есть всего возможных значений.

Ответ: 20

Миша, Коля и Леша играют в настольный теннис: игрок, проигравший партию, уступает место игроку, не участвовавшему в ней. В итоге оказалось, что Миша сыграл 12 партий, а Коля - 25. Сколько партий сыграл Леша?

Решение

Следует пояснить, как устроен турнир: турнир состоит из фиксированного числа партий; проигравший в данной партии игрок уступает место игроку, который не участвовал в данной партии. По итогам следующей партии игрок, который не принимал в ней участие, заступает на место проигравшего. Следовательно, каждый игрок принимает участие хотя бы в одной из двух последовательных партий.

Найдем, сколько всего было партий.

Так как Коля сыграл 25 партий, следовательно, в турнире было проведено не меньше 25 партий.

Миша сыграл 12 партий. Так как он точно принимал участие в каждой второй партии, следовательно, было проведено не больше, чем партий. То есть турнир состоял из 25 партий.

Если Миша сыграл 12 партий, то Леша сыграл оставшиеся 13.

Ответ: 13

В конце четверти Петя выписал подряд все свои отметки по одному из предметов, их оказалось 5, и поставил между некоторыми из них знаки умножения. Произведение получившихся чисел оказалось равным 3495 . Какая отметка выходит у Пети в четверти по этому предмету, если учитель ставит только отметки 2, 3, 4 или 5 и итоговая отметка в четверти является средним арифметическим всех текущих отметок, округленным по правилам округления? (Например, 3,2 округляется до 3; 4,5 - до 5; 2,8 - до 3)

Разложим 3495 на простые множители. Последняя цифра числа 5, следовательно, число делится на 5; сумма цифр делится на 3, следовательно число делится на 3.

Получили, что

Следовательно, оценки Пети 3, 5, 2, 3, 3. Найдем среднее арифметическое:

Ответ: 3

Среднее арифметическое 6 различных натуральных чисел равно 8. На сколько нужно увеличить наибольшее из этих чисел, чтобы их среднее арифметическое стало на 1 больше?

Среднее арифметическое равно сумме всех чисел, деленной на их количество. Пусть сумма всех чисел равна . По условию задачи , следовательно .

Среднее арифметическое стало на 1 больше, то есть стало равно 9. Если одно из чисел увеличили на , то и сумма увеличилась на и стала равна .

Количество чисел не изменилось и равно 6.

Получаем равенство:

Единый государственный экзамен по математике базового уровня состоит из 20 заданий. В задании 20 проверяются навыки решения логических задач. Школьник должен уметь применять свои знания для решения задач на практике, в том числе на арифметическую и геометрическую прогрессию. Здесь вы можете узнать, как решать задание 20 ЕГЭ по математике базового уровня, а также изучить примеры и способы решения на основе подробно разобранных заданий.

Все задания ЕГЭ база все задания (263) ЕГЭ база задание 1 (5) ЕГЭ база задание 2 (6) ЕГЭ база задание 3 (45) ЕГЭ база задание 4 (33) ЕГЭ база задание 5 (2) ЕГЭ база задание 6 (44) ЕГЭ база задание 7 (1) ЕГЭ база задание 8 (12) ЕГЭ база задание 10 (22) ЕГЭ база задание 12 (5) ЕГЭ база задание 13 (20) ЕГЭ база задание 15 (13) ЕГЭ база задание 19 (23) ЕГЭ база задание 20 (32)

На ленте с разных сторон от середины отмечены две поперечные полоски

На ленте с разных сторон от середины отмечены две поперечные полоски: синяя и красная. Если разрезать ленту по синей полоске, то одна часть будет длиннее другой на A см. Если разрезать по красной, то одна часть будет длиннее другой на B см. Найдите расстояние от красной до синей полоски.

Задача про ленту входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.

Биологи открыли разновидность амёб

Биологи открыли разновидность амёб, каждая из которых ровно через минуту делится на две. Биолог кладёт амёбу в пробирку, и ровно через N часов пробирка оказывается полностью заполненной амёбами. Сколько минут потребуется, чтобы вся пробирка заполнилась амёбами, если в неё положить не одну, а K амёб?

При демонстрации летней одежды наряды каждой манекенщицы

При демонстрации летней одежды наряды каждой манекенщицы отличаются хотя бы одним из трёх элементов: блузкой, юбкой и туфлями. Всего модельер приготовил для демонстрации A видов блузок, B вида юбок и C вида туфель. Сколько различных нарядов будет показано на этой демонстрации?

Задача про наряды входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.

Группа туристов преодолела горный перевал

Группа туристов преодолела горный перевал. Первый километр подъёма они преодолели за K минут, а каждый следующий километр проходили на L минут дольше предыдущего. Последний километр перед вершиной был пройден за M минут. После отдыха N минут на вершине туристы начали спуск, который был более пологим. Первый километр после вершины был пройден за P минут, а каждый следующий на R минут быстрее предыдущего. Сколько часов группа затратила на весь маршрут, если последний километр спуска был пройден за S минут.

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.

Врач прописал пациенту принимать лекарство по такой схеме

Врач прописал пациенту принимать лекарство по такой схеме: в первый день он должен принять K капель, а в каждый следующий день - на N капель больше, чем в предыдущий. Сколько пузырьков лекарства нужно купить пациенту на весь курс приёма, если в каждом содержится M капель?

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.

По эмпирическому закону Мура среднее число транзисторов на микросхемах

По эмпирическому закону Мура среднее число транзисторов на микросхемах каждый год увеличивается в N раз. Известно, что в 2005 году среднее число транзисторов на микросхеме равнялось K млн. Определите, сколько в среднем миллионов транзисторов было на микросхеме в 2003 году.

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.

Нефтяная компания бурит скважину для добычи нефти

Нефтяная компания бурит скважину для добычи нефти, которая залегает, по данным геологоразведки, на глубине N км. В течение рабочего дня бурильщики проходят L метров в глубину, но за ночь скважина вновь «заиливается», то есть заполняется грунтом на K метров. За сколько рабочих дней нефтяники пробурят скважину до глубины залегания нефти?

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.

В магазине бытовой техники объём продаж холодильников носит сезонный характер

В магазине бытовой техники объём продаж холодильников носит сезонный характер. В январе было продано K холодильников, и в три последующих месяца продавали по L холодильников. С мая продажи увеличивались на M единиц по сравнению с предыдущим месяцем. С сентября объём продаж начал уменьшаться на N холодильников каждый месяц относительно предыдущего месяца. Сколько холодильников продал магазин за год?

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.

Тренер посоветовал Андрею в первый день занятий провести на беговой дорожке

Тренер посоветовал Андрею в первый день занятий провести на беговой дорожке L минут, а на каждом следующем занятии увеличивать время, проведённое на беговой дорожке, на M минут. За сколько занятий Андрей проведёт на беговой дорожке в общей сложности N часов K минут, если будет следовать советам тренера?

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.

Каждую секунду бактерия делится на две новые бактерии

Каждую секунду бактерия делится на две новые бактерии. Известно, что весь объём одного стакана бактерии заполняют за N часов. За сколько секунд стакан будет заполнен бактериями на 1/K часть?

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.

На кольцевой дороге расположено четыре бензоколонки: А, Б, В и Г

На кольцевой дороге расположено четыре бензоколонки: А, Б, В и Г. Расстояние между А и Б - K км, между А и В - L км, между В и Г - M км, между Г и А - N км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей дуге). Найдите расстояние (в километрах) между Б и В.

Задача про бензоколонки входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.

Саша пригласил Петю в гости, сказав, что живёт

Саша пригласил Петю в гости, сказав, что живёт в K подъезде в квартире № M, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом N-этажный. На каком этаже живёт Саша? (На всех этажах число квартир одинаково, номера квартир в доме начинаются с единицы.)

Задача про квартиры и дома входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 20.